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ABSTRACT

Graph algorithms are essential in domains like social network analysis, web
search, and bioinformatics. Their execution on modern hardware is vital due to
the growing size and complexity of graphs. Traditional multi-core systems strug-
gle with irregular memory access patterns in graph workloads. Reduced instruc-
tion set computer–five (RISC-V)-based many-core processors offer a promising
alternative with their customizable open-source architecture suitable for opti-
mization. This work focuses on parallelizing graph algorithms like breadth-first
search (BFS) and PageRank (PR) on RISC-V many-core systems. We evaluated
performance based on graph structure and processor architecture, and devel-
oped an analytical model to predict execution time. The model incorporates the
unique characteristics of the RISC-V architecture and the types and numbers
of instructions executed by multiple cores, with a maximum prediction error of
11%. Our experiments show a speedup of up to 11.55× for BFS and 7.56×
for PR using 16 and 8 cores, respectively, over single-core performance. Com-
parisons with existing graph processing frameworks demonstrate that RISC-V
systems can deliver up to 20× better energy efficiency on real-world graphs
from the network repository.
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1. INTRODUCTION
Graph algorithms have become increasingly important in applications such as social networks, navi-

gation, and graph neural networks. The methods for processing graphs have evolved significantly, transitioning
from classical problems to modern general-purpose platforms like central processing units (CPUs) and graphics
processing units (GPUs). Recent advancements include algorithmic improvements [1] and the development of
specialized accelerators and frameworks, such as GraphBLAST [2] and GraphLily [3], which leverage GPUs
and field-programmable gate arrays (FPGAs) for enhanced performance.

However, these advancements also highlight the unique challenges inherent to graph processing, par-
ticularly in achieving efficient parallelization. Graph properties, such as connectivity between vertices, vary
widely depending on the graph type, leading to irregular memory access patterns. Additionally, many graph
algorithms are memory-bound, making efficient memory utilization critical.

A prime example of application-architecture co-design is Google’s TPU [4], which demonstrates a
shift towards application-optimized parallel architectures to achieve greater efficiency. Similarly, custom ac-
celerators targeting graph applications have been implemented on FPGAs [3], [5]. But the significant design
time and effort required for FPGA-based accelerators often limit their practicality. GPUs [2] and vector pro-
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cessors have emerged as alternative parallel architectures for graph application acceleration.
In this context, reduced instruction set computer–five (RISC-V-based) many-core processors have

gained prominence due to their customizable and open-source architecture. However, there is still a need to
understand how well graph workloads perform on RISC-V-based many-core processors. Our research aims to
address this question by exploring graph algorithms and developing an analytical model to predict the perfor-
mance of RISC-V-based many-core processors. This model will allow us to project the performance of parallel
graph processing for core counts up to 16 and various graph types. Our contributions in this work include the
following:
− Parallelizing graph algorithms on RISC-V-based many-core processors.
− Develop an analytical model to predict the performance of parallel graph algorithms on RISC-V-based

many-core.
− Validate the accuracy of the model on real world graphs.

2. PARALLELIZING GRAPH ALGORITHMS ON RISC-V MANY-CORE
Among various graph algorithms, this work focuses on two widely applicable ones: breadth-first

search (BFS) and PageRank (PR). Parallelizing these algorithms on a RISCV-based many-core involves dis-
tributing the workload across available cores. In this section, we examine the effects of parallelizing BFS with
respect to the number of cores and graph types, which motivates the development of the analytical model. Our
analysis leverages a RISC-V many-core called Mempool [6], featuring 16 cores and 64 KB of tightly coupled
memory.

