
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 14, No. 3, November 2025, pp. 766~784

ISSN: 2089-4864, DOI: 10.11591/ijres.v14.i3.pp766-784  766

Journal homepage: http://ijres.iaescore.com

Performance analysis of REST API in a real-time IoT-based

vehicle monitoring system

Rizki Ananta Dwiyanto, Giva Andriana Mutiara, Marlindia Ike Sari

Department of Computer Technology, Faculty of Applied Science, Universitas Telkom, Bandung, Indonesia

Article Info ABSTRACT

Article history:

Received Mar 17, 2025

Revised Jul 5, 2025

Accepted Oct 9, 2025

 This study studies the design and implementation of a REST API and its

performance analysis for an internet of things (IoT)-based vehicles

monitoring system. This system incorporates brake pad sensors, a tire

pressure monitoring system (TPMS) for assessing tire pressure and

temperature, light detection and ranging (LIDAR) for measuring tire

thickness, and radio frequency identification (RFID) for tire identification.

Data is gathered using an ESP32 microcontroller and transmitted in real-time

to the server via a REST API over a wireless network. The JSON Web

Token (JWT) authentication mechanism is employed to ensure data security.

Testing indicates that this system has an average response time of 4–11 ms,

with optimal performance recorded at 3.93 ms for the RFID sensor and peak

performance at 9.19 ms for the LIDAR sensor. Load testing with 100

concurrent users demonstrates that the system maintains stability with a

100% data delivery success rate. Authentication testing demonstrates that the

API is accessible solely with a valid token, hence preventing unauthorized

access. This study's results demonstrate that integrating REST API with IoT

monitoring systems facilitates real-time vehicle monitoring, enhances

maintenance efficiency, and offers viable solutions for future predictive

maintenance systems.

Keywords:

Internet of things

Load testing

Performance analysis

REST API

Vehicle monitoring system

This is an open access article under the CC BY-SA license.

Corresponding Author:

Giva Andriana Mutiara

Department of Computer Technology, Faculty of Applied Science, Universitas Telkom

St. Telekomunikasi No. 1, Terusan Buah Batu, Bandung 40257, Indonesia

Email: givamz@telkomuniversity.ac.id

1. INTRODUCTION

The integration of a remote monitoring system (RMS) into an early warning system (EWS) has

markedly improved early detection abilities, leading to greater safety and risk reduction. Through the use of

cutting-edge sensors and data analysis, EWS effectively tracks essential parameters in real-time, allowing for

proactive measures to address potential risks before they arise. This technology encompasses several

essential components, including the incorporation of high-resolution sensors like fiber bragg grating (FBG)

sensors, which are capable of capturing vital data from environmental or infrastructure systems. This data

allows for precise forecasting of possible threats or system malfunctions, facilitating swift actions to mitigate

more significant consequences [1].

Moreover, deep learning frameworks like Conv-LSTM are employed to analyze sensor data and

predict the remaining useful life (RUL) of components, thereby facilitating improved maintenance strategies

[2]. In the realm of battery health management, machine learning models are utilized to assess essential

battery parameters to forecast potential failures, thereby guaranteeing the safety and reliability of electric

vehicles throughout their operation [3]. In the realm of battery health management, machine learning models

are utilized to assess essential battery parameters to forecast potential failures, thereby guaranteeing the

https://creativecommons.org/licenses/by-sa/4.0/

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Performance analysis of REST API in a real-time IoT-based vehicle … (Rizki Ananta Dwiyanto)

767

safety and reliability of electric vehicles throughout their operation [4]. Moreover, predictive maintenance

facilitated by RMS can significantly lower vehicle maintenance expenses, thus enhancing operational

efficiency within the electric vehicle sector [5]. Nonetheless, the broad acceptance of RMS continues to

encounter various obstacles, such as significant upfront implementation expenses and the necessity for

enhanced data security protocols. These challenges represent significant issues that need to be tackled for this

technology to achieve broader implementation in the electric vehicle sector.

As the transition from gasoline-powered vehicles to automatic and electric vehicles accelerates, the

demand for real-time monitoring systems is growing, highlighting the significance of monitoring technology.

One of the parameters to be included on the dashboard of this monitoring system is the brake pads, along

with the monitoring of tire parameters such as pressure, temperature, and tire thickness. The four parameters

are linked to the ESP32 microcontroller, which then transmits data to a centralized database management

system (MySQL) through the REST API. To ensure the protection of vehicle sensor data, the system employs

the JSON Web Token (JWT) authentication method, which is accessible only after the user has successfully

completed the Sign In process. Furthermore, a static token is implemented to enable the ESP32 to access the

system seamlessly, bypassing the authentication process and facilitating the automatic and secure

transmission of data.

The implementation of an object-relational mapping (ORM) framework, like Prisma, greatly

enhances database management for developers by enabling interaction with the database through

object-oriented programming principles. This method streamlines database interaction by substituting

traditional SQL query writing with more user-friendly classes and methods, thus minimizing the intricacies

of data management [6]. Prisma provides a seamless experience for database migration and is adept at

managing intricate data structures, including information from vehicle sensors. This facilitates the smooth

incorporation of data gathered by devices like the ESP32 into database tables, enhancing the overall

efficiency of the system [7]. The primary benefits of ORM involve streamlining database interactions by

utilizing objects and methods, thereby enhancing the ease and speed of data management [6].

In the realm of vehicles, ORMs facilitate the representation of sensor data, including tire pressure

and brake conditions, as objects that can be directly manipulated at the application level. Prisma, as an

example of an ORM tool, can automate the integration of sensor data into database tables, thereby

accelerating data processing and analysis [7]. While ORMs provide numerous advantages, some developers

argue that this method may lead to performance overhead, particularly in specific situations. Consequently,

selecting ORM or alternative approaches must be customized to align with the specific requirements and

scope of the project.

Node.js serves as a robust backend framework, crafted to enhance the creation of scalable and

efficient web applications. The event-driven architecture and asynchronous programming model enable the

handling of multiple connections at once, making it particularly suitable for environments with high traffic.

The scalability is enhanced by a non-blocking I/O model, enabling Node.js to effectively manage substantial

amounts of data and traffic [8].

Furthermore, the framework enables horizontal scaling, facilitating the distribution of workloads

across various servers, which proves particularly beneficial for extensive applications [9]. In terms of

security, Node.js provides safeguards against prevalent vulnerabilities like SQL injection and authentication

issues. The framework is frequently integrated with tools like Passport.js and JWT to establish a dependable

authentication system [10]. Node.js enhances development efficiency through its comprehensive

documentation, tutorials, and robust community support, which greatly accelerates the application

development process [9]. The implementation of JavaScript across both client and server sides facilitates

code reuse, thereby enhancing the efficiency of the development process [8]. Nonetheless, despite its

strengths in various areas, the single-threaded characteristic of Node.js may pose a performance limitation for

applications that are CPU-intensive. In these situations, Node.js might not be the optimal selection, since

resource-intensive tasks can hinder the performance of other processes [11].

This paper focuses on developing a website monitoring system designed to gather data from

multiple vehicle sensors utilizing REST API. The outcomes of this system can aid in future advancements,

allowing for enhanced development in predictive vehicle maintenance analysis. This study also results in a

monitoring application that is readily available and offers advantages to drivers, enhancing their awareness of

various driving safety factors. The paper's structure can be elaborated upon in the methodology section found

in section 2. Section 3 presents the results and discussion. Ultimately, section 4 will provide an explanation

of the conclusions and outline directions for future inquiry.

