Investigating the Performance of RNN Model to Forecast The Electricity Power Consumption in Guangzhou China
Abstract
Keywords
References
Hammad, M. A., Jereb, B., Rosi, B., & Dragan, D. (2020). Methods and Models for Electric Load Forecasting: A Comprehensive Review. Logistics & Sustainable
Transport, 11(1), 51–76. doi:10.2478/jlst-2020-0004
I. Gupta and G. Nagpal (2020). “Chapter 1: Introduction to Artificial Intelligence”,
“Chapter 5: Expert Systems”, “Chapter 11: Fuzzy Logic” in Artificial Intelligence and
Expert Systems. https://doi.org/10.1515/9781683925057
Rai, S., & De, M. (2021). Analysis of classical and machine learning based shortterm
and mid-term load forecasting for smart grid. International Journal of Sustainable Energy, 1– 19. doi:10.1080/14786451.2021.1873339
Lee, W.-J., & Hong, J. (2015). A hybrid dynamic and fuzzy time series model for mid-term power load forecasting. International Journal of Electrical Power & Energy Systems, 64, 1057–1062. doi:10.1016/j.ijepes.2014.08.006
Sarstedt, M., & Mooi, E. (2018). Regression Analysis. A Concise Guide to
Market Research, 209–256. doi:10.1007/978-3-662-56707-4_7
Douglas C. Montgomery, Cheryl L. Jennings, Murat Kulahci. Introduction to time series analysis and forecasting. Second edition Wiley, Hoboken, New Jersey, 2016
Rao, M. S. S., Soman, S. A., Menezes, B. L., Pradeep Chawande, Dipti, P., &
Ghanshyam, T. (2006). An expert system approach to short-term load forecasting for Reliance Energy Limited, Mumbai. 2006 IEEE Power India Conference. doi:10.1109/poweri.2006.1632604
Kuo, P.-H., & Huang, C.-J. (2018). A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting. Energies, 11(1), 213. doi:10.3390/en11010213
JiaJia Yang, Guolong Liu, Junhua Zhao, Fushuan Wen, & Chaoyang Dong. (2018). A Long Short Term Memory Based Deep Learning Method for Industrial Load Forecasting, P20-27. DOI:10.3969/j.issn 1000-7229.2018.10.003
Charytoniuk, W., & Chen, M.-S. (2000). Very short-term load forecasting using artificial neural networks. IEEE Transactions on Power Systems, 15(1), 263 – 268.doi:10.1109/59.852131
Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M. (2018). Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †. Energies, 11(7), 1636.doi:10.3390/en11071636
N, S. G., & Sheshadri, G. S. (2020). Electrical Load Forecasting Using Time Series Analysis. 2020 IEEE Bangalore Humanitarian Technology Conference (BHTC). doi:10.1109/b-htc50970.2020.9297986
Gao, M., Li, J., Hong, F., & Long, D. (2019). Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM. Energy. doi:10.1016/j.energy.2019.07.168
Guo, Z., Zhou, K., Zhang, X., & Yang, S. (2018). A deep learning model for short-term power load and probability density forecasting. Energy, 160, 1186–1200. doi:10.1016/j.energy.2018.07.090
Lee, W.-J., & Hong, J. (2015). A hybrid dynamic and fuzzy time series model for mid-term power load forecasting. International Journal of Electrical Power & Energy Systems, 64, 1057–1062. doi:10.1016/j.ijepes.2014.08.006
Zhang, W., Qin, J., Mei, F., Fu, J., Dai, B., & Yu, W. (2020). Short-term power load forecasting using integrated methods based on long short-term memory. ScienceChina Technological Sciences. doi:10.1007/s11431-019-9547-4+
Arif, A., Wang, Z., Wang, J., Mather, B., Bashualdo, H., & Zhao, D. (2017). Load Modeling – A Review. IEEE Transactions on Smart Grid, 1–1. doi:10.1109/tsg.2017.2700436
Sathishkumar, V. E., et al. "An energy consumption prediction model for smart factory using data mining algorithms." KIPS Transactions on Software and Data Engineering 9.5 (2020): 153-160.
Bhandary, Aakash, et al. "Enhancing Household Energy Consumption Predictions through Explainable AI Frameworks." IEEE Access (2024).
Le, Tuong, et al. "Improving electric energy consumption prediction using CNN and Bi-LSTM." Applied Sciences 9.20 (2019): 4237.
Du, P., Wang, J., Yang, W., & Niu, T. (2018). Multi-step ahead forecasting in electrical power system using a hybrid forecasting system. Renewable energy, 122, 533-550.
Azeem, A., Ismail, I., Jameel, S. M., & Harindran, V. R. (2021). Electrical load forecasting models for different generation modalities: a review. IEEE Access, 9, 142239-142263.
Dong, Y., Ma, X., & Fu, T. (2021). Electrical load forecasting: A deep learning approach based on K-nearest neighbors. Applied Soft Computing, 99, 106900.
Imani, M. (2021). Electrical load-temperature CNN for residential load forecasting. Energy, 227, 120480.
Di Piazza, A., Di Piazza, M. C., La Tona, G., & Luna, M. (2021). An artificial neural network-based forecasting model of energy-related time series for electrical grid management. Mathematics and Computers in Simulation, 184, 294-305.
DOI: http://doi.org/10.11591/ijres.v14.i2.pp%25p
Refbacks
- There are currently no refbacks.
View the IJRES Visitor Statistics
International Journal of Reconfigurable and Embedded Systems (IJRES)
ISSN: 2722-2608, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.