2.1. Parallel breadth-first search
BFS is a recursive algorithm that tries to traverse all the vertices in the graph starting from a single

vertex known as the source or root vertex. Traversal involves exploring the neighbors of the vertex and updat-
ing the properties of the neighbors such as visited status, parent vertex and distance from the root vertex. The
traversal of active vertices is done in every iteration and continues until there are no active vertices. Traversal
can be done mainly in two ways, top-down approach and bottom-up approach. Based on the number of active
vertices every iteration, certain approach is beneficial [1]. In our work, we consider bottom-up BFS as consid-
erable time is spent on this kernel compared to the top-down BFS. As shown in Algorithm 1, in each iteration,
all vertices (line 1) are checked to determine if they have not been visited (line 2). The neighbors of these
unvisited vertices are then explored (line 3). If an incoming neighbor of an unvisited vertex is active (line 4),
the unvisited vertex is marked as visited and activated for the next iteration (lines 5 and 6). Parallelizing this
kernel across N cores involves dividing the total vertices (line 1) into N parts. While this division ensures equal
distribution of vertices, the unvisited vertices (line 2) and their neighbors (line 3) are unevenly distributed. In
graphs with highly irregular neighbor distributions (e.g., power-law graphs), this irregularity impacts perfor-
mance by leaving some cores idle while others remain active. Increasing the number of cores in such cases will
amplify the impact as very few cores compute the vertices with large number of neighbors.

Algorithm 1 . Single iteration of Bottom-up BFS

1: for i = 1 to v do
2: if cost[i] < 0 then
3: for each j in incoming neighbours of i do
4: if active[j] > 0 then
5: active list← i
6: cost[i]← iteration
7: break
8: end if
9: end for

10: end if
11: end for
12: iteration← iteration+ 1
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2.1.1. Graph type
Figure 1 presents the profile of the Mempool, showing the breakdown (%) of compute and stall times

as a function of graph type. The analyzed graphs are real-world graphs listed in Table 1, sourced from the
network repository [7]. For graphs with power-law characteristics, such as soc-wiki and web-polblogs, syn-
chronization overhead contributes to stall times. This irregularity in the graph structure results in an uneven
distribution of executed instructions across cores in the parallel many-core system.

Figure 1. Percentage of time spent on compute and stalls for different types of graphs on a 16-core Mempool.
Compute time includes instruction execution, while stalls are caused by synchronization, instruction cache

misses, load-store unit (LSU) delays, and read-after-write (RAW) hazards

Table 1. Diverse type of graphs used in this work are from network repository [7]
Data Vertices Edges Type

graph512 512 3114 Synthetic
soc-wiki 889 5828 Social network

web-polblogs 643 4560 Web network
bio-diseasome 516 2376 Biological network

2.1.2. Number of cores
Increasing the number of cores reduces latency but also introduces synchronization overhead. Figure 2

illustrates the latency breakdown for BFS traversal on soc-wiki with varying core counts. A maximum speedup
of 9.2× is achieved with 16 cores compared to single-core latency. Using 8 cores provides a 5.6× speedup,
while doubling the cores to 16 adds only an additional 1.6× speedup.

Figure 2. Latency breakdown (in clock cycles) for BFS traversal of the soc-wiki graph across various core
counts
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2.2. Need for performance prediction
In section 2.1., we examined how factors such as graph input type and core count influence the perfor-

mance of graph algorithms on the parallel RISC-V architecture. However, accurately predicting performance
prior to execution remains a challenge. To address this, we propose an analytical model that estimates cycle
counts based on graph characteristics and system configuration. This model enables performance prediction
for any given graph input on Mempool with N cores, without requiring execution on the actual hardware.

3. BUILDING THE ANALYTICAL MODEL: METHOD
Figure 3 shows the method of building an analytical model to predict the performance of graph al-

gorithms. As shown in the Figure 3, the graph algorithm gets translated to set of RISC-V instructions by the
compiler. These instructions include compute and memory instructions that is mapped to N cores.

Figure 3. Illustration of the analytical model for predicting the performance of graph algorithms on a RISC-V
many-core processor cluster

Along with the instructions, the graph is also distributed to the multi-core thereby dividing the overall
computations. Based on the number and type of RISC-V instructions, the latency to execute the instructions
vary and is given by CyclesV and CyclesE . Similarly, these set of instructions execute depending on the graph
properties such as, number of vertices (V ) and edges (E) of the graph. Using these information, we build the
analytical model based on graph properties and number and type of RISC-V instructions on N cores.