2. RESEARCH METHOD

This study employs an experimental and system development methodology to create and deploy an

IoT-based monitoring system that incorporates REST API for tracking vehicle brake pads and tires. In the

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

768

initial stage, a literature review was conducted on an IoT-based vehicle monitoring system, focusing

particularly on the monitoring of brake pads and tire conditions. Architecture for REST API and IoT

communication, featuring the implementation of JWT authentication for enhanced security. ESP32

microcontroller technology, featuring the integration of pressure, temperature, and tire thickness sensors.

Backend development utilizing Node.js, encompassing data management from sensors to the database

through a REST API.

Following that, it proceeded to the system designe phase. At this stage, the monitoring system has

been developed with various hardware and software components. The hardware components lack detailed

explanation and are viewed merely as a collection of input parameters that transmit data to the dashboard.

Utilization of the ESP32 microcontroller for processing sensor data. Incorporating wireless communication

(Wi-Fi) for transmitting data to the server. In the meantime, the software architecture for backend

development employs Node.js, utilizing REST API as the communication bridge between the ESP32 and the

server. Database management employs MySQL. System security employs JWT authentication for users

alongside static tokens for IoT devices. Development of the frontend for a web-based monitoring dashboard

interface. The system architecture emphasizes the ESP32's role in transmitting sensor data to the REST API.

A REST API utilizes MySQL for data storage, while the monitoring dashboard presents real-time

information through tables and graphs.

Phase of executing the system setting up and configuring the ESP32 along with various sensors.

Creation of a REST API backend utilizing Node.js and Express.js. Creation of the monitoring dashboard's

user interface. The testing and evaluation stage is conducted to assess the functionality of each REST API

feature, including data sending, authentication, and data retrieval. Evaluating the dashboard interface to

confirm that data visualization operates effectively. Subsequently, performance evaluation of the system will

include REST API latency testing to assess the response time from the ESP32 to the server. Testing for data

stability to evaluate the reliability of sensor data delivery over a specified timeframe, along with security

testing to confirm that the implementation of JWT authentication operates effectively.

Next is the data analysis and performance evaluation stage, where an assessment and discussion take

place concerning the effectiveness of the REST API in managing requests from IoT devices. In conclusion, it

is essential to analyze the outcomes of system testing and offer suggestions for future advancements,

including the incorporation of machine learning for predictive maintenance.

2.1. Literature review

This chapter examines pertinent literature concerning EWS technology and IoT-based vehicle

monitoring systems, with a particular focus on the monitoring of brake pads and tire conditions. REST API

and IoT communication architecture, featuring the application of the JWT authentication method to enhance

security. EWSs are progressively incorporating cutting-edge technologies like IoT and AI, greatly provide

efficiency and security via real-time monitoring. The integration of IoT enables sensors to gather data in real-

time, offering insights that facilitate predictive maintenance and enhance responses to potential risks or

system failures [12]. The data undergoes analysis through AI algorithms to enhance the precision of early

detection and refine preventive measures across different situations, including natural disasters, industrial

equipment failures, or traffic accidents [13]. From an architectural framework perspective, choosing the

appropriate software architecture is crucial for the success of IoT applications in EWSs. Methods like

microservices and service-oriented architectures offer essential flexibility and scalability, vital for the support

of IoT applications [14].

Conversely, client-server architecture proves to be highly efficient in facilitating communication

between sensors and backend systems. This architecture facilitates effective data management and

instantaneous updates, establishing it as a favored option for IoT-driven applications in EWSs. Nonetheless,

although client-server architecture presents numerous benefits, decentralized architectures like peer-to-peer

merit consideration as well. These architectures provide enhanced resilience and lower latency, adding

significant value to the implementation of EWSs across diverse domains. Taking into account the

requirements and scope of the application, the most suitable strategy can be adopted to enhance the efficiency

and precision of early identification of possible risks.

The client-server model serves as a fundamental framework that facilitates multi-sensor applications

by establishing the server as the central hub for data processing and storage. This architecture enables

communication between edge devices, functioning as clients, and servers that may be located in the cloud or

within on-premises data centers. This model enables the server to handle requests from numerous clients at

the same time, ensuring efficient simultaneous access to resources [15]. Furthermore, the server is capable of

handling substantial amounts of data produced by various sensors, guaranteeing both data integrity and

availability [16].

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Performance analysis of REST API in a real-time IoT-based vehicle … (Rizki Ananta Dwiyanto)

769

The integration of edge devices involves connecting sensors to servers, facilitating data transmission

and preprocessing, which enhances overall system efficiency. Frameworks like SEMAR are essential for

enhancing the efficiency of edge devices through the implementation of organized initialization, service, and

update phases [17]. Furthermore, the collaboration between cloud and edge devices enhances the capabilities

of the client-server architecture via a cloud-edge framework that facilitates adaptable task migration between

the two components. This facilitates enhanced response time and more efficient resource management [16].

This architecture additionally facilitates real-time data analysis, an essential component for informed

decision-making in IoT applications [18]. Nonetheless, while presenting numerous benefits, the client-server

architecture is not without its drawbacks, including issues related to latency and bandwidth, particularly in

situations that demand real-time data processing. Integrating cloud and edge resources presents a viable

approach to addressing these limitations, thereby enhancing overall system performance.

Figure 1 illustrates that the interaction between the client and server employs the standard HTTP

protocol methods, including GET, POST, PUT, and DELETE commands. This architecture is frequently

utilized due to its adaptability and straightforward implementation, facilitating effective communication

among various layers in edge, fog, and cloud systems.

Figure 1. REST API on client-server architecture

In Figure 1, the REST API is crucial for facilitating communication between clients and servers,

particularly in IoT systems that utilize microcontrollers like the ESP32. The stateless nature of REST API

streamlines server design and enhances scalability, allowing for effective management of sensor data.

Furthermore, REST API facilitates create, read, update, and delete (CRUD) operations, which are essential

for efficient data management, particularly when handling sensor data that demands real-time updates and

accessibility [19]. The efficiency of REST API performance has been demonstrated, showcasing an average

response time of approximately 31 ms, which guarantees timely data processing [20].

Nonetheless, in spite of their numerous benefits, REST APIs encounter security issues.

Approximately 35% of developers emphasized the importance of enhancing authentication and encryption

techniques to achieve more robust data security in IoT applications. Enhanced security measures, including

the implementation of OAuth, are strongly advised to ensure the confidentiality and integrity of data [19].

While REST APIs enjoy widespread popularity for their straightforwardness and efficiency, other

communication protocols like gRPC and WebSockets may provide superior performance, particularly for

applications that demand real-time interaction with minimal latency. Consequently, choosing the appropriate

communication protocol should be customized to meet the unique requirements of the IoT application in

development [21]. As illustrated in Figure 2, the REST API works in conjunction with the backend

framework to organize sensor data systematically, facilitating effective and uniform data management

throughout IoT systems.

Figure 2. Backend architecture with Node.js and Prisma

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

770

The combination of Node.js with Prisma and MySQL for backend architecture in IoT systems

presents several benefits regarding scalability, performance, and database management. Node.js, featuring a

design that excels in managing concurrency, enables the simultaneous handling of numerous connections, a

crucial capability for IoT applications that produce substantial data volumes [8].

