Classifying IoT firmware security threats using image analysis and deep learning
Abstract
As the internet of things (IoT) grows, its embedded devices face increasing vulnerability to firmware-based attacks. The lack of robust security mechanisms in IoT devices makes them susceptible to malicious firmware updates, potentially compromising entire networks. This study addresses the classification of IoT firmware security threats using deep learning and image-based analysis techniques. A publicly available dataset of 32×32 grayscale images, derived from IoT firmware samples and categorized as benignware, hackware, and malware, was utilized. The grayscale images were converted into three-channel RGB format to ensure compatibility with convolutional neural networks (CNNs). We tested multiple pre-trained CNN architectures, including SqueezeNet, ShuffleNet, MobileNet, Xception, and ResNet50, employing transfer learning to adapt the models for this classification task. Both ResNet50 and ShuffleNet achieved exceptional performance, with 100% accuracy, precision, recall, and F1-score. These results validate the effectiveness of our methodology in leveraging transfer learning for IoT firmware classification while maintaining computational efficiency, making it suitable for deployment in resource-constrained IoT environments. T
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijres.v14.i2.pp546-557
Refbacks
View the IJRES Visitor Statistics
International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.