We have developed an analytical model to predict the performance of BFS and PR. The notations used
in this model for BFS and PR are given in the Tables 2 and 3. The value of the notation dependent on core
count of many-core, instruction set architecture (ISA), and graph input are also indicated in the tables.

3.1. Breadth-first search
As shown in the Algorithm 1, the lines 1, 2 are executed for all the vertices in every iteration. Of all

the vertices, unvisited vertices Vunvisited are explored (line 3). If the incoming neighbours of the Vunvisited

are active i.e Vactive (line 4) , the unvisited vertices are put in the new active list i.e Vupdate(line 5, 6, and 7).
Based on the number of Vactive, Vunvisited, Vneighbours, the number and type of instructions executed varies.
The total cycles for each iteration of the bottom-up BFS is given using the ( 1). Using this equation, latency
for bottom-up BFS can be predicted ahead in time based on the number of vertices and edges provided Vactive,
Vunvisited, Vneighbours and Vupdate are known every iteration. Knowing the Vactive, Vunvisited, Vneighbours,
and Vupdate during compile time is only possible after running BFS once. Otherwise, assumptions can be made

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 843–854



Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 ❒ 847

by dividing the total number of vertices equally among each iteration. Extending this to multiple cores involves
estimating the latency of the graph partition that takes the longest latency. Since the amount of work done by
each core is dependent on the size of the partition, we consider the partition with the largest vertices and edges
for our estimation Vmax and Emax.

Cyclesbottom bfs =
Iteration∑
i=1

[(
Vactive × Cyclesactive

)
+

(
Vunvisited × Cyclesunvisited

)

+

(
Vneighbours × Cyclesneighbours

)
+

(
Vupdate × Cyclesupdate

)] (1)

Table 2. Notations used in the model for bottom-up BFS and its dependencies
Notation Description Dependence
Vactive Number of active vertices in a given iteration Input graph
Vunvisited Number of unvisited vertices traversed Input graph
Vneighbours Number of neighbouring vertices explored Input graph
Vupdate Number of new active vertices found in an iteration Input graph
Cyclesactive Cycles to explore each Vactive vertices Multi-core architecture, ISA
Cyclesunvisited Cycles to traverse each Vunvisited Many-core architecture, ISA
Cyclesneighbours Cycles to check each Vunvisited Many-core architecture, ISA
Cyclesupdate Cycles to put each unvisited vertex to active list Many-core architecture, ISA

Table 3. Notations used in the model for PR and its dependencies
Notation Description Dependence
N Number of cores Multi-core architecture
Vmax Maximum number of vertices in a partition Input graph
Emax Maximum number of edges in a partition Input graph
Cyclesv Cycles to operate on vertices Multi-core architecture, ISA
Cyclese Cycles to operate on edges Multi-core architecture, ISA

3.2. PageRank
PR involves ranking the vertices of the graph based on the connectivity. Each vertex is initialised

with a score based on the number of outgoing edges (i.e. degree of the vertex) called outgoing contribution.
As shown in the pseudo-code Algorithm 2, the outgoing contribution is accumulated into incoming total for
each of the vertices (lines 3,4). Based on the base score and incoming total, a new score is calculated (line
7). This process is repeated until the difference between the old score and the new score i.e the error (line 8)
is less than the threshold limit or until the maximum iteration. Since each vertex’s score can be estimated in
parallel, PR can be accelerated by leveraging the cores present in the many-core system.

Algorithm 2 . Single iteration of PageRank

1: for i = 1 to v vertices do
2: incoming total← 0
3: for j : neighbours of i do
4: incoming total← incoming total + outgoing contribution[j]
5: end for
6: old score← scores[i]
7: scores[i]← base score+ kdamp ∗ incoming total
8: error+ = fabs(scores[i]− old score)
9: outgoing contrib[i] = scores[i]/out degree[i]

10: end for

For a single-core design, the latency to calculate the ranks of the graph G(V,E) with V number of
vertices and E number of edges in each iteration includes reading and accumulating the outgoing contributions
of each vertex and updating the score (line 2,3 of Algorithm 2). Reading outgoing contributions and accumu-
lating for each vertex depends on the total number of edges E in the graph. Updating the scores of the vertex
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based on the accumulated contributions is dependent on the number of vertices V (line 6 to 9 of Algorithm 2).
The cycles for calculating the ranks of every iteration of the vertices of G(V,E) can be formulated as (2):