The event-driven architecture of Node.js facilitates asynchronous operations, allowing for real-time

data processing and notifications, a feature that is particularly advantageous in the realm of efficient sensor

data monitoring and processing systems [8]. Streamlines the process of crafting SQL queries, thereby

minimizing the potential for errors that can occur with manual SQL coding. Furthermore, Prisma streamlines

the process of database migration, enabling developers to implement schema changes seamlessly without

interrupting system operations [22]. MySQL serves as a data store, offering efficient and structured data

management, which makes it a suitable option for IoT applications that demand reliability and efficiency in

sensor data storage [23]. Furthermore, information housed in MySQL can be seamlessly aligned with

visualization platforms like Grafana, enhancing the clarity of data analysis and oversight [22].

This combination of technologies presents numerous benefits; however, it is crucial to acknowledge

potential challenges, including the learning curve linked to new technologies and the necessity for robust

security measures to safeguard sensitive data from IoT devices. Consequently, it is essential for developers to

implement suitable security measures to uphold the confidentiality and integrity of the data handled by these

systems.

Figure 3 illustrates that the implementation of robust encryption and authentication measures is

crucial for upholding the integrity and confidentiality of information obtained from IoT devices, thereby

ensuring that the processed and stored data remains secure and safeguarded against potential threats.

Figure 3. Data security with JWT

Data security in IoT systems, especially for vehicle monitoring, is critical given the sensitive nature

of the data involved. Utilizing JWTs for user authentication and employing static tokens for device

communication can significantly bolster security measures. JWTs offer a concise and secure method for

transmitting information between parties, guaranteeing that only authenticated individuals can access

sensitive data [24]. Furthermore, static tokens are essential for enabling secure communication between IoT

devices and servers, thereby minimizing the risk of data interception during transmission [25].

Data encryption, employing methods like elliptic curve cryptography (ECC), is essential for

safeguarding the integrity and confidentiality of information in IoT settings. The incorporation of blockchain

technology significantly boosts security by offering a tamper-proof, decentralized structure for data

transactions, guaranteeing that information remains unaltered without detection [25]. Nonetheless, in spite of

notable advancements in enhancing security, weaknesses persist, especially in the areas of credential

management and network assaults. This underscores the necessity for a comprehensive strategy regarding

IoT security [26]. Future investigations should concentrate on creating scalable and energy-efficient solutions

to tackle these challenges, while also guaranteeing strong data protection as the IoT ecosystem progresses

[24]. Consequently, although JWTs and data encryption have significantly enhanced security, the ever-

changing landscape of threats in IoT systems necessitates ongoing innovation and adaptation of security

protocols to uphold data integrity and user trust.

The sensor data gathered is utilized for predictive analysis, enabling the identification of potential

issues or patterns that can aid in improved decision-making and early damage prevention. In this context, the

significance of data security is heightened, as predictive analysis depends on data that upholds its integrity

and confidentiality.

Methods like clustering and deep learning are employed to recognize failure patterns and assess the

remaining usable life (RUL) of the components [27], [28]. This method not only aids in minimizing the total

maintenance expenses but also diminishes the likelihood of accidents by proactively tackling potential

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Performance analysis of REST API in a real-time IoT-based vehicle … (Rizki Ananta Dwiyanto)

771

failures [29]. Predictive maintenance allows vehicle operators to enhance maintenance schedules through

predictive analytics, preventing severe failures and escalating repair expenses. This literature review

demonstrates that an IoT-based monitoring system featuring REST API integration, sensor technology, and

data security holds significant promise for use in contemporary vehicle monitoring. The forthcoming

sub-chapter will detail the design employed in the development of this system.

2.2. Proposed system

This sub-chapter outlines the methodology employed, focusing on an experimental and development

approach to create a real-time vehicle condition monitoring system. This system incorporates a range of

sensors, including light detection and ranging (LIDAR) for tire thickness detection, TPMS for tire pressure

monitoring, radio frequency identification (RFID) for vehicle identification, and brake pad sensors for

assessing brake wear. Information gathered from the sensors is analyzed to offer understanding regarding the

state of the vehicle. This information is accessible via a web-based interface, enabling remote monitoring of

vehicles. This system is crafted to be adaptive and proficient in handling sensor data instantaneously, thereby

enhancing the precision of decision-making processes.

The system provides a versatile and widespread monitoring solution through the use of wireless

communication technology. Information gathered from sensors is transmitted to a server, where it is

processed and stored in a database, ultimately being presented to users through clear reports or visualizations.

This process guarantees efficient monitoring of any alterations in vehicle conditions, contributing to

enhanced safety and performance of the vehicle. This method facilitates a more proactive management of

vehicles, with the system tailored to accommodate various vehicle types and diverse monitoring

requirements.

The client-server approach to IoT offers advantages in terms of management, data integrity, and

system security. This architecture sets the server as a central hub, allowing for easier management and

control of all IoT devices, increasing efficiency and structure in management processes. Centralizing data

storage guarantees uniformity of information, minimizes the chances of data duplication or loss, and

facilitates more thorough data analysis. This method enhances security by allowing for data encryption and

enabling the monitoring of user access via a centralized security protocol. This system enables IoT devices to

function with enhanced control, assured data access, and superior protection against security threats,

positioning it as an excellent solution for extensive IoT systems. The system that has been proposed is

illustrated in Figure 4.

Figure 4. Proposed system

The observation environment comprises LIDAR, TPMS, RFID, and brake pad sensors that relay

data in real time through HTTP. The REST API facilitates the management of sensor data by utilizing the

POST method for database interactions and the GET method for presenting information on the website in

JSON format. This system is engineered to maintain peak performance while managing numerous execution

requests. The client-oriented process is segmented into data services and user services to ensure effective

access to the database. Sensor data is captured along with their identities through the POST method and

transmitted to the website using the GET method for clear and accessible information display.

The diagram depicting the system's layer-by-layer relationship is presented in Figure 5, showcasing

the data flow from sensors to the user interface, thereby facilitating effective data monitoring and

management.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

772

This system features two distinct categories of administrators: Company Admin and Website

Admin. The Company Admin oversees the configuration of APIs and the establishment of sensor

connections with the server. They offer distinct endpoints for every sensor to maintain an organized data

delivery process. Information collected from sensors is transmitted using the POST method and recorded in a

MySQL database in accordance with the designated columns. Meanwhile, the Website Admin oversees the

management and updates of the website interface that showcases sensor data in a graphical format.

Figure 5. User-side client-based diagram

The GET and POST methods are employed to retrieve and send data to the API, ensuring

synchronization between sensor data and the database. The API serves as a crucial link between the server

and the client, facilitating seamless data communication and ensuring that updates are displayed in real-time.

Figure 6 illustrates the database tables associated with the four primary sensors (TPMS, LIDAR,

RFID, and brake pads), along with supplementary tables for users, Prisma migrations, account sessions, and

vehicle data (CangoLog). The user table contains information about users, whereas the ban_tpms, ban_lidar,

rfid_log, and brake_pads tables document data from their respective sensors. The prisma_migrations table

meticulously tracks data migrations, the sessions table efficiently manages account sessions, and the

cangolog table accurately logs vehicle status. The GET method is employed for data retrieval to access the

APIs of each sensor. Postman is a valuable tool for evaluating these requests.

