FPGA Implementation of Park-Miller Algorithm to Generate Sequence of 32-Bit Pseudo Random Key for Encryption and Decryption of Plain Text

Bharatesh N, Rohith S

Abstract


There are many problems arises in randomized algorithms whose solutions are fundamentally based on assumptions that pure random numbers exist, so pseudo-random number generators can imitate randomness sufficiently well for most applications. The proposed scheme is a FPGA implementation of Park-Miller Algorithm for generating sequence of Pseudo-Random keys. The properties like High speed, low power and flexibility of designed PRNG(Pseudo Random Number Generator) makes any digital circuit faster and smaller. The algorithm uses a PRNG Module, it contains 32-bit Booth Multiplier, 32-bit Floating point divider and a FSM module. After generating a sequence of 32-bit Pseudo-Random numbers we have used these numbers as a key to Encrypt 128-bit plain text to become a cipher text and by using the same key to decrypt the encrypted data to get original Plain text. The Programming is done in Verilog-HDL, successfully synthesized and implemented in XILINX Spartan 3E FPGA kit.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijres.v2.i3.pp99-105

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Reconfigurable and Embedded Systems (IJRES)
p-ISSN 2089-4864, e-ISSN 2722-2608
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Web Analytics Made Easy - Statcounter View IJRES Stats