A design methodology for approximate multipliers in convolutional neural networks: A case of MNIST

Kenta Shirane, Takahiro Yamamoto, Hiroyuki Tomiyama


In this paper, we present a case study on approximate multipliers for MNIST Convolutional Neural Network (CNN). We apply approximate multipliers with different bit-width to the convolution layer in MNIST CNN, evaluate the accuracy of MNIST classification, and analyze the trade-off between approximate multiplier’s area, critical path delay and the accuracy. Based on the results of the evaluation and analysis, we propose a design methodology for approximate multipliers. The approximate multipliers consist of some partial products, which are carefully selected according to the CNN input. With this methodology, we further reduce the area and the delay of the multipliers with keeping high accuracy of the MNIST classification.


Approximate computing; Approximate multiplier; CNN; MNIST

Full Text:


DOI: http://doi.org/10.11591/ijres.v10.i1.pp1-10


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter View IJRES Stats