Figure 6. Database

Figure 7 illustrates a react script that employs useEffect to asynchronously retrieve data from the

API, save it in state, and present it in a graph on the website. The data refreshes every 5 seconds through the

use of setInterval, facilitating continuous real-time monitoring. Using clearInterval for cleanup helps avoid

memory leaks when the component is unmounted. All data undergoes conversion to JSON format prior to

being presented in an accessible and user-friendly manner.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Performance analysis of REST API in a real-time IoT-based vehicle … (Rizki Ananta Dwiyanto)

773

Figure 7. GET sensor data to website

The system architecture encompasses interactions among sensors, an API Gateway, data services,

and databases. The diagram in Figure 8 illustrates the communication flow within the REST API system,

detailing the journey from data delivery by sensors to the subsequent storage and processing in the backend.

Figure 8. Sequence diagram

Figure 9 presents a use case diagram that demonstrates the interaction of users with the system for

accessing sensor data. Meanwhile, Figure 10 presents an application flowchart that outlines the user

authentication process utilizing JWT, data retrieval from the API, and the mechanisms for handling errors.

This method guarantees precise, effective, and safe monitoring of vehicles.

Figure 9. Use case diagram

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

774

Start

http://localhost:

5173/home

Home Page

There is already

an account

Sign In Page Sign Up Page

Sign In Sign Up

Verify User Data

Get JWT

A

A

Lecture Profile

Page

Lecture

Profile Page

Student Profile

Page

Student

Profile Page

Home_user

Page

Sensor Data

Page

display graphical

data

Logout

Get data from

api

graphic data is

displayed

successfully

http code=404

End

Yes

No

No

Yes

Yes

No

No

Yes

No

Yes

No

Yes

Figure 10. Flowchart system

2.3. Testing scenario

The subsequent phase entails choosing a test scenario to assess the application built on REST API

principles. This seeks to guarantee that the API operates correctly, securely, and in line with the anticipated

functionality. The design of client-server architecture presents various vulnerabilities, such as reliance on the

server, risks of overload, and challenges related to network latency. API testing encompasses several

categories, including functionality testing, performance testing, and security testing.

The first phase of testing includes manual verification of the API endpoint's functionality prior to

moving on to automated testing. One approach employed is to make use of Postman. In this scenario,

Postman sends an HTTP request to the API to analyze the response and conveniently adjust the request

parameters. Subsequently, a GET and POST data request is initiated to one of the endpoints. Once the data is

collected, an HTTP response will be produced with a status code of 200, signifying "Client Success."

Alongside the explanation of the 200 code, Postman offers details like the time taken for data transmission,

the size of the data in bytes, and additional status codes including 404 for "Not Found" and 400 for "Bad

Request."

This test utilizes data derived from sensors, encompassing details like tire thickness, temperature, air

pressure, and tire ID sourced from RFID sensors. The data will be transmitted to the server through the API

endpoint utilizing the POST method, followed by verification with the GET method to confirm that the data

is properly stored and accessible. Tables 1 to 5 present the POST and GET scenarios executed on sensor data,

encompassing information such as tire thickness, air pressure, temperature, and the tire ID linked to each

sensor. This test will assess the functionality of all sensors to verify the system's integration and precision in

handling data in real-time. Table 6 provides an overview of the various sensors, devices, protocols, and APIs

utilized.

Table 1. POST data using Postman
Id Sensor id Pressure (kPa) Temperature (°C)

Auto increment 1 0 12

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Performance analysis of REST API in a real-time IoT-based vehicle … (Rizki Ananta Dwiyanto)

775

Table 2. GET data for canvas parameters using Postman
Id Canvas thickness (%) Timestamp

5370 100 2025-03-07T06:45:19.000Z
5369 100 2025-01-15T15:01:24.000Z

5368 100 2025-01-15T15:01:20.000Z

5367 100 2025-01-15T15:01:17.000Z
5366 100 2025-01-15T15:01:14.000Z

Table 3. GET data TPMS using Postman
Id Sensor_id Pressure (kPa) Temperature (oC) Timestamp

4705 1 0 28 2025-03-07T02:18:37.000Z
4704 1 0 13 2025-03-07T02:16:53.000Z

4703 1 0 12 2025-01-15T15:01:25.000Z

4702 1 0 25 2025-01-15T15:01:21.000Z
4701 1 0 29 2025-01-15T15:01:18.000Z

Table 4. GET data LIDAR using Postman
Id Sensor_id Thickness (cm) Description Timestamp

13546 2 4 Good 2025-01-15T15:07:02.000Z
13544 1 4 Good 2025-01-15T15:06:51.000Z

13545 1 4 Good 2025-01-15T15:06:51.000Z
13543 1 4 Good 2025-01-15T15:06:50.000Z

13542 1 4 Good 2025-01-15T15:06:50.000Z

Table 5. GET data RFID using Postman
Id Tag_ID Detected_at

980 010CE280147000000219059E891038 2025-01-15T07:52:59.878Z

979 010CE280147000000219059E891038 2025-01-15T07:52:59.045Z

978 010CE280147000000219059E891038 2025-01-15T07:52:58.234Z
977 010CE280147000000219059E891038 2025-01-15T07:52:57.408Z

Table 6. GET data TPMS using Postman
Sensor types Device Protocol API

MS580314BA TPMS SPI/I2C http://localhost:5001/api/sensor/ban/tpms

TF Mini LIDAR UART http://localhost:5001/api/sensor/ban/lidar

AWG 18 Brake pad (kampas rem) GPIO http://localhost:5001/api/sensor/kampas_rem
Ommni directional UHF RFID ISO 18000-6C http://localhost:5001/api/sensor/rfid

In this project, API testing is carried out through various scenarios to verify that the system's

performance, reliability, security, and functionality align with the anticipated specifications. The initial

scenario involves conducting manual testing to confirm the functionality of the API endpoints. This testing is

conducted with tools like Postman to verify that each API endpoint responds as intended. During this

evaluation, GET and POST requests are dispatched to designated endpoints, including /api/sensor/, along

with the necessary parameters. The response from the API is analyzed, noting the status code (200 indicates a

successful request, 400 signifies an invalid request, and 404 means the endpoint is not found).

This testing additionally confirms the structure of the response data, ensuring it aligns with the

anticipated JSON format. The second scenario involves performance testing, which focuses on assessing the

response time and stability of the API under specific load conditions. This testing employs tools like JMeter,

specifically crafted for conducting load and stress assessments. The system undergoes rigorous testing by

dispatching hundreds to thousands of requests at the same time to evaluate various parameters, including

latency and potential failure points. The calculation of latency is derived from the average response time of

the API to incoming requests. This testing aids in pinpointing API capacity thresholds and evaluating system

performance when the load exceeds its typical limits.

The third scenario involves load testing, aimed at verifying that the API can manage numerous user

queries at the same time without suffering from notable performance decline. This test involves evaluating

the system with a substantial volume of query requests to analyze fluctuations in response time and identify

any bottlenecks or vulnerabilities that may hinder API performance. The findings from this test illuminate the

vulnerabilities within the system and offer direction for enhancement.

The fourth scenario encompasses security testing, designed to uncover vulnerabilities that could be

leveraged by unauthorized individuals. Security testing is carried out with Postman, focusing on the process

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

776

of attempting to send data via a POST request while omitting a valid authentication token. The token utilized

in the API may either be a static token or a dynamic token, which can solely be acquired following the login

procedure. In this test, simulations for data transmission are conducted both with and without the appropriate

token to verify that the API endpoint is exclusively accessible to users possessing valid credentials.

