International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol. 14, No. 3, November 2025, pp. 766~784
ISSN: 2089-4864, DOI: 10.11591/ijres.v14.i3.pp766-784 a 766

Performance analysis of REST API in a real-time loT-based

vehicle monitoring system

Rizki Ananta Dwiyanto, Giva Andriana Mutiara, Marlindia Ike Sari
Department of Computer Technology, Faculty of Applied Science, Universitas Telkom, Bandung, Indonesia

Article Info

ABSTRACT

Article history:

Received Mar 17, 2025
Revised Jul 5, 2025
Accepted Oct 9, 2025

Keywords:

Internet of things

Load testing

Performance analysis
REST API

Vehicle monitoring system

This study studies the design and implementation of a REST API and its
performance analysis for an internet of things (loT)-based vehicles
monitoring system. This system incorporates brake pad sensors, a tire
pressure monitoring system (TPMS) for assessing tire pressure and
temperature, light detection and ranging (LIDAR) for measuring tire
thickness, and radio frequency identification (RFID) for tire identification.
Data is gathered using an ESP32 microcontroller and transmitted in real-time
to the server via a REST API over a wireless network. The JSON Web
Token (JWT) authentication mechanism is employed to ensure data security.
Testing indicates that this system has an average response time of 4-11 ms,
with optimal performance recorded at 3.93 ms for the RFID sensor and peak
performance at 9.19 ms for the LIDAR sensor. Load testing with 100
concurrent users demonstrates that the system maintains stability with a
100% data delivery success rate. Authentication testing demonstrates that the

API is accessible solely with a valid token, hence preventing unauthorized
access. This study's results demonstrate that integrating REST API with loT
monitoring systems facilitates real-time vehicle monitoring, enhances
maintenance efficiency, and offers viable solutions for future predictive
maintenance systems.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Giva Andriana Mutiara

Department of Computer Technology, Faculty of Applied Science, Universitas Telkom
St. Telekomunikasi No. 1, Terusan Buah Batu, Bandung 40257, Indonesia
Email: givamz@telkomuniversity.ac.id

1. INTRODUCTION

The integration of a remote monitoring system (RMS) into an early warning system (EWS) has
markedly improved early detection abilities, leading to greater safety and risk reduction. Through the use of
cutting-edge sensors and data analysis, EWS effectively tracks essential parameters in real-time, allowing for
proactive measures to address potential risks before they arise. This technology encompasses several
essential components, including the incorporation of high-resolution sensors like fiber bragg grating (FBG)
sensors, which are capable of capturing vital data from environmental or infrastructure systems. This data
allows for precise forecasting of possible threats or system malfunctions, facilitating swift actions to mitigate
more significant consequences [1].

Moreover, deep learning frameworks like Conv-LSTM are employed to analyze sensor data and
predict the remaining useful life (RUL) of components, thereby facilitating improved maintenance strategies
[2]. In the realm of battery health management, machine learning models are utilized to assess essential
battery parameters to forecast potential failures, thereby guaranteeing the safety and reliability of electric
vehicles throughout their operation [3]. In the realm of battery health management, machine learning models
are utilized to assess essential battery parameters to forecast potential failures, thereby guaranteeing the

Journal homepage: http://ijres.iaescore.com

https://creativecommons.org/licenses/by-sa/4.0/

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 a 767

safety and reliability of electric vehicles throughout their operation [4]. Moreover, predictive maintenance
facilitated by RMS can significantly lower vehicle maintenance expenses, thus enhancing operational
efficiency within the electric vehicle sector [5]. Nonetheless, the broad acceptance of RMS continues to
encounter various obstacles, such as significant upfront implementation expenses and the necessity for
enhanced data security protocols. These challenges represent significant issues that need to be tackled for this
technology to achieve broader implementation in the electric vehicle sector.

As the transition from gasoline-powered vehicles to automatic and electric vehicles accelerates, the
demand for real-time monitoring systems is growing, highlighting the significance of monitoring technology.
One of the parameters to be included on the dashboard of this monitoring system is the brake pads, along
with the monitoring of tire parameters such as pressure, temperature, and tire thickness. The four parameters
are linked to the ESP32 microcontroller, which then transmits data to a centralized database management
system (MySQL) through the REST API. To ensure the protection of vehicle sensor data, the system employs
the JSON Web Token (JWT) authentication method, which is accessible only after the user has successfully
completed the Sign In process. Furthermore, a static token is implemented to enable the ESP32 to access the
system seamlessly, bypassing the authentication process and facilitating the automatic and secure
transmission of data.

The implementation of an object-relational mapping (ORM) framework, like Prisma, greatly
enhances database management for developers by enabling interaction with the database through
object-oriented programming principles. This method streamlines database interaction by substituting
traditional SQL query writing with more user-friendly classes and methods, thus minimizing the intricacies
of data management [6]. Prisma provides a seamless experience for database migration and is adept at
managing intricate data structures, including information from vehicle sensors. This facilitates the smooth
incorporation of data gathered by devices like the ESP32 into database tables, enhancing the overall
efficiency of the system [7]. The primary benefits of ORM involve streamlining database interactions by
utilizing objects and methods, thereby enhancing the ease and speed of data management [6].

In the realm of vehicles, ORMs facilitate the representation of sensor data, including tire pressure
and brake conditions, as objects that can be directly manipulated at the application level. Prisma, as an
example of an ORM tool, can automate the integration of sensor data into database tables, thereby
accelerating data processing and analysis [7]. While ORMs provide numerous advantages, some developers
argue that this method may lead to performance overhead, particularly in specific situations. Consequently,
selecting ORM or alternative approaches must be customized to align with the specific requirements and
scope of the project.

Node.js serves as a robust backend framework, crafted to enhance the creation of scalable and
efficient web applications. The event-driven architecture and asynchronous programming model enable the
handling of multiple connections at once, making it particularly suitable for environments with high traffic.
The scalability is enhanced by a non-blocking I/0 model, enabling Node.js to effectively manage substantial
amounts of data and traffic [8].

Furthermore, the framework enables horizontal scaling, facilitating the distribution of workloads
across various servers, which proves particularly beneficial for extensive applications [9]. In terms of
security, Node.js provides safeguards against prevalent vulnerabilities like SQL injection and authentication
issues. The framework is frequently integrated with tools like Passport.js and JWT to establish a dependable
authentication system [10]. Node.js enhances development efficiency through its comprehensive
documentation, tutorials, and robust community support, which greatly accelerates the application
development process [9]. The implementation of JavaScript across both client and server sides facilitates
code reuse, thereby enhancing the efficiency of the development process [8]. Nonetheless, despite its
strengths in various areas, the single-threaded characteristic of Node.js may pose a performance limitation for
applications that are CPU-intensive. In these situations, Node.js might not be the optimal selection, since
resource-intensive tasks can hinder the performance of other processes [11].

This paper focuses on developing a website monitoring system designed to gather data from
multiple vehicle sensors utilizing REST API. The outcomes of this system can aid in future advancements,
allowing for enhanced development in predictive vehicle maintenance analysis. This study also results in a
monitoring application that is readily available and offers advantages to drivers, enhancing their awareness of
various driving safety factors. The paper's structure can be elaborated upon in the methodology section found
in section 2. Section 3 presents the results and discussion. Ultimately, section 4 will provide an explanation
of the conclusions and outline directions for future inquiry.

2. RESEARCH METHOD
This study employs an experimental and system development methodology to create and deploy an
loT-based monitoring system that incorporates REST API for tracking vehicle brake pads and tires. In the

Performance analysis of REST API in a real-time loT-based vehicle ... (Rizki Ananta Dwiyanto)

768 a ISSN: 2089-4864

initial stage, a literature review was conducted on an loT-based vehicle monitoring system, focusing
particularly on the monitoring of brake pads and tire conditions. Architecture for REST API and loT
communication, featuring the implementation of JWT authentication for enhanced security. ESP32
microcontroller technology, featuring the integration of pressure, temperature, and tire thickness sensors.
Backend development utilizing Node.js, encompassing data management from sensors to the database
through a REST API.

