Building a photonic neural network based on multi-operand multimode interference ring resonators
Abstract
Photonic neural networks (PNNs) offer significant potential for enhancing deep learning networks, providing high-speed processing and low energy consumption. In this paper, we present a novel PNN architecture that employs nonlinear optical neurons using multi-operand 4×4 multimode interference (MMI) multi-operand ring resonators (MORRs) to efficiently perform vector dot-product calculations. This design is integrated into a photonic convolutional neural network (PCNN) with two convolutional layers and one fully connected layer. Simulation experiments, conducted using Lumerical and Ansys tools, demonstrated that the model achieved a high test accuracy of 98.26% on the MNIST dataset, with test losses stabilizing at approximately 0.04%. The proposed model was evaluated, demonstrating high computation speed, improved accuracy, low signal loss, and scalability. These findings highlight the model’s potential for advancing deep learning applications with more efficient hardware implementations.
Keywords
4×4 multimode interference; Convolutional neural networks; High-speed computing; Multi-operand ring resonators; Photonic neural networks
Full Text:
PDFDOI: http://doi.org/10.11591/ijres.v14.i2.pp%25p
Refbacks
- There are currently no refbacks.
View the IJRES Visitor Statistics
International Journal of Reconfigurable and Embedded Systems (IJRES)
ISSN: 2722-2608, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.