The final assessment involves automating API testing and overseeing the dashboard. In this

scenario, testing is carried out with the Postman Collection Runner, enabling the automated execution of

functional tests across different API endpoints. Test results are documented in the monitoring dashboard to

capture essential metrics including the number of queries, response time, success rate, and more. This series

of tests guarantees that the API operates at peak performance while remaining secure against threats,

ensuring its reliability in managing data requests across diverse conditions.

3. RESULTS AND DISCUSSION

3.1. Functional performance testing

As detailed in the preceding chapter, the initial assessment involves conducting functional testing

using Postman. The results of the test are presented in Table 7. According to Table 7, manual testing with the

Postman tool on multiple sensors operates effectively. Four types of sensors have been evaluated, each

demonstrating an average response time for the GET and POST methods. This test permits two HTTP

methods on the API: GET and POST. The GET method serves to present sensor data from the database on the

dashboard, whereas the POST method is utilized for inputting sensor data into the database. The test results

indicate that the average response time for the GET method across all sensors is under 10 milliseconds, with

the minimum response time recorded at 4 milliseconds for both the brake pad and RFID sensors.

Table 7. Client-side test results for Postman tools
No Sensor Average GET response time (ms) Average POST response time (ms)

1 Brake pad 4 11

2 TPMS 5 7

3
4

RFID
LIDAR

4
7

10
10

The average response time for the POST method ranges from 7 to 11 milliseconds, with the brake

pad sensor recording the longest response time at 11 milliseconds. This indicates that the process of

retrieving data (GET) is more efficient than the process of sending data (POST). The variation in response

time is affected by the volume of data presented and the payload transmitted. An increase in the number of

payloads or the complexity of the parameters leads to an extended server processing time. Nonetheless, the

average response time recorded in this test indicates that the API manages requests with great proficiency and

effectiveness.

3.2. Performance testing

In the second scenario, Figure 11 illustrates the test results. The purpose of performance testing is to

assess the response time and stability of the API under specific load conditions utilizing JMeter. Evaluations

are currently being conducted on the client side.

Figure 11. Client-side performance result

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Performance analysis of REST API in a real-time IoT-based vehicle … (Rizki Ananta Dwiyanto)

777

An evaluation was carried out to assess the effectiveness of the proposed system on several sensors,

as indicated by the performance testing table image. Testing was carried out utilizing Apache JMeter,

employing test parameters that included 5 fixed iterations and a gradual increase in the user count from 10 to

100. The test results indicate that the average response time and latency fluctuate based on the user count and

the sensor type. The brake pad sensor demonstrates a consistent average response time and latency,

remaining stable under 15 milliseconds up to 100 users. The LIDAR sensor exhibits greater latency

compared to other sensors across all user points, whereas the RFID sensor demonstrates the most stable and

low response time, remaining under 10 milliseconds in the majority of scenarios. Overall, these findings

suggest that the increase in user numbers affects the system's response time and latency, although variations

among sensors may arise from the intricacies of data processing or differing payload sizes. This system has

demonstrated the capability to manage loads of up to 100 users without exhibiting notable performance

decline. Figure 12 illustrates that the data delivery success rate to the client consistently achieves 100% while

handling 100 threads.

Figure 12. Client-side performance result for success rate

3.3. Load testing performance

A load test was performed for a duration of 5 minutes using 100 virtual users to evaluate the

performance of the API, as illustrated in Figure 13. The /sensor/ban/lidar endpoint exhibited a higher

response time, experiencing fluctuations of up to 15 ms, whereas the /sensor/rfid and /sensor/kampas_rem

endpoints maintained a more stable response in the range of 5-7 ms. In summary, the system demonstrates

consistent reliability, exhibiting no notable errors or spikes, even under increased load conditions.

Figure 13. Load testing

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

778

In the meantime, Table 8 presents the detailed test outcomes for each sensor associated with the

GET and POST methods. The test results indicate that the LIDAR sensor exhibits the highest average

response time for both methods, recorded at 9.19 ms, with a maximum response time of 15 ms and a

minimum response time of 7 ms. The RFID sensor demonstrates optimal performance, achieving the lowest

average response time for both the GET and POST methods at 3.93 ms. It records a maximum response time

of just 8 ms and a minimum of 3 ms. Additional sensors, including TPMS and brake pads, exhibit average

response times of approximately 5.52 ms and 5.14 ms, respectively, while their maximum response times can

peak at 14 ms and 12 ms, respectively. The test results indicate that a bottleneck arises in the LIDAR sensor

during data retrieval via the GET method, particularly when the user count hits maximum capacity. In these

circumstances, the peak response time may extend to 15 ms. The findings demonstrate that the server

continues to manage requests effectively, despite the discrepancies in response times among the sensors.

Table 8. Server-side response time load test results

Sensor
Get Post

AVG (ms) Max (ms) Min (ms) AVG (ms) Max (ms) Min (ms)

TPMS

LIDAR

5.52

9.19

14

15

4

7

5.51

9.19

14

15

4

7

RFID 3.93 8 3 3.93 8 3
Canvas 5.14 12 4 5.14 12 4

3.4. Security performance system

The next assessment, the fourth assessment, is security testing. Security testing seeks to identify

deficiencies or vulnerabilities in the API that may be exploited by unauthorized entities. The initial stage of

security testing involves the authentication and authorization process, the steps of which are illustrated in

Figure 14.

Figure 14. Authentication and authorization process

Figure 14 illustrates the process of obtaining data from https://api.stas-rg.com/sensor, which is

unsuccessful because an authentication token is missing. The authentication procedure is accessible at

https://api.stas-rg.com/auth/signin. The authentication process requires the user to input the correct email and

password. Upon successful entry, a validated code (JWT) is generated, which remains valid for one hour. If

this token has been acquired, Postman is capable of accepting input in the Authentication - Bearer Token

section. Access to the system is denied to users who enter an incorrect email address or password. Upon

entering the correct email and password, access to the previously restricted webpage is granted after the

token is provided. The upcoming phase of evaluation involves utilizing Postman for basic security

assessments. Testing is conducted to verify that the API is protected against unauthorized access by assessing

its responses to various authentication scenarios. This test involves executing multiple token validation

scenarios to assess the security mechanism of the API.

In the initial test, a request is dispatched to the API omitting the authentication token from the

Authorization header. The findings from this test indicate that the API delivers an error message stating

"Token not provided," accompanied by a status code of 401 Unauthorized. This suggests that the API is

securely safeguarded and restricts access to authenticated users only. Figure 15 illustrates the API response

for the test conducted without an authentication token.

Figure 15. Security testing without token

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Performance analysis of REST API in a real-time IoT-based vehicle … (Rizki Ananta Dwiyanto)

779

In the second test, a request is dispatched utilizing an invalid or incorrect authentication token. A

random token is utilized, which is placed within the Authorization header. The API response indicates an

error message stating, "Invalid or expired token," accompanied by a status code of 403 Forbidden. This

finding indicates that the API is capable of identifying invalid tokens and restricting access to secured

resources. Figure 16 presents the outcomes of security testing conducted with an invalid token. The results

from both tests indicate that the API security mechanism has been effectively implemented to thwart

unauthorized access. The API is capable of differentiating between scenarios involving no token, a valid

token, and an invalid token, delivering a suitable response for each case. These testing steps are crucial for

confirming that the API is sufficiently safeguarded against unauthorized access, a key element in application

security testing.