Following that, it proceeded to the system designe phase. At this stage, the monitoring system has
been developed with various hardware and software components. The hardware components lack detailed
explanation and are viewed merely as a collection of input parameters that transmit data to the dashboard.
Utilization of the ESP32 microcontroller for processing sensor data. Incorporating wireless communication
(Wi-Fi) for transmitting data to the server. In the meantime, the software architecture for backend
development employs Node.js, utilizing REST API as the communication bridge between the ESP32 and the
server. Database management employs MySQL. System security employs JWT authentication for users
alongside static tokens for 10T devices. Development of the frontend for a web-based monitoring dashboard
interface. The system architecture emphasizes the ESP32's role in transmitting sensor data to the REST API.
A REST API utilizes MySQL for data storage, while the monitoring dashboard presents real-time
information through tables and graphs.

Phase of executing the system setting up and configuring the ESP32 along with various sensors.
Creation of a REST API backend utilizing Node.js and Express.js. Creation of the monitoring dashboard's
user interface. The testing and evaluation stage is conducted to assess the functionality of each REST API
feature, including data sending, authentication, and data retrieval. Evaluating the dashboard interface to
confirm that data visualization operates effectively. Subsequently, performance evaluation of the system will
include REST API latency testing to assess the response time from the ESP32 to the server. Testing for data
stability to evaluate the reliability of sensor data delivery over a specified timeframe, along with security
testing to confirm that the implementation of JWT authentication operates effectively.

Next is the data analysis and performance evaluation stage, where an assessment and discussion take
place concerning the effectiveness of the REST API in managing requests from loT devices. In conclusion, it
is essential to analyze the outcomes of system testing and offer suggestions for future advancements,
including the incorporation of machine learning for predictive maintenance.

2.1. Literature review

This chapter examines pertinent literature concerning EWS technology and loT-based vehicle
monitoring systems, with a particular focus on the monitoring of brake pads and tire conditions. REST API
and 1oT communication architecture, featuring the application of the JWT authentication method to enhance
security. EWSs are progressively incorporating cutting-edge technologies like 10T and Al, greatly provide
efficiency and security via real-time monitoring. The integration of 10T enables sensors to gather data in real-
time, offering insights that facilitate predictive maintenance and enhance responses to potential risks or
system failures [12]. The data undergoes analysis through Al algorithms to enhance the precision of early
detection and refine preventive measures across different situations, including natural disasters, industrial
equipment failures, or traffic accidents [13]. From an architectural framework perspective, choosing the
appropriate software architecture is crucial for the success of 10T applications in EWSs. Methods like
microservices and service-oriented architectures offer essential flexibility and scalability, vital for the support
of 10T applications [14].

Conversely, client-server architecture proves to be highly efficient in facilitating communication
between sensors and backend systems. This architecture facilitates effective data management and
instantaneous updates, establishing it as a favored option for loT-driven applications in EWSs. Nonetheless,
although client-server architecture presents numerous benefits, decentralized architectures like peer-to-peer
merit consideration as well. These architectures provide enhanced resilience and lower latency, adding
significant value to the implementation of EWSs across diverse domains. Taking into account the
requirements and scope of the application, the most suitable strategy can be adopted to enhance the efficiency
and precision of early identification of possible risks.

The client-server model serves as a fundamental framework that facilitates multi-sensor applications
by establishing the server as the central hub for data processing and storage. This architecture enables
communication between edge devices, functioning as clients, and servers that may be located in the cloud or
within on-premises data centers. This model enables the server to handle requests from numerous clients at
the same time, ensuring efficient simultaneous access to resources [15]. Furthermore, the server is capable of
handling substantial amounts of data produced by various sensors, guaranteeing both data integrity and
availability [16].

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 a 769

The integration of edge devices involves connecting sensors to servers, facilitating data transmission
and preprocessing, which enhances overall system efficiency. Frameworks like SEMAR are essential for
enhancing the efficiency of edge devices through the implementation of organized initialization, service, and
update phases [17]. Furthermore, the collaboration between cloud and edge devices enhances the capabilities
of the client-server architecture via a cloud-edge framework that facilitates adaptable task migration between
the two components. This facilitates enhanced response time and more efficient resource management [16].
This architecture additionally facilitates real-time data analysis, an essential component for informed
decision-making in 10T applications [18]. Nonetheless, while presenting numerous benefits, the client-server
architecture is not without its drawbacks, including issues related to latency and bandwidth, particularly in
situations that demand real-time data processing. Integrating cloud and edge resources presents a viable
approach to addressing these limitations, thereby enhancing overall system performance.

Figure 1 illustrates that the interaction between the client and server employs the standard HTTP
protocol methods, including GET, POST, PUT, and DELETE commands. This architecture is frequently
utilized due to its adaptability and straightforward implementation, facilitating effective communication
among various layers in edge, fog, and cloud systems.

- f—
= GET POST PUT DELETE ==p) — HTTP Request >
- e

€ JSON XML HTML == .\@ €—— HTTP Respanse = prm—

Client REST API Server

Figure 1. REST API on client-server architecture

In Figure 1, the REST API is crucial for facilitating communication between clients and servers,
particularly in 10T systems that utilize microcontrollers like the ESP32. The stateless nature of REST API
streamlines server design and enhances scalability, allowing for effective management of sensor data.
Furthermore, REST API facilitates create, read, update, and delete (CRUD) operations, which are essential
for efficient data management, particularly when handling sensor data that demands real-time updates and
accessibility [19]. The efficiency of REST API performance has been demonstrated, showcasing an average
response time of approximately 31 ms, which guarantees timely data processing [20].

Nonetheless, in spite of their numerous benefits, REST APIs encounter security issues.
Approximately 35% of developers emphasized the importance of enhancing authentication and encryption
techniques to achieve more robust data security in 10T applications. Enhanced security measures, including
the implementation of OAuth, are strongly advised to ensure the confidentiality and integrity of data [19].
While REST APIs enjoy widespread popularity for their straightforwardness and efficiency, other
communication protocols like gRPC and WebSockets may provide superior performance, particularly for
applications that demand real-time interaction with minimal latency. Consequently, choosing the appropriate
communication protocol should be customized to meet the unique requirements of the loT application in
development [21]. As illustrated in Figure 2, the REST API works in conjunction with the backend
framework to organize sensor data systematically, facilitating effective and uniform data management
throughout 10T systems.

Back End

\
>

controllers middleware routes

Auth
Middleware

sensor
controller

user
controllers

user routes sensor routes

Node.js

Figure 2. Backend architecture with Node.js and Prisma

Performance analysis of REST API in a real-time loT-based vehicle ... (Rizki Ananta Dwiyanto)

770 a ISSN: 2089-4864

The combination of Node.js with Prisma and MySQL for backend architecture in 10T systems
presents several benefits regarding scalability, performance, and database management. Node.js, featuring a
design that excels in managing concurrency, enables the simultaneous handling of numerous connections, a
crucial capability for 10T applications that produce substantial data volumes [8].

The event-driven architecture of Node.js facilitates asynchronous operations, allowing for real-time
data processing and notifications, a feature that is particularly advantageous in the realm of efficient sensor
data monitoring and processing systems [8]. Streamlines the process of crafting SQL queries, thereby
minimizing the potential for errors that can occur with manual SQL coding. Furthermore, Prisma streamlines
the process of database migration, enabling developers to implement schema changes seamlessly without
interrupting system operations [22]. MySQL serves as a data store, offering efficient and structured data
management, which makes it a suitable option for loT applications that demand reliability and efficiency in
sensor data storage [23]. Furthermore, information housed in MySQL can be seamlessly aligned with
visualization platforms like Grafana, enhancing the clarity of data analysis and oversight [22].

This combination of technologies presents numerous benefits; however, it is crucial to acknowledge
potential challenges, including the learning curve linked to new technologies and the necessity for robust
security measures to safeguard sensitive data from 10T devices. Consequently, it is essential for developers to
implement suitable security measures to uphold the confidentiality and integrity of the data handled by these
systems.

Figure 3 illustrates that the implementation of robust encryption and authentication measures is
crucial for upholding the integrity and confidentiality of information obtained from loT devices, thereby
ensuring that the processed and stored data remains secure and safeguarded against potential threats.

Authenticating
User

Figure 3. Data security with JWT

Data security in 10T systems, especially for vehicle monitoring, is critical given the sensitive nature
of the data involved. Utilizing JWTs for user authentication and employing static tokens for device
communication can significantly bolster security measures. JWTs offer a concise and secure method for
transmitting information between parties, guaranteeing that only authenticated individuals can access
sensitive data [24]. Furthermore, static tokens are essential for enabling secure communication between 10T
devices and servers, thereby minimizing the risk of data interception during transmission [25].

