Modeling of chimp optimization algorithm node localization scheme in wireless sensor networks
Abstract
For smart environments in the digital age, wireless sensor networks (WSNs) are needed. Node localization (NL) in WSNs is complicated for recent researchers. WSN localization focuses on finding sensor nodes (SNs) in two dimensions. WSN NL provides decision-making information in packets sent to base stations. This article describes modeling of chimp optimization algorithm node localization system in wireless sensor networks (MCOANL-WSN). The MCOANL-WSN approach uses metaheuristic optimization to locate unknown network nodes. To simulate chimpanzees' cooperative hunting behavior, the MCOANL-WSN approach includes chimp optimization algorithm (COA) into the NL process. The system uses mathematical modeling to represent node collaboration to improve placements. COA-based localization is being proposed for dynamically responding to resource-constrained and dynamic WSNs. Wide-ranging simulations may assess the MCOANL-WSN system's scalability, energy efficiency, and localization accuracy. The findings demonstrate the superiority of the new modeling method over current NL schemes in improving WSN reliability and efficiency in various applications.
Keywords
Algorithm; Chimp optimization; Fitness function; Metaheuristic; Node localization; Wireless sensor network
Full Text:
PDFDOI: http://doi.org/10.11591/ijres.v14.i1.pp221-230
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).