Comparative analysis of ZigBee, LoRa, and NB-IoT in a smart building: advantages, limitations, and integration possibilities
Abstract
This paper compares the performance of various wireless technologies: ZigBee, long range (LoRa), and narrowband internet of things (NB-IoT), which support smart building applications. The highlight of this work is that we focus on wireless communication between the floors of the building by analyzing the performance metrics using the received signal strength indicator (RSSI) and packet loss ratio (PLR). First, the ZigBee tests confirmed reliable packet delivery without any loss over distances up to 40 meters on the same floor, with RSSI results ranging from -65.5 to -87.5 dBm. ZigBee also maintained signal transmission through one cross-floor level, with RSSI values between -60 and -119 dBm. The second set of tests, with LoRa, indicated signal transmission over several floors with slightly improved RSSI values for the 2 dBi antenna compared to those for the -4 dBi antenna, despite increased packet loss with distance. Finally, NB-IoT showed the most consistent long-range connectivity, achieving a stable signal up to 458 meters from the base station with RSSI levels varying from -55.6 to -74.6 dBm, without packet loss in all tests. This study demonstrates how such technologies could be used in smart buildings and provides suggestions on how to determine the most suitable systems and configure them to ensure reliable communication networks within the building.
Keywords
Long range; Narrowband internet of things; Smart building; Wirless sensor network; ZigBee
Full Text:
PDFDOI: http://doi.org/10.11591/ijres.v14.i1.pp165-175
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).