Data encryption, employing methods like elliptic curve cryptography (ECC), is essential for
safeguarding the integrity and confidentiality of information in 10T settings. The incorporation of blockchain
technology significantly boosts security by offering a tamper-proof, decentralized structure for data
transactions, guaranteeing that information remains unaltered without detection [25]. Nonetheless, in spite of
notable advancements in enhancing security, weaknesses persist, especially in the areas of credential
management and network assaults. This underscores the necessity for a comprehensive strategy regarding
10T security [26]. Future investigations should concentrate on creating scalable and energy-efficient solutions
to tackle these challenges, while also guaranteeing strong data protection as the 10T ecosystem progresses
[24]. Consequently, although JWTs and data encryption have significantly enhanced security, the ever-
changing landscape of threats in l0T systems necessitates ongoing innovation and adaptation of security
protocols to uphold data integrity and user trust.

The sensor data gathered is utilized for predictive analysis, enabling the identification of potential
issues or patterns that can aid in improved decision-making and early damage prevention. In this context, the
significance of data security is heightened, as predictive analysis depends on data that upholds its integrity
and confidentiality.

Methods like clustering and deep learning are employed to recognize failure patterns and assess the
remaining usable life (RUL) of the components [27], [28]. This method not only aids in minimizing the total
maintenance expenses but also diminishes the likelihood of accidents by proactively tackling potential

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 a 771

failures [29]. Predictive maintenance allows vehicle operators to enhance maintenance schedules through
predictive analytics, preventing severe failures and escalating repair expenses. This literature review
demonstrates that an loT-based monitoring system featuring REST API integration, sensor technology, and
data security holds significant promise for use in contemporary vehicle monitoring. The forthcoming
sub-chapter will detail the design employed in the development of this system.

2.2. Proposed system

This sub-chapter outlines the methodology employed, focusing on an experimental and development
approach to create a real-time vehicle condition monitoring system. This system incorporates a range of
sensors, including light detection and ranging (LIDAR) for tire thickness detection, TPMS for tire pressure
monitoring, radio frequency identification (RFID) for vehicle identification, and brake pad sensors for
assessing brake wear. Information gathered from the sensors is analyzed to offer understanding regarding the
state of the vehicle. This information is accessible via a web-based interface, enabling remote monitoring of
vehicles. This system is crafted to be adaptive and proficient in handling sensor data instantaneously, thereby
enhancing the precision of decision-making processes.

The system provides a versatile and widespread monitoring solution through the use of wireless
communication technology. Information gathered from sensors is transmitted to a server, where it is
processed and stored in a database, ultimately being presented to users through clear reports or visualizations.
This process guarantees efficient monitoring of any alterations in vehicle conditions, contributing to
enhanced safety and performance of the vehicle. This method facilitates a more proactive management of
vehicles, with the system tailored to accommodate various vehicle types and diverse monitoring
requirements.

The client-server approach to 10T offers advantages in terms of management, data integrity, and
system security. This architecture sets the server as a central hub, allowing for easier management and
control of all 10T devices, increasing efficiency and structure in management processes. Centralizing data
storage guarantees uniformity of information, minimizes the chances of data duplication or loss, and
facilitates more thorough data analysis. This method enhances security by allowing for data encryption and
enabling the monitoring of user access via a centralized security protocol. This system enables 10T devices to
function with enhanced control, assured data access, and superior protection against security threats,
positioning it as an excellent solution for extensive 10T systems. The system that has been proposed is
illustrated in Figure 4.

=

M e

7 b Website
e @ P

L& 9 (@))QCIE

Micro controller

3 «@ @D D

Figure 4. Proposed system

The observation environment comprises LIDAR, TPMS, RFID, and brake pad sensors that relay
data in real time through HTTP. The REST API facilitates the management of sensor data by utilizing the
POST method for database interactions and the GET method for presenting information on the website in
JSON format. This system is engineered to maintain peak performance while managing numerous execution
requests. The client-oriented process is segmented into data services and user services to ensure effective
access to the database. Sensor data is captured along with their identities through the POST method and
transmitted to the website using the GET method for clear and accessible information display.

The diagram depicting the system's layer-by-layer relationship is presented in Figure 5, showcasing
the data flow from sensors to the user interface, thereby facilitating effective data monitoring and
management.

Performance analysis of REST API in a real-time loT-based vehicle ... (Rizki Ananta Dwiyanto)

772 a ISSN: 2089-4864

This system features two distinct categories of administrators: Company Admin and Website
Admin. The Company Admin oversees the configuration of APIs and the establishment of sensor
connections with the server. They offer distinct endpoints for every sensor to maintain an organized data
delivery process. Information collected from sensors is transmitted using the POST method and recorded in a
MySQL database in accordance with the designated columns. Meanwhile, the Website Admin oversees the
management and updates of the website interface that showcases sensor data in a graphical format.

=N

e°‘6&‘

o .~
— HTTP Request -
- - <.,
Fop, P

User Service

Figure 5. User-side client-based diagram

The GET and POST methods are employed to retrieve and send data to the API, ensuring
synchronization between sensor data and the database. The API serves as a crucial link between the server
and the client, facilitating seamless data communication and ensuring that updates are displayed in real-time.

Figure 6 illustrates the database tables associated with the four primary sensors (TPMS, LIDAR,
RFID, and brake pads), along with supplementary tables for users, Prisma migrations, account sessions, and
vehicle data (CangoLog). The user table contains information about users, whereas the ban_tpms, ban_lidar,
rfid_log, and brake_pads tables document data from their respective sensors. The prisma_migrations table
meticulously tracks data migrations, the sessions table efficiently manages account sessions, and the
cangolog table accurately logs vehicle status. The GET method is employed for data retrieval to access the
APIs of each sensor. Postman is a valuable tool for evaluating these requests.

| € st sensor_data © ban_tpms & tas rousers | |gq rfid_log ' | st kampas_rem
id - int(11) id 1 int(11) id = int(11) id : int(11) id : int(11)
el tekanan_udara : float ~Name:varchar(100) , tag_id:varchar(100) ketebalan_kampas : int(11)
. description : varchar(255), .)
. suhu : float email : varchar(100) | timestamp : timestamp
sensorZ: float detected_at : datetime(3)

timestamp : timestamp Password : varchar(255)
timestamp : timestamp

sensor_id : int(11)

| o 1o ban_lidar | o] I | Q st sessions ® e mReens
i : = H 5 cangolog . id : varchar(36)
id :int(11) id :int(11) sid : varchar(255) checksum : varchar(64)
keterangan : varchar(100 speed : float session : text graecsecEemel)
migration_name : varchar(255)

timestamp : timestamp engineHours : float expires : int(11) logs : text
Kketebalan ban : |H[(11) I“l|0£igC - float rolled_back_at : datetime(3)

= started_at : datetime(3)
sensor_id : int(11) createdAt : datetime(3)

ed_steps_count : int(10) unsigne

Figure 6. Database

Figure 7 illustrates a react script that employs useEffect to asynchronously retrieve data from the
API, save it in state, and present it in a graph on the website. The data refreshes every 5 seconds through the
use of setInterval, facilitating continuous real-time monitoring. Using clearInterval for cleanup helps avoid
memory leaks when the component is unmounted. All data undergoes conversion to JSON format prior to
being presented in an accessible and user-friendly manner.

