Accurate plant species analysis for plant classification using convolutional neural network architecture

Savitha Patil, Mungamuri Sasikala


Recently, plant identification has become an active trend due to encouraging results achieved in plant species detection and plant classification fields among numerous available plants using deep learning methods. Therefore, plant classification analysis is performed in this work to address the problem of accurate plant species detection in the presence of multiple leaves together, flowers, and noise. Thus, a convolutional neural network based deep feature learning and classification (CNN-DFLC) model is designed to analyze patterns of plant leaves and perform classification using generated fine-grained feature weights. The proposed CNN-DFLC model precisely estimates which the given image belongs to which plant species. Several layers and blocks are utilized to design the proposed CNN-DFLC model. Fine-grained feature weights are obtained using convolutional and pooling layers. The obtained feature maps in training are utilized to predict labels and model performance is tested on the Vietnam plant image (VPN-200) dataset. This dataset consists of a total number of 20,000 images and testing results are achieved in terms of classification accuracy, precision, recall, and other performance metrics. The mean classification accuracy obtained using the proposed CNN-DFLC model is 96.42% considering all 200 classes from the VPN-200 dataset.


Architecture; Convolutional neural network; Feature extraction; Plant classification; Plant identification; Vietnam plant-200 dataset

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter View IJRES Stats