Implementation of PWM AC chopper controller for capacitor run induction motor drive via bacterial foraging optimization algorithm
Abstract
This paper focuses on design of closed-loop control for pulse width modulated AC chopper controlled capacitor run induction motor drive engaging enriched optimization algorithm based on foraging of bacteria. Capacitor run induction motor is a non-linear device and its parameter varies under different functional point of the system. A linearized increment model for PWM AC chopper is illustrated for a particular functional point of the drive. The conventional method does not provide acceptable performance under different load conditions. Bacteria foraging optimization technique categorizes accurate control parameters for the superlative dynamic response under unit step load variations. Field Programmable Gate Array is implemented practically for a particular functional point of the drive to exhibit accurate performance. Experimental and simulated results are obtained to authenticate the effectiveness of the optimized controller.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijres.v9.i3.pp169-177
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).