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 a 773

useEffect(() => {

const fetchbData = async () => {
setKampasRemData(await getKampasRem()); //Fetch break pads data
setTpmsData(await getBanTpms()); // Fetch Tpms data
setLidarData(await getBanLidar()); // Fetch Lidar data
setRfidData(await getRfidsensor()); // Fetch RFID data

¥

const intervalld = setInterval(fetchData, 5060);

fetchbata();

return () => clearInterval(intervalld);

5[5
Figure 7. GET sensor data to website
The system architecture encompasses interactions among sensors, an APl Gateway, data services,

and databases. The diagram in Figure 8 illustrates the communication flow within the REST API system,
detailing the journey from data delivery by sensors to the subsequent storage and processing in the backend.

a Web APl Data
System Gatewa; Service R [EL
Usar ¥ : : & :
insert Post:fapiflogin :
authentication data Post:fapi/login :
authentication validate user data
[unauthenticated) — —
e ———————— L — response error aceount not found
error message display response error
e
return response return response account found
displays sensor data Get:/apifsensor/ Get:fapifsensorf get sensor data based i
in tables and charts (sensor_name) (sensor_name} on sensor types query execution
o A ererEpo T error 50O
display error message internal server errar internal server error
et e
e acnerseses esvmsns sessseresasmssss s seraend i Sensor Data
.. display code 200 Sensor Data
show data to succass
graph and tables

Figure 8. Sequence diagram

Figure 9 presents a use case diagram that demonstrates the interaction of users with the system for
accessing sensor data. Meanwhile, Figure 10 presents an application flowchart that outlines the user
authentication process utilizing JWT, data retrieval from the API, and the mechanisms for handling errors.
This method guarantees precise, effective, and safe monitoring of vehicles.

Check

=
Authentication "--«‘“C“’de) Sensor Data

~.

&
.U,
N, e,
i ‘:\\; 4, > Maintenance
W%
user Create
' Charts
RN Repair
Admin (Rizki) VN
S Y APILink
f N Creation
\
\
¥ Data
adiph Management

TransTRACK

Figure 9. Use case diagram

Performance analysis of REST API in a real-time loT-based vehicle ... (Rizki Ananta Dwiyanto)

774 a ISSN: 2089-4864

9

http:/Nocalhost:
5173/home

Lecture
Profile Page
Student
Profile Page

an account

h 4

Home_user

Sign In Page Sign Up Page Page
v v g
v
Sign In Sign Up

Sensor Data
Page

display graphical
data

| |
v

Verify User Data

v

Get IWT

s

Get data from
api

http code=404

graphic data is
displayed
successfully

(End <

Figure 10. Flowchart system

2.3. Testing scenario

The subsequent phase entails choosing a test scenario to assess the application built on REST API
principles. This seeks to guarantee that the APl operates correctly, securely, and in line with the anticipated
functionality. The design of client-server architecture presents various vulnerabilities, such as reliance on the
server, risks of overload, and challenges related to network latency. API testing encompasses several
categories, including functionality testing, performance testing, and security testing.

The first phase of testing includes manual verification of the API endpoint's functionality prior to
moving on to automated testing. One approach employed is to make use of Postman. In this scenario,
Postman sends an HTTP request to the API to analyze the response and conveniently adjust the request
parameters. Subsequently, a GET and POST data request is initiated to one of the endpoints. Once the data is
collected, an HTTP response will be produced with a status code of 200, signifying "Client Success."
Alongside the explanation of the 200 code, Postman offers details like the time taken for data transmission,
the size of the data in bytes, and additional status codes including 404 for "Not Found" and 400 for "Bad
Request."

This test utilizes data derived from sensors, encompassing details like tire thickness, temperature, air
pressure, and tire ID sourced from RFID sensors. The data will be transmitted to the server through the API
endpoint utilizing the POST method, followed by verification with the GET method to confirm that the data
is properly stored and accessible. Tables 1 to 5 present the POST and GET scenarios executed on sensor data,
encompassing information such as tire thickness, air pressure, temperature, and the tire ID linked to each
sensor. This test will assess the functionality of all sensors to verify the system's integration and precision in
handling data in real-time. Table 6 provides an overview of the various sensors, devices, protocols, and APIs
utilized.

Table 1. POST data using Postman
Id Sensor id Pressure (kPa) Temperature (°C)
Auto increment 1 0 12

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 a 775

Table 2. GET data for canvas parameters using Postman

Id Canvas thickness (%) Timestamp
5370 100 2025-03-07T06:45:19.000Z
5369 100 2025-01-15T15:01:24.000Z
5368 100 2025-01-15T15:01:20.000Z
5367 100 2025-01-15T15:01:17.000Z
5366 100 2025-01-15T15:01:14.000Z

Table 3. GET data TPMS using Postman

Id Sensor_id Pressure (kPa) Temperature (°C) Timestamp
4705 1 0 28 2025-03-07T02:18:37.000Z
4704 1 0 13 2025-03-07T02:16:53.000Z
4703 1 0 12 2025-01-15T15:01:25.000Z
4702 1 0 25 2025-01-15T15:01:21.000Z
4701 1 0 29 2025-01-15T15:01:18.000Z

Table 4. GET data LIDAR using Postman
Id Sensor_id Thickness (cm) Description Timestamp

13546 2 4 Good 2025-01-15T15:07:02.000Z
13544 1 4 Good 2025-01-15T15:06:51.000Z
13545 1 4 Good 2025-01-15T15:06:51.000Z
13543 1 4 Good 2025-01-15T15:06:50.000Z
13542 1 4 Good 2025-01-15T15:06:50.000Z

Table 5. GET data RFID using Postman
Id Tag ID Detected at
980 010CE280147000000219059E891038 2025-01-15T07:52:59.878Z
979 010CE280147000000219059E891038 2025-01-15T07:52:59.045Z
978 010CE280147000000219059E891038 2025-01-15T07:52:58.234Z
977 010CE280147000000219059E891038 2025-01-15T07:52:57.408Z

Table 6. GET data TPMS using Postman

Sensor types Device Protocol API
MS580314BA TPMS SPI/12C http://localhost:5001/api/sensor/ban/tpms
TF Mini LIDAR UART http://localhost:5001/api/sensor/ban/lidar
AWG 18 Brake pad (kampas rem) GPIO http://localhost:5001/api/sensor/kampas_rem
Ommni directional UHF ~ RFID 1ISO 18000-6C http://localhost:5001/api/sensor/rfid

In this project, API testing is carried out through various scenarios to verify that the system's
performance, reliability, security, and functionality align with the anticipated specifications. The initial
scenario involves conducting manual testing to confirm the functionality of the API endpoints. This testing is
conducted with tools like Postman to verify that each API endpoint responds as intended. During this
evaluation, GET and POST requests are dispatched to designated endpoints, including /api/sensor/, along
with the necessary parameters. The response from the API is analyzed, noting the status code (200 indicates a
successful request, 400 signifies an invalid request, and 404 means the endpoint is not found).

This testing additionally confirms the structure of the response data, ensuring it aligns with the
anticipated JSON format. The second scenario involves performance testing, which focuses on assessing the
response time and stability of the API under specific load conditions. This testing employs tools like JMeter,
specifically crafted for conducting load and stress assessments. The system undergoes rigorous testing by
dispatching hundreds to thousands of requests at the same time to evaluate various parameters, including
latency and potential failure points. The calculation of latency is derived from the average response time of
the API to incoming requests. This testing aids in pinpointing API capacity thresholds and evaluating system
performance when the load exceeds its typical limits.

The third scenario involves load testing, aimed at verifying that the APl can manage numerous user
queries at the same time without suffering from notable performance decline. This test involves evaluating
the system with a substantial volume of query requests to analyze fluctuations in response time and identify
any bottlenecks or vulnerabilities that may hinder API performance. The findings from this test illuminate the
vulnerabilities within the system and offer direction for enhancement.

The fourth scenario encompasses security testing, designed to uncover vulnerabilities that could be
leveraged by unauthorized individuals. Security testing is carried out with Postman, focusing on the process

Performance analysis of REST API in a real-time loT-based vehicle ... (Rizki Ananta Dwiyanto)

776 a ISSN: 2089-4864

of attempting to send data via a POST request while omitting a valid authentication token. The token utilized
in the AP1 may either be a static token or a dynamic token, which can solely be acquired following the login
procedure. In this test, simulations for data transmission are conducted both with and without the appropriate
token to verify that the API endpoint is exclusively accessible to users possessing valid credentials.

The final assessment involves automating API testing and overseeing the dashboard. In this
scenario, testing is carried out with the Postman Collection Runner, enabling the automated execution of
functional tests across different API endpoints. Test results are documented in the monitoring dashboard to
capture essential metrics including the number of queries, response time, success rate, and more. This series
of tests guarantees that the API operates at peak performance while remaining secure against threats,
ensuring its reliability in managing data requests across diverse conditions.

