C4O: chain-based cooperative clustering using coati optimization algorithm in WSN

Preet Kamal Singh, Harmeet Singh, Jaspreet Kaur

Abstract


In order to provide sensing services to low-powered IoT devices, wireless sensor networks (WSNs) organize specialized transducers into networks. Energy usage is one of the most important design concerns in WSN because it is very hard to replace or recharge the batteries in sensor nodes. For an energy-constrained network, the clustering technique is crucial in preserving battery life. By strategically selecting a cluster head (CH), a network's load can be balanced, resulting in decreased energy usage and extended system life. Although clustering has been predominantly used in the literature, the concept of chain-based clustering has not yet been explored. As a result, in this paper, we employ a chain-based clustering architecture for data dissemination in the network. Furthermore, for CH selection, we employ the coati optimisation algorithm, which was recently proposed and has demonstrated significant improvement over other optimization algorithms. In this method, the parameters considered for selecting the CH are energy, node density, distance, and the network’s average energy. The simulation results show tremendous improvement over the competitive cluster-based routing algorithms in the context of network lifetime, stability period (first node dead), transmission rate, and the network's power reserves.

Keywords


C4O; Cluster head; Optimization algorithm; Routing; Wireless sensor network

Full Text:

PDF


DOI: http://doi.org/10.11591/ijres.v13.i1.pp96-104

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter View IJRES Stats