Figure 16. Security testing using wrong token

3.5. API dashboard monitoring testing

The final assessment involves testing the API automation and monitoring dashboard. This testing

aims to reproduce functional testing using the Postman Collection Runner, which automates test generation

through its features. To execute the API automation using the Collection Runner in Postman, the first step is

to set up the API Collection (pre-request) to automate the sensor type and sensor ID. The SENSOR_NAME

variable is designated to hold the type of sensor, whereas the SENSOR_URL variable is intended to store the

URL associated with each sensor. These variables will serve to enhance dynamic testing. Figure 17 provides

an illustration of the script.

Figure 17. Testing script on Postman collection runner

In Figure 17, the script executed for automation testing sequentially evaluates each sensor to

confirm that the response code received is 200, indicating successful input and retrieval of sensor data from

the database, while also verifying whether the sensor type associated with the URL is consistent. Figure 18

illustrates the outcomes of the GET method test. The figure illustrates that the total execution time for the

API using the GET method is 25 seconds, accompanied by an average response time of 4 milliseconds. The

POST method test is illustrated in Figure 19. The total execution duration of the API utilizing the POST

method is 25 seconds, accompanied by an average response time of 5 milliseconds.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

780

Figure 18. GET method testing

Figure 19. POST method testing

The results of the POST and GET method tests indicate that the dashboard display effectively

allows for proper observation and monitoring of the data, as illustrated in Figure 20. Presenting the outcomes

of the data dashboard that showcases the findings from the observations of the TPMS, LIDAR, and brake pad

sensors through graphical representations.

Figure 20. Dashboard testing TPMS, tire thickness, and brake pad

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Performance analysis of REST API in a real-time IoT-based vehicle … (Rizki Ananta Dwiyanto)

781

This study develops a vehicle monitoring website. This study presents a vehicle monitoring website

that incorporates sensor integration and a REST API to effectively manage and display real-time data on

vehicle component conditions. This system incorporates four primary sensors and utilizes 14 APIs, achieving

an average response time ranging from 4 to 11 milliseconds. Testing indicates that all sensors effectively

transmit data with precision, even in environments lacking Wi-Fi through Bluetooth. Conducting load testing

with 100 users demonstrates consistent latency and response times, attributed to the system's low complexity.

In alternative scenario evaluations, response times vary between 3.93 and 9.19 milliseconds, reaching a

maximum of 15 seconds under full load conditions. Regarding security, authentication testing demonstrates

that the system is capable of denying access in the absence of a token or when presented with an invalid

token. While no significant security flaws were identified, it is advisable to implement OAuth 2.0 along with

a token refresh mechanism to enhance data security. Ultimately, automated testing with Postman Collection

Runner (PCR) facilitates efficient API validation, enabling developers to oversee and assess API

performance with greater ease.

3.5. Discussion

The test results indicate that the developed IoT-based REST API system demonstrates stable

performance when managing up to 100 simultaneous users, with response times varying from 3.93 to 9.19 ms

under normal conditions. Load testing indicates that the peak response time hits 15 ms in scenarios with a

significant user load, yet remains within acceptable thresholds for real-time monitoring applications.

Furthermore, security testing demonstrates that the JWT-based authentication mechanism has been

effectively implemented, safeguarding against unauthorized access to the vehicle monitoring system.

This study aligns with earlier investigations that have examined the application of REST APIs in

monitoring systems based on IoT technology. For instance, a study conducted by [20] indicates that REST

API exhibits an average response time of 31 ms in a web service-based system, which remains higher than

the system developed in this investigation, where the response time ranges from 3.93 to 9.19 ms. A recent

investigation by [19] emphasized that REST APIs are favored for their stateless characteristics, yet encounter

issues related to latency unless optimized through caching and load balancing techniques.

From an authentication and security perspective, previous findings by [25] indicated that OAuth 2.0

and token refresh mechanisms are more advisable than static JWTs, as JWTs that are not updated regularly

have a higher risk of token theft. This indicates that while the implemented system utilizes JWT, it is

essential to explore the potential of OAuth 2.0 or blockchain-based authentication to enhance system security

moving forward. Furthermore, regarding IoT-based vehicle monitoring, a study conducted by [29] on

predictive maintenance in IoT-monitored systems indicates that employing machine learning for analyzing

component wear patterns can enhance the efficiency of vehicle maintenance systems. The system created in

this study continues to emphasize real-time monitoring; however, the integration of predictive maintenance

models could represent the next advancement in enhancing system reliability.

The findings of this study carry substantial importance for the automotive sector and IoT systems.

Leveraging REST APIs in vehicle monitoring systems allows for real-time tracking of vehicle conditions,

enhances driving safety, and supports predictive maintenance strategies aimed at minimizing the likelihood

of component failure. This system offers greater automation and accessibility when contrasted with

traditional vehicle monitoring techniques that depend on manual diagnosis or regular inspections.

Furthermore, the effective combination of ESP32, Node.js, Prisma ORM, and MySQL in this study

demonstrates that IoT-based microcontrollers can seamlessly integrate with cloud-based systems, paving the

way for advancements in applications like fleet management, electric vehicle monitoring, and AI-driven

maintenance systems.

While the test results indicate strong performance, it is important to acknowledge certain limitations

that warrant consideration. A significant limitation is the dependence on Wi-Fi connectivity, which may lead

to communication disruptions if the network is unreliable. Options like LoRa, NB-IoT, or 5G may be

explored to enhance connectivity. Moreover, the test scale remains confined to 100 users, which means that

the system's performance in more extensive scenarios, like thousands of connected IoT devices, has yet to be

thoroughly assessed. The test results indicate that the LIDAR sensor exhibits the fastest response time among

the various sensors, highlighting the necessity for enhancements in the processing of more intricate sensor

data. Furthermore, while JWT authentication has been put in place, the system currently lacks a token refresh

mechanism or OAuth 2.0, which could enhance data security against threats like token theft or replay attacks.

To enhance the effectiveness and scalability of this system, future development directions may

involve the integration of machine learning to bolster predictive maintenance capabilities, by examining

brake pad and tire wear patterns derived from historical data. Enhancing communication infrastructure

through the implementation of 5G or LoRaWAN can provide more stable connectivity than traditional Wi-Fi.

Moreover, enhancing the REST API through caching with Redis can significantly decrease latency and

accelerate the retrieval of sensor data. Creating a mobile application as an alternative monitoring interface

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

782

can enhance user accessibility and enable remote vehicle monitoring. When considering security measures,

the implementation of OAuth 2.0 and refresh tokens represents a crucial advancement in safeguarding user

data. Additionally, investigating the potential of blockchain technology for securing data transactions could

serve as a sustainable approach to thwarting manipulation or unauthorized access to sensor information.

Overall, this study has effectively developed an IoT-based REST API for vehicle monitoring,

demonstrating improved response times in comparison to various earlier studies. Furthermore, testing

indicates that this system is capable of managing 100 concurrent users while achieving a 100% success rate

in data delivery. Nonetheless, for large-scale applications, it is essential to focus on performance

optimization, enhance security measures, and incorporate machine learning for predictive maintenance. With

further development, this system could emerge as the primary solution in vehicle health monitoring

technology, aiding the automotive sector in creating smarter vehicles that prioritize efficiency and safety.