3. RESULTS AND DISCUSSION
3.1. Functional performance testing

As detailed in the preceding chapter, the initial assessment involves conducting functional testing
using Postman. The results of the test are presented in Table 7. According to Table 7, manual testing with the
Postman tool on multiple sensors operates effectively. Four types of sensors have been evaluated, each
demonstrating an average response time for the GET and POST methods. This test permits two HTTP
methods on the APIl: GET and POST. The GET method serves to present sensor data from the database on the
dashboard, whereas the POST method is utilized for inputting sensor data into the database. The test results
indicate that the average response time for the GET method across all sensors is under 10 milliseconds, with
the minimum response time recorded at 4 milliseconds for both the brake pad and RFID sensors.

Table 7. Client-side test results for Postman tools
No Sensor Average GET response time (ms) Average POST response time (ms)

1 Brake pad 4 11
2 TPMS 5 7
3 RFID 4 10
4 LIDAR 7 10

The average response time for the POST method ranges from 7 to 11 milliseconds, with the brake
pad sensor recording the longest response time at 11 milliseconds. This indicates that the process of
retrieving data (GET) is more efficient than the process of sending data (POST). The variation in response
time is affected by the volume of data presented and the payload transmitted. An increase in the number of
payloads or the complexity of the parameters leads to an extended server processing time. Nonetheless, the
average response time recorded in this test indicates that the APl manages requests with great proficiency and
effectiveness.

3.2. Performance testing

In the second scenario, Figure 11 illustrates the test results. The purpose of performance testing is to
assess the response time and stability of the API under specific load conditions utilizing JMeter. Evaluations
are currently being conducted on the client side.

14
12
w 10
E s
o g _ ») - -]
54@!@ U RIRTRTAC RS
- NV NN 72 NP N N7 N R R N7
: 7R N Nl NEH N Al NE
10 20 30 40 50 60 70 80 90 100
Number of User
MBrake Pad Avg.Response Time (ms) BLidar Avg.Response Time (ms)
ARFID Avg.ResponseTime (ms) B TPMS Avg.ResponseTime (ms)

Figure 11. Client-side performance result

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 a 777

An evaluation was carried out to assess the effectiveness of the proposed system on several sensors,
as indicated by the performance testing table image. Testing was carried out utilizing Apache JMeter,
employing test parameters that included 5 fixed iterations and a gradual increase in the user count from 10 to
100. The test results indicate that the average response time and latency fluctuate based on the user count and
the sensor type. The brake pad sensor demonstrates a consistent average response time and latency,
remaining stable under 15 milliseconds up to 100 users. The LIDAR sensor exhibits greater latency
compared to other sensors across all user points, whereas the RFID sensor demonstrates the most stable and
low response time, remaining under 10 milliseconds in the majority of scenarios. Overall, these findings
suggest that the increase in user numbers affects the system's response time and latency, although variations
among sensors may arise from the intricacies of data processing or differing payload sizes. This system has
demonstrated the capability to manage loads of up to 100 users without exhibiting notable performance
decline. Figure 12 illustrates that the data delivery success rate to the client consistently achieves 100% while
handling 100 threads.

15
gw q 1N N h ?‘. N N N N N
o NN 7 - 1 1 . ‘) \
N SN SN N AN A EN D q
. % M WAVINAAVAVA VA
10 20 30 40 50 60 70 80 90 100

Number of User

Brake Pad Avg.Latency (ms) M Lidar Avg.Latency (ms)
A RFID Avg.Latency (ms) O TPMS Avg.Latency (ms)

Figure 12. Client-side performance result for success rate

3.3. Load testing performance

A load test was performed for a duration of 5 minutes using 100 virtual users to evaluate the
performance of the API, as illustrated in Figure 13. The /sensor/ban/lidar endpoint exhibited a higher
response time, experiencing fluctuations of up to 15 ms, whereas the /sensor/rfid and /sensor/kampas_rem
endpoints maintained a more stable response in the range of 5-7 ms. In summary, the system demonstrates
consistent reliability, exhibiting no notable errors or spikes, even under increased load conditions.

16
14
12
10

Time (ms)

o N B O

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97100
Number of User

—TPMS —Lidar RFID Brake Pad

Figure 13. Load testing

Performance analysis of REST API in a real-time loT-based vehicle ... (Rizki Ananta Dwiyanto)

778 a ISSN: 2089-4864

In the meantime, Table 8 presents the detailed test outcomes for each sensor associated with the
GET and POST methods. The test results indicate that the LIDAR sensor exhibits the highest average
response time for both methods, recorded at 9.19 ms, with a maximum response time of 15 ms and a
minimum response time of 7 ms. The RFID sensor demonstrates optimal performance, achieving the lowest
average response time for both the GET and POST methods at 3.93 ms. It records a maximum response time
of just 8 ms and a minimum of 3 ms. Additional sensors, including TPMS and brake pads, exhibit average
response times of approximately 5.52 ms and 5.14 ms, respectively, while their maximum response times can
peak at 14 ms and 12 ms, respectively. The test results indicate that a bottleneck arises in the LIDAR sensor
during data retrieval via the GET method, particularly when the user count hits maximum capacity. In these
circumstances, the peak response time may extend to 15 ms. The findings demonstrate that the server
continues to manage requests effectively, despite the discrepancies in response times among the sensors.

Table 8. Server-side response time load test results

Sensor Get) Post)

AVG (ms) Max(ms) Min(ms) AVG(@ms) Max(ms) Min (ms)
TPMS 5.52 14 4 5.51 14 4
LIDAR 9.19 15 7 9.19 15 7
RFID 3.93 8 3 3.93 8 3
Canvas 5.14 12 4 5.14 12 4

3.4. Security performance system

The next assessment, the fourth assessment, is security testing. Security testing seeks to identify
deficiencies or vulnerabilities in the API that may be exploited by unauthorized entities. The initial stage of
security testing involves the authentication and authorization process, the steps of which are illustrated in
Figure 14.

get into failed status do authenticate at . : . authentication
N input email and send validation
http://localhost since http://localhost:51 assword ‘wt token bearer token
:5173/data unauthorized 73/sign-in p ! process

Figure 14. Authentication and authorization process

Figure 14 illustrates the process of obtaining data from https://api.stas-rg.com/sensor, which is
unsuccessful because an authentication token is missing. The authentication procedure is accessible at
https://api.stas-rg.com/auth/signin. The authentication process requires the user to input the correct email and
password. Upon successful entry, a validated code (JWT) is generated, which remains valid for one hour. If
this token has been acquired, Postman is capable of accepting input in the Authentication - Bearer Token
section. Access to the system is denied to users who enter an incorrect email address or password. Upon
entering the correct email and password, access to the previously restricted webpage is granted after the
token is provided. The upcoming phase of evaluation involves utilizing Postman for basic security
assessments. Testing is conducted to verify that the API is protected against unauthorized access by assessing
its responses to various authentication scenarios. This test involves executing multiple token validation
scenarios to assess the security mechanism of the API.

In the initial test, a request is dispatched to the API omitting the authentication token from the
Authorization header. The findings from this test indicate that the API delivers an error message stating
"Token not provided," accompanied by a status code of 401 Unauthorized. This suggests that the API is
securely safeguarded and restricts access to authenticated users only. Figure 15 illustrates the API response
for the test conducted without an authentication token.

message Token not provided

Figure 15. Security testing without token

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 a 779

In the second test, a request is dispatched utilizing an invalid or incorrect authentication token. A
random token is utilized, which is placed within the Authorization header. The API response indicates an
error message stating, "Invalid or expired token," accompanied by a status code of 403 Forbidden. This
finding indicates that the API is capable of identifying invalid tokens and restricting access to secured
resources. Figure 16 presents the outcomes of security testing conducted with an invalid token. The results
from both tests indicate that the API security mechanism has been effectively implemented to thwart
unauthorized access. The API is capable of differentiating between scenarios involving no token, a valid
token, and an invalid token, delivering a suitable response for each case. These testing steps are crucial for
confirming that the API is sufficiently safeguarded against unauthorized access, a key element in application
security testing.

message Invalid or expired token

Figure 16. Security testing using wrong token

3.5. API dashboard monitoring testing

The final assessment involves testing the APl automation and monitoring dashboard. This testing
aims to reproduce functional testing using the Postman Collection Runner, which automates test generation
through its features. To execute the APl automation using the Collection Runner in Postman, the first step is
to set up the API Collection (pre-request) to automate the sensor type and sensor ID. The SENSOR_NAME
variable is designated to hold the type of sensor, whereas the SENSOR_URL variable is intended to store the
URL associated with each sensor. These variables will serve to enhance dynamic testing. Figure 17 provides
an illustration of the script.

