Optimized Kalman filtering in dynamical environments for thumb robot motion estimation
Abstract
Stroke, a prevalent nerve disorder in Indonesia, necessitates post-stroke rehabilitation like physical and occupational therapy. Hand and finger muscle training, crucial for restoring movement, often involves innovative solutions like finger prosthetic robotics arms. In particular, the advancement in thumb robotics emphasizes the estimation of thumb motion, where the ensemble Kalman filter square root (EnKF-SR) and H-infinity methods are deemed dependable for both linear and nonlinear models. Simulation results, using 400 ensembles, demonstrated nearly identical accuracy between the methods, exceeding 99%, with a 6-7% increase in accuracy compared to 200 ensembles. These advancements offer promising prospects for effective post-stroke rehabilitation and improved thumb movement restoration.
Keywords
EnKF-SR; Estimation; H-infinity; Motion; Thumb
Full Text:
PDFDOI: http://doi.org/10.11591/ijres.v13.i3.pp512-519
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).