4. CONCLUSION

This study has effectively shown that incorporating REST API into an IoT-based vehicle monitoring

system offers a robust solution for real-time monitoring of vehicle conditions. This system integrates an

ESP32 as the primary microcontroller, utilizing TPMS sensors for monitoring tire pressure and temperature,

LIDAR for assessing tire thickness, RFID for tire identification, and brake pads. It effectively gathers data

and transmits it to the server through a REST API using wireless connectivity. The conducted tests revealed

that the system maintains an average response time ranging from 3.93 to 9.19 milliseconds, achieving a data

delivery success rate of 100%, even under conditions involving 100 simultaneous users. Thus, the

development of a website monitoring system designed to collect data from multiple vehicle sensors via REST

API was successful, and it can serve as the basis for future predictive vehicle maintenance research.

The use of JWT for authentication has demonstrated effectiveness in safeguarding sensor data from

unauthorized access. Nonetheless, this study also uncovered various obstacles, particularly regarding reliance

on Wi-Fi connectivity, which may lead to data loss if the network experiences instability. Furthermore, while

the system has undergone testing with 100 users, its ability to scale to a larger user base requires additional

assessment. The test revealed that the LIDAR sensor exhibits a higher response time relative to other sensors,

highlighting the necessity for additional optimization in handling more intricate sensor data.

The implications of this study are extensive, particularly for the automotive sector that is

progressively embracing IoT-based technologies. This system has the potential to serve as a foundation for

advancing vehicle monitoring solutions, including fleet management, electric vehicle oversight, and

predictive maintenance analytics. The findings of this study demonstrate that REST API serves as a

dependable, adaptable, and scalable option for vehicle monitoring systems, enabling users to retrieve data

with increased speed and precision.

While it has demonstrated encouraging outcomes, there remains potential for additional

advancement in the future. One of the primary areas for enhancement is the implementation of more reliable

communication technologies, like 5G or LoRa, to address the shortcomings of Wi-Fi in data transmission.

Furthermore, employing machine learning for predictive maintenance enables the analysis of wear patterns in

vehicle components, facilitating early warnings of possible damage. Regarding security, implementing

OAuth 2.0 and refresh tokens can enhance the protection of sensor data from cyber threats, while

investigating blockchain technology can offer improved transparency and integrity in managing sensor data.

This study demonstrates that REST API serves as a practical and effective solution for vehicle

monitoring systems based on IoT technology. Through continued advancements in network communication,

data security, and predictive analysis, this system has the potential to evolve into a more intelligent and

adaptive vehicle monitoring platform, paving the way for a safer, more efficient, and more sustainable

vehicle ecosystem in the future

ACKNOWLEDGEMENTS

We would like to express our gratitude to thank the Directorate of Research and Community Service

(PPM) of Telkom University and CoE Smart Technology and Applied Sciences (STAS) of Telkom

University, Bandung, Indonesia for their invaluable support in this research endeavor.

REFERENCES
[1] S. H. Grandhi, H. M. Al-Jawahry, D. S, B. V. Kumar, and M. K. Padhi, “A Quantum Variational Classifier for Predictive

Maintenance and Monitoring of Battery Health in Electric Vehicles,” in 2024 International Conference on Intelligent Algorithms

for Computational Intelligence Systems (IACIS), Hassan, India, Aug. 2024, pp. 1–4, doi: 10.1109/iacis61494.2024.10721715.

[2] W. Li, Z. Zhang, Y. Jiang, and K. Wang, “Prediction and Degradation Analysis Revolutionizing Electric Vehicle Reducer

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Performance analysis of REST API in a real-time IoT-based vehicle … (Rizki Ananta Dwiyanto)

783

Prognostics: An Advanced Deep Learning Framework for Accurate RUL Prediction and Degradation Analysis,” in 2024 6th
International Conference on Internet of Things, Automation and Artificial Intelligence (IoTAAI), Guangzhou, China, Jul. 2024,

pp. 58–64, doi: 10.1109/iotaai62601.2024.10692468.

[3] S. M. et al., “IoT-based Battery Health Management System for Electric Vehicles: A Predictive Approach,” in 2024 IEEE 4th
International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Hyderabad, India, Jul. 2024, pp.

1–6, doi: 10.1109/sefet61574.2024.10718077.

[4] D. L. Sampath, “Harnessing AI and Predictive Analytics: Transforming the Electric Vehicle Market in India,” International
Journal of Scientific Research in Engineering and Management, vol. 08, no. 008, pp. 1–7, Sep. 2024, doi: 10.55041/ijsrem37444.

[5] I. Kamusiime, “A remote vehicle health monitoring system: a case study of the kayoola electric vehicles,” M.S. thesis, The

Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, 2023, doi: 10.58694/20.500.12479/2586.
[6] J. Juneau and T. Telang, “Object-Relational Mapping,” in Java EE to Jakarta EE 10 Recipes, Apress, 2022, pp. 333–377, doi:

10.1007/978-1-4842-8079-9_7.

[7] N. Biswas, “Creating an App with Prisma,” in Practical GraphQL, Apress, 2023, pp. 163–220, doi: 10.1007/978-1-4842-9621-
9_5.

[8] R. K. Kannan, M. A. K. T., S. Vairachilai, R. Vijayalakshmi, “NodeJS and Postman for Serverless Computing,” in Serverless

Computing Concepts, Technology and Architecture, IGI Global, 2024, pp. 195–204, doi: 10.4018/979-8-3693-1682-5.ch012.
[9] A. Dubey, G. S. Chauhan, A. Dubey, J. Singh, and P. Girdhar, “Customized Framework for Backend Using Node JS,” in 2023

International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET), Ghaziabad, India,

Sep. 2023, pp. 01–05, doi: 10.1109/icseiet58677.2023.10303462.
[10] N. Subbulakshmi, S. A. Begum, R. Venkata Vignesh, and R. Chandru, “Asynchronous Event Driven Brain Teaser Using

Node.js,” in 2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore,

India, Aug. 2024, pp. 113–118, doi: 10.1109/icesc60852.2024.10689905.
[11] D. Otynshin, “Optimizing Node.js application performance through main thread offloading,” International Journal of Information

and Communication Technologies, vol. 4, no. 2(14), pp. 82–93, Jan. 2024, doi: 10.54309/IJICT.2023.14.2.008.

[12] N. Singh, Shikha, A. Gola, and Sidharth, “Empowering tomorrow’s mobility: innovations in electric vehicle technology with iot
and ai integration,” in Advancing Innovation in Smart Systems, Energy, Materials, and Manufacturing: Unleashing the Potential

of IoT, AI, and Edge Intelligence, Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024, pp. 141–159, doi:

10.58532/nbennuraich8.
[13] R. K. P. and B. Amutha, “Literature Review of Data-Driven Strategies for the Sustainable Growth of Electric Vehicles in Cities,”

in 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST), Kochi, India, Apr. 2024, pp.