Qverview Authorization Scripts ® Variables Runs
var sensors = [
(RIS { id: 1, type: "tpms", url: "http://localhost:5001/api/sensoxr/ban/tpms" I
- - { id: 2, type: "lidar", url: "http://localhost:5001/api/sensoxr/ban/lidar" %
Post-response { id: 3, type: "kampas_rem", url: “"http://localhost:5801/api/sensor/kampas_rem" %,
{ id: 4, type: "rfid", url: "http://localhost:5001/api/sensor/ban/rfid" ¢

1:

var currentIteration = pm.info.iteration;

var totallterations = sensors.length;

var normalizedIteration = currentIteration ¥ totallterations;
var sensor = sensors[normalizedIteration];

pm.environment.set("SENSOR_NAME", sensor.type);
pm.environment.set("SENSOR_URL", sensor.url);

console.log(Current Sensor: $isensor.typel, URL: $i{sensor.urli’);

pm.test("Status code is 280", function () {
pm.response.to.have.status(200);
B

pm.test("Sensor type is correct", function () {
var expectedType = sensor.type;
var responseType = pm.Iesponse.json().type;
pm.expect(zesponseType) .to.eql(expectedType);
DN

Figure 17. Testing script on Postman collection runner

In Figure 17, the script executed for automation testing sequentially evaluates each sensor to
confirm that the response code received is 200, indicating successful input and retrieval of sensor data from
the database, while also verifying whether the sensor type associated with the URL is consistent. Figure 18
illustrates the outcomes of the GET method test. The figure illustrates that the total execution time for the
API using the GET method is 25 seconds, accompanied by an average response time of 4 milliseconds. The
POST method test is illustrated in Figure 19. The total execution duration of the API utilizing the POST
method is 25 seconds, accompanied by an average response time of 5 milliseconds.

Performance analysis of REST API in a real-time loT-based vehicle ... (Rizki Ananta Dwiyanto)

780 a ISSN: 2089-4864

Source Environment Iterations Duration All tests Avg. Resp. Time
Runner none 30 25s 288ms 240 4ms
AMAR
2 3 45686 7 89
¥ GET http://localhost:5001/apifsensor/ban/tpms 60|o0

Pass Status code is 200

Pass Sensor type is correct

¥ GET http://localhost:5001/apifsensor/ban/lidar 600
Pass Status code is 200

Pass Sensor type is comrect

v GET http://localhost:5001/apifsensor/rfid 60|0

Pass Status code is 200

Pass Sensor type is correct
v GET http:/flocalhost:5001/apifsensorfkampas.r... 60|o0

Pass Status code is 200

Pass Sensor type is correct

Figure 18. GET method testing

Source Environment Iterations Duration All tests Avg. Resp. Time
Runner hone 30 25s 184ms 240 5ms

RUN SUMMARY

12 3 45 6 7
v POST http:/flocalhost:5001/api/sensor/ban/tpms 60lo0
Pass Status code is 200
Pass Sensor type is correct
v POST http:/flocalhost:5007/apifsensor/ban/lidar 60|0
Pass Status code is 200
Pass Sensor type is correct
¥ POST http:/flocalhost:5001/apifsensor/rfid 60|0
Pass Status code is 200
Pass Sensor type is correct
v POST http:/flocalhost:5007/api/sensorfkampas_r... 60|0
Pass Status code is 200

Pass Sensor type is correct

Figure 19. POST method testing

The results of the POST and GET method tests indicate that the dashboard display effectively
allows for proper observation and monitoring of the data, as illustrated in Figure 20. Presenting the outcomes
of the data dashboard that showcases the findings from the observations of the TPMS, LIDAR, and brake pad
sensors through graphical representations.

TPMS Pressure and Temperature & © O & 4= Tire thickness (cm) DOAMA= Brake Pad Thickness (%) DOASM A=
~ 2 101
°
“a 1008
e 2
;. 20 i 1006
g 2 & 1004
.
i 3 147 o 14! 14] 8
= s 100

E 10 5 : PR
3 ® = %8
] 5 r
j: 9956
g 994
&

0 992

14.24.39 14:31:18 143126 1431.39 143140 1512:16 15:24.03 152404 162408 152400 1524.09 1524.10 %

Time Time 15:23:34 152334 15:23:35 15:23.36 15:23:36
@ TPMS 1-Tire Pressure @ TPMS 1 - Temperature @LDAR 1 @LDAR2 Time

Figure 20. Dashboard testing TPMS, tire thickness, and brake pad

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 a 781

This study develops a vehicle monitoring website. This study presents a vehicle monitoring website
that incorporates sensor integration and a REST API to effectively manage and display real-time data on
vehicle component conditions. This system incorporates four primary sensors and utilizes 14 APIs, achieving
an average response time ranging from 4 to 11 milliseconds. Testing indicates that all sensors effectively
transmit data with precision, even in environments lacking Wi-Fi through Bluetooth. Conducting load testing
with 100 users demonstrates consistent latency and response times, attributed to the system's low complexity.
In alternative scenario evaluations, response times vary between 3.93 and 9.19 milliseconds, reaching a
maximum of 15 seconds under full load conditions. Regarding security, authentication testing demonstrates
that the system is capable of denying access in the absence of a token or when presented with an invalid
token. While no significant security flaws were identified, it is advisable to implement OAuth 2.0 along with
a token refresh mechanism to enhance data security. Ultimately, automated testing with Postman Collection
Runner (PCR) facilitates efficient APl validation, enabling developers to oversee and assess API
performance with greater ease.

3.5. Discussion

The test results indicate that the developed loT-based REST API system demonstrates stable
performance when managing up to 100 simultaneous users, with response times varying from 3.93 t0 9.19 ms
under normal conditions. Load testing indicates that the peak response time hits 15 ms in scenarios with a
significant user load, yet remains within acceptable thresholds for real-time monitoring applications.
Furthermore, security testing demonstrates that the JWT-based authentication mechanism has been
effectively implemented, safeguarding against unauthorized access to the vehicle monitoring system.

This study aligns with earlier investigations that have examined the application of REST APIs in
monitoring systems based on IoT technology. For instance, a study conducted by [20] indicates that REST
API exhibits an average response time of 31 ms in a web service-based system, which remains higher than
the system developed in this investigation, where the response time ranges from 3.93 to 9.19 ms. A recent
investigation by [19] emphasized that REST APIs are favored for their stateless characteristics, yet encounter
issues related to latency unless optimized through caching and load balancing techniques.

From an authentication and security perspective, previous findings by [25] indicated that OAuth 2.0
and token refresh mechanisms are more advisable than static JWTs, as JWTs that are not updated regularly
have a higher risk of token theft. This indicates that while the implemented system utilizes JWT, it is
essential to explore the potential of OAuth 2.0 or blockchain-based authentication to enhance system security
moving forward. Furthermore, regarding loT-based vehicle monitoring, a study conducted by [29] on
predictive maintenance in loT-monitored systems indicates that employing machine learning for analyzing
component wear patterns can enhance the efficiency of vehicle maintenance systems. The system created in
this study continues to emphasize real-time monitoring; however, the integration of predictive maintenance
models could represent the next advancement in enhancing system reliability.

The findings of this study carry substantial importance for the automotive sector and 10T systems.
Leveraging REST APIs in vehicle monitoring systems allows for real-time tracking of vehicle conditions,
enhances driving safety, and supports predictive maintenance strategies aimed at minimizing the likelihood
of component failure. This system offers greater automation and accessibility when contrasted with
traditional vehicle monitoring techniques that depend on manual diagnosis or regular inspections.
Furthermore, the effective combination of ESP32, Node.js, Prisma ORM, and MySQL in this study
demonstrates that 10T-based microcontrollers can seamlessly integrate with cloud-based systems, paving the
way for advancements in applications like fleet management, electric vehicle monitoring, and Al-driven
maintenance systems.

