A novel compression methodology for medical images using deep learning for high-speed transmission

Shyamala Navaneethakrishnan, Geetha Shanmugam


Medical imaging is a rapidly growing field having a high impact on the early detection, diagnosis and surgical planning of diseases. Several imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US) imaging generate a higher volume of data, necessitating additional storage and communication requirements. Hence, image compression is utilized in medical field to reduce redundancy and alleviate memory and bandwidth issues. This paper presents a novel deep learning-based compression method to reduce the size of medical images. This method employs a deep convolutional neural network for learning compact representations of medical images, then coded by a Huffman encoder. The compression process is reversed to reconstruct the original image. Several tests are conducted to compare the results with other wellknown compression methods. The proposed model achieved a mean peak signal-to-noise ratio (PSNR) of 42.82 dB with storage space saving (SSS) of 96.15% for CT, 43.88 dB with SSS of 96.25% for MRI, 46.29 dB with SSS of 96.07% for US and 43.51 dB with SSS of 96.95% for X-ray images. The findings showed that the proposed compression technique could greatly compress the image size, saving storage space, facilitating better transmission and preserving critical diagnostic information.


Compact form; Deep convolutional neural network; Deep learning; Medical image compression; Storage space-saving; Telemedicine

Full Text:


DOI: http://doi.org/10.11591/ijres.v13.i2.pp262-270


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter View IJRES Stats