1–5, doi: 10.1109/ictest60614.2024.10576091.
[14] V. M. Macharia, V. K. Garg, and D. Kumar, “A review of electric vehicle technology: Architectures, battery technology and its

management system, relevant standards, application of artificial intelligence, cyber security, and interoperability challenges,” IET

Electrical Systems in Transportation, vol. 13, no. 2, pp. 1-25, Jun. 2023, doi: 10.1049/els2.12083.
[15] G. Nyabuto, “Client-server Architecture, a Review,” International Journal of Advanced Science and Computer Applications, vol.

3, no. 1, Dec. 2023, doi: 10.47679/ijasca.v3i1.48.

[16] G. Loseto et al., “A Cloud-Edge Artificial Intelligence Framework for Sensor Networks,” in 2023 9th International Workshop on
Advances in Sensors and Interfaces (IWASI), Jun. 2023, pp. 149–154, doi: 10.1109/iwasi58316.2023.10164335.

[17] Y. Y. F. Panduman et al., “An Edge Device Framework in SEMAR IoT Application Server Platform,” Information, vol. 14, no. 6,

pp. 1-25, May 2023, doi: 10.3390/info14060312.
[18] V. K. Butte and S. Butte, “An End to End Edge to Cloud Data and Analytics Strategy,” in 2022 13th International Conference on

Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, Oct. 2022, pp. 1–6, doi:

10.1109/icccnt54827.2022.9984604.
[19] M. Mudassir and M. Mushtaq, “The role of APIs in modern software development,” World Journal of Advanced Engineering

Technology and Sciences, vol. 13, no. 1, pp. 1045–1047, Oct. 2024, doi: 10.30574/wjaets.2024.13.1.0515.

[20] D. Prasetyawan and P. D. Rahmanto, “Development of a Web Service-Based Research Proposal Selection System Using REST
API (in Indonesia: Pengembangan Sistem Seleksi Proposal Penelitian Berbasis Web Service Menggunakan REST API),” JTIM :

Jurnal Teknologi Informasi dan Multimedia, vol. 6, no. 3, pp. 283–295, Sep. 2024, doi: 10.35746/jtim.v6i3.585.
[21] F. A. Akbar, E. P. Mandyartha, and H. Maulana, “An Approach for Automatic Generating RESTFul API Code based on SQL

DDL Code,” Technium: Romanian Journal of Applied Sciences and Technology, vol. 16, pp. 118–123, Oct. 2023, doi:

10.47577/technium.v16i.9969.
[22] K. Anam, D. N. Rofi, and R. Meiyanti, “Monitoring System for Temperature and Humidity Sensors in the Production Room

Using Node-Red as the Backend and Grafana as the Frontend,” Journal of Systems Engineering and Information Technology

(JOSEIT), vol. 2, no. 2, pp. 68–76, Sep. 2023, doi: 10.29207/joseit.v2i2.5222.

[23] H. Sun and L. Chen, “Design of application layer software platform of remote monitoring system,” Frontiers in Computing and

Intelligent Systems, vol. 3, no. 2, pp. 124–126, Apr. 2023, doi: 10.54097/fcis.v3i2.7576.

[24] B. Mondal, I. Arif, T. Barua, and M. R. I. Chowdhury, “Data security in iot devices and sensor networks for robust threat
detection and privacy protection,” Academic Journal On Science, Technology, Engineering & Mathematics Education, vol. 1, no.

01, pp. 19-35, Oct. 2024, doi: 10.69593/ajieet.v1i01.116.

[25] S. Mehta and R. Kumar, “Blockchain-powered Solutions for Ensuring IoVT Data Confidentiality and Integrity,” in 2024
International Conference on Electrical Electronics and Computing Technologies (ICEECT), Greater Noida, India, Aug. 2024, pp.

1–4, doi: 10.1109/iceect61758.2024.10739157.

[26] A. Ahmad, R. Maulana, and K. Akmal, “Data Privacy and Security in the Age of IoT A Comprehensive Study on Information
System Vulnerabilities,” Journal Informatic, Education and Management (JIEM), vol. 6, no. 2, pp. 1–7, Jun. 2024, doi:

10.61992/jiem.v6i2.78.

[27] D. N. Mishra, D. A. M. Haval, A. Mishra, and S. S. Dash, “Automobile Maintenance Prediction Using Integrated Deep Learning
and Geographical Information System,” Indian Journal of Information Sources and Services, vol. 14, no. 2, pp. 109–114, Jun.

2024, doi: 10.51983/ijiss-2024.14.2.16.

[28] A. Amune, S. Shahari, S. Kasurde, S. Nimale, S. Surdas, and S. Tayde, “Exploring Predictive Maintenance and Signal Processing
Techniques for Automotive Health Monitoring,” in 2024 International Conference on Expert Clouds and Applications (ICOECA),
Bengaluru, India, Apr. 2024, pp. 541–547, doi: 10.1109/icoeca62351.2024.00100.

[29] E. Zero, M. Sallak, and R. Sacile, “Predictive Maintenance in IoT-Monitored Systems for Fault Prevention,” Journal of Sensor
and Actuator Networks, vol. 13, no. 5, pp. 1-20, Sep. 2024, doi: 10.3390/jsan13050057.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

784

BIOGRAPHIES OF AUTHORS

Rizki Ananta Dwiyanto is a Computer Technology student at Telkom University,

Faculty of Applied Sciences, who is developing a Website for Early Warning System:

Enhancing Vehicle Safety Through Real-Time Monitoring. This project focuses on developing

a website-based Early Warning System that allows users to easily check the condition of

various vehicle components. By simply accessing the website, users can monitor critical data

such as brake pad thickness, tire thickness measured using LIDAR, tire pressure and

temperature through TPMS, and tire identification using RFID. This system enhances

convenience and efficiency in vehicle maintenance, ensuring real-time monitoring and early

detection of potential issues to improve safety and reliability. He can be contacted at email:

rizkiadwi@student.telkomuniversity.ac.id.

Giva Andriana Mutiara is an Associate Professor at Telkom University,

Department of Applied Science. She completed her Ph.D. in Information and Communication

Technology (ICT) from Universiti Teknikal Malaysia Melaka (UTeM) in 2022, and her Master

of Engineering in Computer Engineering from Bandung Institute of Technology in 2005. She

has participated in several collaborative projects with various industries and received both

internal and external grant funding in several research schemes of the Ministry of Research and

Technology in recent years. Currently, she is head of Center of Excellence Smart Technology

and Applied Science RG and focused her research on Smart Technology and IoT. She holds

several intellectual property rights and patents. Her work is reflected in various publications

indexed in reputable databases. She can be contacted at email: givamz@telkomuniversity.ac.id.

Marlindia Ike Sari is an Assistant Professor at Telkom University, Department of

Applied Science. She completed her Master of Engineering in Electrical-Telecommunication

Engineering from Telkom University (formerly as Institute of Technology Telkom) in 2011.

She has participated in several collaborative projects with various communities. Currently, she

is a member of Center of Excellence Smart Technology and Applied Science RG. Her works is

reflected in various publications indexed in reputable databases She can be contacted at email:

marlindia@tass.telkomuniversity.ac.id.

https://orcid.org/0009-0008-8191-0060
https://scholar.google.com/citations?user=wlhWqv8AAAAJ&hl=id
https://orcid.org/0000-0003-4387-6128
https://scholar.google.com/citations?hl=id&user=zowNrRMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56331094300
https://www.webofscience.com/wos/author/record/AAF-1012-2021
https://orcid.org/0000-0001-5741-3779
https://scholar.google.co.id/citations?user=gbk64vIAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=53264897500