While the test results indicate strong performance, it is important to acknowledge certain limitations
that warrant consideration. A significant limitation is the dependence on Wi-Fi connectivity, which may lead
to communication disruptions if the network is unreliable. Options like LoRa, NB-loT, or 5G may be
explored to enhance connectivity. Moreover, the test scale remains confined to 100 users, which means that
the system's performance in more extensive scenarios, like thousands of connected 10T devices, has yet to be
thoroughly assessed. The test results indicate that the LIDAR sensor exhibits the fastest response time among
the various sensors, highlighting the necessity for enhancements in the processing of more intricate sensor
data. Furthermore, while JWT authentication has been put in place, the system currently lacks a token refresh
mechanism or OAuth 2.0, which could enhance data security against threats like token theft or replay attacks.

To enhance the effectiveness and scalability of this system, future development directions may
involve the integration of machine learning to bolster predictive maintenance capabilities, by examining
brake pad and tire wear patterns derived from historical data. Enhancing communication infrastructure
through the implementation of 5G or LoRaWAN can provide more stable connectivity than traditional Wi-Fi.
Moreover, enhancing the REST API through caching with Redis can significantly decrease latency and
accelerate the retrieval of sensor data. Creating a mobile application as an alternative monitoring interface

Performance analysis of REST API in a real-time loT-based vehicle ... (Rizki Ananta Dwiyanto)

782 a ISSN: 2089-4864

can enhance user accessibility and enable remote vehicle monitoring. When considering security measures,
the implementation of OAuth 2.0 and refresh tokens represents a crucial advancement in safeguarding user
data. Additionally, investigating the potential of blockchain technology for securing data transactions could
serve as a sustainable approach to thwarting manipulation or unauthorized access to sensor information.
Overall, this study has effectively developed an loT-based REST API for vehicle monitoring,
demonstrating improved response times in comparison to various earlier studies. Furthermore, testing
indicates that this system is capable of managing 100 concurrent users while achieving a 100% success rate
in data delivery. Nonetheless, for large-scale applications, it is essential to focus on performance
optimization, enhance security measures, and incorporate machine learning for predictive maintenance. With
further development, this system could emerge as the primary solution in vehicle health monitoring
technology, aiding the automotive sector in creating smarter vehicles that prioritize efficiency and safety.

4. CONCLUSION

This study has effectively shown that incorporating REST API into an 10T-based vehicle monitoring
system offers a robust solution for real-time monitoring of vehicle conditions. This system integrates an
ESP32 as the primary microcontroller, utilizing TPMS sensors for monitoring tire pressure and temperature,
LIDAR for assessing tire thickness, RFID for tire identification, and brake pads. It effectively gathers data
and transmits it to the server through a REST API using wireless connectivity. The conducted tests revealed
that the system maintains an average response time ranging from 3.93 to 9.19 milliseconds, achieving a data
delivery success rate of 100%, even under conditions involving 100 simultaneous users. Thus, the
development of a website monitoring system designed to collect data from multiple vehicle sensors via REST
API was successful, and it can serve as the basis for future predictive vehicle maintenance research.

The use of JWT for authentication has demonstrated effectiveness in safeguarding sensor data from
unauthorized access. Nonetheless, this study also uncovered various obstacles, particularly regarding reliance
on Wi-Fi connectivity, which may lead to data loss if the network experiences instability. Furthermore, while
the system has undergone testing with 100 users, its ability to scale to a larger user base requires additional
assessment. The test revealed that the LIDAR sensor exhibits a higher response time relative to other sensors,
highlighting the necessity for additional optimization in handling more intricate sensor data.

The implications of this study are extensive, particularly for the automotive sector that is
progressively embracing loT-based technologies. This system has the potential to serve as a foundation for
advancing vehicle monitoring solutions, including fleet management, electric vehicle oversight, and
predictive maintenance analytics. The findings of this study demonstrate that REST API serves as a
dependable, adaptable, and scalable option for vehicle monitoring systems, enabling users to retrieve data
with increased speed and precision.

While it has demonstrated encouraging outcomes, there remains potential for additional
advancement in the future. One of the primary areas for enhancement is the implementation of more reliable
communication technologies, like 5G or LoRa, to address the shortcomings of Wi-Fi in data transmission.
Furthermore, employing machine learning for predictive maintenance enables the analysis of wear patterns in
vehicle components, facilitating early warnings of possible damage. Regarding security, implementing
OAuth 2.0 and refresh tokens can enhance the protection of sensor data from cyber threats, while
investigating blockchain technology can offer improved transparency and integrity in managing sensor data.

This study demonstrates that REST API serves as a practical and effective solution for vehicle
monitoring systems based on 10T technology. Through continued advancements in network communication,
data security, and predictive analysis, this system has the potential to evolve into a more intelligent and
adaptive vehicle monitoring platform, paving the way for a safer, more efficient, and more sustainable
vehicle ecosystem in the future

ACKNOWLEDGEMENTS

We would like to express our gratitude to thank the Directorate of Research and Community Service
(PPM) of Telkom University and CoE Smart Technology and Applied Sciences (STAS) of Telkom
University, Bandung, Indonesia for their invaluable support in this research endeavor.

REFERENCES

[1] S. H. Grandhi, H. M. Al-Jawahry, D. S, B. V. Kumar, and M. K. Padhi, “A Quantum Variational Classifier for Predictive
Maintenance and Monitoring of Battery Health in Electric Vehicles,” in 2024 International Conference on Intelligent Algorithms
for Computational Intelligence Systems (IACIS), Hassan, India, Aug. 2024, pp. 1-4, doi: 10.1109/iacis61494.2024.10721715.

[2]1 W. Li, Z. Zhang, Y. Jiang, and K. Wang, “Prediction and Degradation Analysis Revolutionizing Electric Vehicle Reducer

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 a 783

[3]

[4]
[5]
[6]
[71
(8]
[°]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Prognostics: An Advanced Deep Learning Framework for Accurate RUL Prediction and Degradation Analysis,” in 2024 6th
International Conference on Internet of Things, Automation and Artificial Intelligence (IoTAAI), Guangzhou, China, Jul. 2024,
pp. 58-64, doi: 10.1109/iotaai62601.2024.10692468.

S. M. et al., “IoT-based Battery Health Management System for Electric Vehicles: A Predictive Approach,” in 2024 |IEEE 4th
International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Hyderabad, India, Jul. 2024, pp.
1-6, doi: 10.1109/sefet61574.2024.10718077.

D. L. Sampath, “Harnessing Al and Predictive Analytics: Transforming the Electric Vehicle Market in India,” International
Journal of Scientific Research in Engineering and Management, vol. 08, no. 008, pp. 1-7, Sep. 2024, doi: 10.55041/ijsrem37444.

I. Kamusiime, “A remote vehicle health monitoring system: a case study of the kayoola electric vehicles,” M.S. thesis, The
Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, 2023, doi: 10.58694/20.500.12479/2586.

J. Juneau and T. Telang, “Object-Relational Mapping,” in Java EE to Jakarta EE 10 Recipes, Apress, 2022, pp. 333-377, doi:
10.1007/978-1-4842-8079-9_7.

N. Biswas, “Creating an App with Prisma,” in Practical GraphQL, Apress, 2023, pp. 163-220, doi: 10.1007/978-1-4842-9621-
9. 5.

R. K. Kannan, M. A. K. T., S. Vairachilai, R. Vijayalakshmi, “NodeJS and Postman for Serverless Computing,” in Serverless
Computing Concepts, Technology and Architecture, IG1 Global, 2024, pp. 195-204, doi: 10.4018/979-8-3693-1682-5.ch012.

A. Dubey, G. S. Chauhan, A. Dubey, J. Singh, and P. Girdhar, “Customized Framework for Backend Using Node JS,” in 2023
International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET), Ghaziabad, India,
Sep. 2023, pp. 01-05, doi: 10.1109/icseiet58677.2023.10303462.

N. Subbulakshmi, S. A. Begum, R. Venkata Vignesh, and R. Chandru, “Asynchronous Event Driven Brain Teaser Using
Node.js,” in 2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore,
India, Aug. 2024, pp. 113-118, doi: 10.1109/icesc60852.2024.10689905.

D. Otynshin, “Optimizing Node.js application performance through main thread offloading,” International Journal of Information
and Communication Technologies, vol. 4, no. 2(14), pp. 82-93, Jan. 2024, doi: 10.54309/1JICT.2023.14.2.008.