CyclesPageRank = [V × Cyclesv] + [E × Cyclese] (2)

Similarly, extending this to multiple cores involves estimating the latency of the group of vertices that takes the
longest. The cycles for calculating the ranks of every iteration in the multi-core system can be formulated as
(3):

CyclesPageRank = [Vmax × Cyclesv] + [Emax × Cyclese] (3)

Since in every iteration, the same set of operations are carried out, we assume total latency for multiple itera-
tions can be obtained by multiplying the number of iterations with CyclesPageRank. In (2) and (3) provide a
simplified view of performance as a function of vertices and edges for PR.

4. EXPERIMENTAL SETUP
We evaluated the performance of our analytical models with the actual latency measured in terms of

clock cycles. We used a variety of graphs ranging from synthetic to real-world social and biological networks
as shown in the Table 1. The graphs in Table 1 are stored in the compressed sparse row (CSR) compression
format. The focus of the experiments are to evaluate the model’s predictive accuracy across different processor
core counts and graph types.

4.1. Target reduced instruction set computer–five architecture
Mempool [6] is a RISCV-based many-core cluster with tightly coupled L1 shared memory that can

be scaled upto 256 cores supporting RV 32IMAXpulpimg instructions. The hierarchical interconnect is
responsible for a maximum latency of 5 cycles in the conflict-free access to shared memory. As shown in
Figure 4, the default configuration consists of 4 groups, 16 tiles per group, 4 cores per tile. Total shared
memory of 1MB is available where the memory is divided into sequential addressed space and interleaved
addressed space. The size of the addressing is configurable.

Figure 4. Many-core architecture of Mempool

For our experiments, we have used the Minpool configuration with 4 groups, 1 tiles per group and 4
cores per tile. This configuration has a total of 16 cores and 64 KB of tightly coupled data memory of which
each tile has 8 KB of sequential addressed memory and 8 KB of interleaved addressed memory.

We conducted cycle-accurate RTL simulations [8] to obtain latency. For Mempool architecture, we
measured Cyclesactive, Cyclesunvisited, Cyclesneighbors, and Cyclesupdate by reading the timing register
which remains fixed for Mempool architecture. Using (1), and assuming the Vpart and degree due to the
dynamic nature of the BFS, we predict the latency. Similarly, we obtain the exact number of active vertices in
each iteration and the edges explored by running the bottom-up BFS once. We plug these numbers into (1) and
calculate the latency which indicates static nature for a given graph.
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Since PR required float support, we utilized a similar setup with an 8-core cluster called Snitch [9] with
low-latency memory of 128 KB. We measured architecture dependent Cyclesv and Cyclese cycles by reading
the timing register of Snitch cluster for processing each vertex and edge. Using these values, we plugged the
corresponding Vmax and Emax of the partitions in consideration as shown in the (3).

5. RESULTS
In this section, we validate our analytical model and showcase the accuracy of our analytical model

compared to the cycle-accurate simulation. We compare our work with existing state-of-the-art graph process-
ing frameworks.

5.1. Accuracy of the analytical model
In this sub-section, we evaluate the performance of our analytical model in predicting the latency of

BFS and PR.

5.1.1. Breadth-first search
Figure 5 shows the accuracy ranges of performance predictions made for core counts ranging from

1 to 16 for traversing BFS. We observe an accuracy in the range 47 − 94%. This accuracy is due to the
dynamic nature of BFS where the number of active, visited and unvisited vertices are not known during compile
time. Due to this dynamic nature assumptions we observe low predictive accuracy. The right hand side of the
Figure 5 shows the accuracy of the predictions when the number of active, visited and unvisited vertices are
known beforehand (by running BFS once). For this static case of BFS, the accuracy ranges from 88 − 99%.
A maximum speedup of 11.55× is observed on the 16-core compared to single-core for the traversal of the
graph512.

