Earthquake magnitude prediction in Indonesia using a supervised method based on cloud radon data

Thomas Oka Pratama, Sunarno Sunarno, Agus Budhie Wijatna, Eko Haryono

Abstract


In the challenging realm of earthquake prediction, the reliability of forecasting systems has remained a persistent obstacle. This study focuses on earthquake magnitude prediction in Indonesia, leveraging supervised machine learning techniques and cloud radon data. We present an analysis of the tele-monitoring system, data collection methods, and the application of regression-based machine learning algorithms. Utilizing a comprehensive dataset spanning 30 training instances and 105 test instances, the study evaluates multiple metrics to ascertain the efficacy of the prediction models. Our findings reveal that the linear regression approach yields the best earthquake magnitude prediction method, with the lowest values across multiple evaluation metrics: standard deviation 0.40, mean absolute error (MAE) 0.30, mean absolute percentage error (MAPE) 6%, root mean square error (RMSE) 0.52, mean squared error (MSE) 0.28, symmetric mean absolute percentage error (SMAPE) 0.06, and conformal normalized mean absolute percentage error (cnSMAPE) 0.97. Additionally, we discuss the implications of the research results and the potential applications in enhancing existing earthquake prediction methodologies.

Keywords


Cloud data; Earthquake magnitude; Machine learning; Radon; Supervised

Full Text:

PDF


DOI: http://doi.org/10.11591/ijres.v13.i3.pp577-585

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter View IJRES Stats