N. Singh, Shikha, A. Gola, and Sidharth, “Empowering tomorrow’s mobility: innovations in electric vehicle technology with iot
and ai integration,” in Advancing Innovation in Smart Systems, Energy, Materials, and Manufacturing: Unleashing the Potential
of loT, Al, and Edge Intelligence, lterative International Publishers, Selfypage Developers Pvt Ltd, 2024, pp. 141-159, doi:
10.58532/nbennuraich8.

R. K. P. and B. Amutha, “Literature Review of Data-Driven Strategies for the Sustainable Growth of Electric Vehicles in Cities,”
in 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST), Kochi, India, Apr. 2024, pp.
1-5, doi: 10.1109/ictest60614.2024.10576091.

V. M. Macharia, V. K. Garg, and D. Kumar, “A review of electric vehicle technology: Architectures, battery technology and its
management system, relevant standards, application of artificial intelligence, cyber security, and interoperability challenges,” IET
Electrical Systems in Transportation, vol. 13, no. 2, pp. 1-25, Jun. 2023, doi: 10.1049/els2.12083.

G. Nyabuto, “Client-server Architecture, a Review,” International Journal of Advanced Science and Computer Applications, vol.
3, no. 1, Dec. 2023, doi: 10.47679/ijasca.v3i1.48.

G. Loseto et al., “A Cloud-Edge Artificial Intelligence Framework for Sensor Networks,” in 2023 9th International Workshop on
Advances in Sensors and Interfaces (IWASI), Jun. 2023, pp. 149-154, doi: 10.1109/iwasi58316.2023.10164335.

Y. Y. F. Panduman et al., “An Edge Device Framework in SEMAR IoT Application Server Platform,” Information, vol. 14, no. 6,
pp. 1-25, May 2023, doi: 10.3390/info14060312.

V. K. Butte and S. Butte, “An End to End Edge to Cloud Data and Analytics Strategy,” in 2022 13th International Conference on
Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, Oct. 2022, pp. 1-6, doi:
10.1109/iccent54827.2022.9984604.

M. Mudassir and M. Mushtaq, “The role of APIs in modern software development,” World Journal of Advanced Engineering
Technology and Sciences, vol. 13, no. 1, pp. 1045-1047, Oct. 2024, doi: 10.30574/wjaets.2024.13.1.0515.

D. Prasetyawan and P. D. Rahmanto, “Development of a Web Service-Based Research Proposal Selection System Using REST
API (in Indonesia: Pengembangan Sistem Seleksi Proposal Penelitian Berbasis Web Service Menggunakan REST API),” JTIM :
Jurnal Teknologi Informasi dan Multimedia, vol. 6, no. 3, pp. 283-295, Sep. 2024, doi: 10.35746/jtim.v6i3.585.

F. A. Akbar, E. P. Mandyartha, and H. Maulana, “An Approach for Automatic Generating RESTFul API Code based on SQL
DDL Code,” Technium: Romanian Journal of Applied Sciences and Technology, vol. 16, pp. 118-123, Oct. 2023, doi:
10.47577/technium.v16i.9969.

K. Anam, D. N. Rofi, and R. Meiyanti, “Monitoring System for Temperature and Humidity Sensors in the Production Room
Using Node-Red as the Backend and Grafana as the Frontend,” Journal of Systems Engineering and Information Technology
(JOSEIT), vol. 2, no. 2, pp. 68-76, Sep. 2023, doi: 10.29207/joseit.v2i2.5222.

H. Sun and L. Chen, “Design of application layer software platform of remote monitoring system,” Frontiers in Computing and
Intelligent Systems, vol. 3, no. 2, pp. 124-126, Apr. 2023, doi: 10.54097/fcis.v3i2.7576.

B. Mondal, I. Arif, T. Barua, and M. R. I. Chowdhury, “Data security in iot devices and sensor networks for robust threat
detection and privacy protection,” Academic Journal On Science, Technology, Engineering & Mathematics Education, vol. 1, no.
01, pp. 19-35, Oct. 2024, doi: 10.69593/ajieet.v1i01.116.

S. Mehta and R. Kumar, “Blockchain-powered Solutions for Ensuring IoVT Data Confidentiality and Integrity,” in 2024
International Conference on Electrical Electronics and Computing Technologies (ICEECT), Greater Noida, India, Aug. 2024, pp.
1-4, doi: 10.1109/iceect61758.2024.10739157.

A. Ahmad, R. Maulana, and K. Akmal, “Data Privacy and Security in the Age of IoT A Comprehensive Study on Information
System Vulnerabilities,” Journal Informatic, Education and Management (JIEM), vol. 6, no. 2, pp. 1-7, Jun. 2024, doi:
10.61992/jiem.v6i2.78.

D. N. Mishra, D. A. M. Haval, A. Mishra, and S. S. Dash, “Automobile Maintenance Prediction Using Integrated Deep Learning
and Geographical Information System,” Indian Journal of Information Sources and Services, vol. 14, no. 2, pp. 109-114, Jun.
2024, doi: 10.51983/ijiss-2024.14.2.16.

A. Amune, S. Shahari, S. Kasurde, S. Nimale, S. Surdas, and S. Tayde, “Exploring Predictive Maintenance and Signal Processing
Techniques for Automotive Health Monitoring,” in 2024 International Conference on Expert Clouds and Applications (ICOECA),
Bengaluru, India, Apr. 2024, pp. 541-547, doi: 10.1109/icoeca62351.2024.00100.

E. Zero, M. Sallak, and R. Sacile, “Predictive Maintenance in IoT-Monitored Systems for Fault Prevention,” Journal of Sensor
and Actuator Networks, vol. 13, no. 5, pp. 1-20, Sep. 2024, doi: 10.3390/jsan13050057.

Performance analysis of REST API in a real-time loT-based vehicle ... (Rizki Ananta Dwiyanto)

784 a ISSN: 2089-4864

BIOGRAPHIES OF AUTHORS

Rizki Ananta Dwiyanto BIECisa Computer Technology student at Telkom University,
Faculty of Applied Sciences, who is developing a Website for Early Warning System:
Enhancing Vehicle Safety Through Real-Time Monitoring. This project focuses on developing
a website-based Early Warning System that allows users to easily check the condition of
various vehicle components. By simply accessing the website, users can monitor critical data
such as brake pad thickness, tire thickness measured using LIDAR, tire pressure and
temperature through TPMS, and tire identification using RFID. This system enhances
convenience and efficiency in vehicle maintenance, ensuring real-time monitoring and early
detection of potential issues to improve safety and reliability. He can be contacted at email:
rizkiadwi@student.telkomuniversity.ac.id.

Giva Andriana Mutiara g 2 jis an Associate Professor at Telkom University,
Department of Applied Science. She completed her Ph.D. in Information and Communication
Technology (ICT) from Universiti Teknikal Malaysia Melaka (UTeM) in 2022, and her Master
of Engineering in Computer Engineering from Bandung Institute of Technology in 2005. She
has participated in several collaborative projects with various industries and received both
internal and external grant funding in several research schemes of the Ministry of Research and
Technology in recent years. Currently, she is head of Center of Excellence Smart Technology
and Applied Science RG and focused her research on Smart Technology and IoT. She holds
several intellectual property rights and patents. Her work is reflected in various publications
indexed in reputable databases. She can be contacted at email: givamz@telkomuniversity.ac.id.

Marlindia Ike Sari = B4 B3 € is an Assistant Professor at Telkom University, Department of
Applied Science. She completed her Master of Engineering in Electrical-Telecommunication
Engineering from Telkom University (formerly as Institute of Technology Telkom) in 2011.
She has participated in several collaborative projects with various communities. Currently, she
is a member of Center of Excellence Smart Technology and Applied Science RG. Her works is
reflected in various publications indexed in reputable databases She can be contacted at email:
marlindia@tass.telkomuniversity.ac.id.

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 766-784

https://orcid.org/0009-0008-8191-0060
https://scholar.google.com/citations?user=wlhWqv8AAAAJ&hl=id
https://orcid.org/0000-0003-4387-6128
https://scholar.google.com/citations?hl=id&user=zowNrRMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56331094300
https://www.webofscience.com/wos/author/record/AAF-1012-2021
https://orcid.org/0000-0001-5741-3779
https://scholar.google.co.id/citations?user=gbk64vIAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=53264897500