Figure 5. Comparison of performance prediction and actual latency obtained for Mempool with core count
1–16
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5.1.2. PageRank
In Figure 6, we have compared the predicted latency and measured latency, and observe accuracy in

the range of 93% upto 99%. Since PR involves updating all the scores in every iteration, the (3) provides an
accurate performance prediction. Using our model, we can accurately predict the achievable speedup for any
input graph and core counts up to 8. A maximum speedup of 7.56× is observed on the 8-core compared to
single-core for the graph512 input.

Figure 6. Comparison of performance prediction and actual latency obtained for Snitch’s core count 1–8.
Deterministic nature of algorithm leads to high accurate predictions

5.2. Comparison of million traversed edges per second of state-of-the-art graph processing frameworks
Table 4 compares state-of-the-art graph accelerators with RISC-V-based many-core. For comparison,

we use the geometric mean of million traversed edges per second (MTEPS) and MTEPS per watt (MTEPS/W)
as metrics. In our case, we evaluate an 8-core Snitch cluster implemented on an FPGA and on a 22 nm
technology node, running both BFS and PR. For a fair comparison, all numbers correspond to bottom-up BFS
and PR with graphs stored in CSR format. The MTEPS (geometric mean) and power values for comparison
are sourced from experiments conducted in [3]. The GraphIt [10] results are based on a two-socket 32-core 2.8
GHz Intel Xeon Gold 6242 machine with 384 GB DDR4 memory and a bandwidth of 282 GB/s. GraphBLAST
[2] experiments utilize a GTX 1080 Ti GPU with 3584 CUDA cores running at a peak frequency of 1582 MHz
and 11 GB of GDDR5X memory, providing a bandwidth of 484 GB/s. The GraphLily [3] accelerator operates
on a Xilinx Alveo U280 FPGA with a 165 MHz frequency and 16 HBM channels.

With GraphLily, the MTEPS is comparable to GraphBLAST but GraphLily achieves better MTEPS/W
indicating higher efficiency than GraphBLAST. Although Snitch eight-core cluster provides low MTEPS,
MTEPS/W is 20× better than state-of-the-art highlighting the energy efficiency of RISCV-based many-core
processors in graph processing.

Table 4. Comparison with state-of-the-art graph processing accelerators. The graphs considered in our work
are very small and fit within the tightly coupled memory (128 KB) of the Snitch cluster

Related works Technology (nm) Algorithm (geometric mean) MTEPS (W) Power MTEPS/W Model
GraphIt [10]

22
BFS 1957 264 7 No

(CPU) PageRank 2280 268 9
GraphBLAST [2]

16
BFS 4114 146 28 No

(GPU) PageRank 4940 182 27
GraphLily [3]

16
BFS 3581 45 80 No

(FPGA) PageRank 5591 49 114
This work [9]

16
BFS 5 0.9 6 Yes

(FPGA) PageRank 20 0.9 23

This work [9] 22
BFS 103 0.17 605 Yes

PageRank 386 0.17 2275
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5.3. Scalability analysis for core counts above 16
Figure 7 shows the performance scaling of BFS traversal on soc-wiki beyond 16 cores using a 256-

core configuration of Mempool. Up to 16 cores, the analytical model predicts performance with an accuracy
of 89%. However, beyond 16 cores, the accuracy drops because the model does not account for increasing
synchronization delays and contention in shared resources. As core counts increase, these factors introduce
additional latency, which impacts performance and accuracy of the model. At 256 cores, the accuracy drops to
21%. Improving the model to better capture these effects could enhance its accuracy at higher core counts.

Figure 7. Comparison of performance predicted for BFS traversal of soc-wiki on core counts higher than 16,
up to 256 cores

6. RELATED WORK
In this section, we review prior efforts in accelerating graph algorithms across various platforms,

including many-core CPUs, GPUs, and FPGAs. We examine the usability of analytical models for performance
prediction, highlighting their potential to guide architecture and algorithm design decisions.

6.1. Many-core, central processing unit-based accelerators
Eyerman et al. [11] explored the scalability of many-core architectures for graph processing using

OpenMP-based implementations from the GAP benchmark suite [12]. While their work examined x86-based
systems, our research targets low-power RISC-V architectures. Domain-specific languages (DSLs) such as
GraphIt [10] have also been developed to map graph algorithms onto diverse platforms, including multi-core
CPUs, GPUs, and RISC-V-based many-core systems.

6.2. Graphics processing unit-based accelerators
GPUs have also been used to accelerate graph applications. GraphBLAST [2] is a well known linear

algebra GraphBLAS-based [13] framework. GraphBLAST implements partitioning schemes that align along
vertex-centric partitioning or edge-centric partitioning.

6.3. Field-programmable gate array-based accelerators
Although FPGA-based accelerators require high design effort, often limiting their practicality, there

have been efforts to accelerate graph processing using these platforms. Early frameworks like GraphGen [14]
introduced a vertex-centric approach to utilize FPGAs for graph computations. FPGP [15] advanced this with
an interval-shard structure, enabling flexibility across various graph algorithms without requiring complete
reimplementation. ForeGraph [16] leveraged BRAM resources across multiple FPGA boards, while FabGraph
[17] further optimized performance by introducing a two-level caching mechanism.

To address the challenges of high design complexity, recent frameworks have focused on simplify-
ing implementation. HitGraph [18] used vertical partitioning to increase partition size, though preprocessing
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overheads from edge sorting remained a limitation. AccuGraph [19] addressed data conflicts with a parallel
conflict resolver but still relied on edge sorting during partitioning. High-level synthesis (HLS)-based solutions,
such as ThunderGP [5], utilized the gather-apply-scatter (GAS) model to improve efficiency. Frameworks like
GraphLily [3], designed for HBM-equipped FPGAs, and GraphSoC [20], which introduced custom graph in-
structions, further reduced design complexity and bitstream generation times.

6.4. Usability of performance models
GAIL [1] is one of the early works to analytically model graphs by examining the number of edges

traversed, memory accesses, and access times. The graph algorithm iron law suggests that implementation
or algorithm improvements are better evaluated empirically than analytically. However, our work uses an
analytical approach to provide insights into implementation-specific improvements.

Chhugani et al. [21] developed a scalable BFS for modern CPUs, using dynamic partitioning based
on cache size to improve traversal speed and locality. They also introduced a performance model that achieved
85 − 90% accuracy in evaluating traversal phases. Verstraaten et al. [22] highlighted the importance of graph
structure in determining the performance of different strategies during PR iterations. Similarly, our work con-
siders graph structure as a key factor in performance analysis. Verstraaten et al. [23] also modeled graph
application performance on GPUs using a data-driven approach. Although dynamic scheduling reduced ana-
lytical model accuracy to less than 50%, the use of large datasets and binary decision trees improved prediction
accuracy. Their analysis helped identify the best implementation strategies for BFS traversal. Although such
works accelerate and model graph applications on various parallel architectures, these works do not develop an
analytical model that aids in coming up with an optimal design on the basis of graph properties.

7. CONCLUSION AND FUTURE WORK
In this work, we developed an analytical model resembling the RISCV-based many-core architecture

for performance estimation of graph algorithms such as BFS and PR. This model predicts performance based
on the graph structure, even before executing the workload on the many-core. By providing insights into the
expected performance, the model enables informed decision-making regarding the optimal number of cores
when deploying RISC-V many-cores on FPGAs for parallel graph processing. The adaptability of the model
extends beyond RISC-V many-cores, as it can be tailored to other parallel many-core architectures by updating
the architectural parameters. The analytical model shows a strong correlation with cycle-accurate RTL simula-
tions of the RISCV-based many-core system, with a maximum prediction error of 11% observed on real-world
graphs from the network repository across various core counts. The target RISC-V many-core architecture
delivers comparable MTEPS/W on FPGAs and achieves up to 20x better MTEPS/W on a 22 nm technology
node compared to an FPGA-based graph accelerator implemented on a 16 nm process.

Future work involves validating the versatility of the analytical model using different architectures,
extending support for additional graph algorithms, and exploring higher core counts and larger graph sizes.
This work highlights the potential of analytical modeling for guiding hardware design in graph processing.
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