
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 14, No. 3, November 2025, pp. 745~753

ISSN: 2089-4864, DOI: 10.11591/ijres.v14.i3.pp745-753  745

Journal homepage: http://ijres.iaescore.com

Enhancing cross-cutting concerns in the internet of things with

applying aspect oriented programming

Khalifa Fatiha, Guelta Bouchiba
Département d’informatique, Faculté des Mathématiques et Informatique, Université des Sciences et de la Technologie d’Oran

Mohamed Boudiaf (USTO-MB), Oran, Algeria

Article Info ABSTRACT

Article history:

Received Feb 18, 2025

Revised Aug 12, 2025

Accepted Sep 9, 2025

 Aspect oriented programming (AOP) is a new programming model that

provides new concepts to handle cross-cutting concerns about code. The idea

of introducing AOP in the internet of things (IoT) is inherited from the

complexity of sensor operations involving data acquisition, processing, and

communication, the need to support multiple simultaneous services for users

particularly security services such as authentication, authorization, data

traceability, and transaction management, and the challenges posed by the

IoT deployments, the treatment of these data volumes lead to problematic

code redundancy and cross-cutting concerns that compromise system

maintainability. In this context, AOP enables the separation of core

functionalities, data management, and cross-cutting concerns, allowing them

to be developed and reused independently within the same codebase. To

address these issues, this paper proposes an AOP model for IoT systems

based on the Petri net representations. The model strategically integrates the

core AOP advantages of modularity, reusability, and extensibility,

microservices based architectural decomposition and specialized handling of

sensor-specific requirements in IoT environments.

Keywords:

Aspect-oriented programming

Crosscutting concerns

Internet of things

Microservices

Petri net

This is an open access article under the CC BY-SA license.

Corresponding Author:

Khalifa Fatiha

Département d’informatique, Faculté des Mathématiques et Informatique

Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTO-MB)

BP 1505, El M’naouer, Oran, Algeria

Email: fatiha.khalifa@univ-usto.dz

1. INTRODUCTION

The internet of things (IoT) [1] is a contemporary technology that makes it possible to build a

connected world based on physical objects that can be used in smart vehicles, water systems, smart home

appliances, and other extensions that are integrated with software, electronics, and various sorts of sensors

and networks that allow these objects to communicate and share data [2], [3]. Nowadays, IoT is an important

and widely used low-area network characterized by low energy consumption, low memory, and the ability to

use a large number of sensors.

Development of these different systems in a single IoT application can be done by microservices

[4], [5]. Each sensor can offer only one microservices due to its low memory; on the other side, one sensor

can deal with several microservices [6]. This will cause redundancy codes and many cross-cutting concerns

that affect various IoT device codes. To tackle this problem using aspect oriented programming (AOP) [7], a

novel abstraction design technique in IoT technology was required to solve cross-cutting issues, provide

entities that are simultaneously reusable, modular, and adaptable, produce code that can be dynamically

deployed, and improve the data exchange between various sensors and the caliber of networked devices.

https://creativecommons.org/licenses/by-sa/4.0/
mailto:fatiha.khalifa@univ-usto.dz

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 745-753

746

AOP is a methodology that provides separation of crosscutting concerns by introducing a new unit

of modularization an aspect. Each aspect focuses on a specific crosscutting functionality [8]. These aspects

are designed to be reusable and allow adding at any time a new behavior to a source code without altering or

interacting with the other aspects [9]. In addition to the notion of aspect, aspect- oriented programming offers

some important keys concepts [10], [11]:

− Joinpoint is a precise definition of a point within an application code where it can be either a function or a

procedure where it will be a cross-cutting concern.

− Pointcut is an expression used to be matched with join points. The pointcut use three kinds of expressions

(before, after, and around).

− Advice is a part of the application code defining a cross-cutting concern that relies on a joinpoint.

− Aspect is the most important mechanism in AOP; it is a unit allowing modularization of the code related

to a final application code.

− Weaving is the process that allows advice to be inserted into the functional application exactly at the join

points.

Applying AOP as a programming approach is an important focus area for developers especially in

IoT paradigm. However, there is a very few of literature on the use of AOP in the IoT paradigm.

− Maingret et al. [12] suggested a dynamic external behaviors issue. They separate and interconnect the

context tracking from the control process in an IoT application. The use of AOP was to manage the

dynamic external behaviors defined as aspects. In this work, the authors did not discuss the problems of

microservices or data transactions.

− Balakrishnan and Sangaiah [13] discussed some points based on the need for the IoT domain in

distributed applications. They proposed an aspect oriented framework for IoT context to solving the

limitation of the existing protocol in service discovery.

− Velan [14] presented a literature review of service discovery in IoT applications. In this work, the AOP

was used to evaluate the reconfiguration service in terms of aspect management, updating the parameters

required for the service, and adding and removing components.

− Balakrishnan and Sangaiah [15] proposed an AOP approach to address the issues involved in the analysis

and treatment of data in IoT research.

− Bansode [16] employs AOP to enhance system security and optimize performance within IoT

environments.

− Khalifa and Guelta [17] proposed an AOP model in an IoT-based Petri net graph that involves the use of

an aspect entity to satisfy the requirements of the web services composition.

To highlight the contribution of the use of AOP by microservices in IoT. There are some important

points shared by aspect-oriented design in the goals of microservices utilized in IoT technology, namely:

− Lightweight communication: communication between different sensors in IoT technology needs

lightweight communication, which is offered by aspect-oriented design.

− Independent deployable units: for microservices uses in IoT technology, it is very important that the

services offered by each sensor be independent and deployable. Aspect-oriented programming offers

"units" named aspects that are deployable independently.

− Centralized management: both IoT technology and aspect-oriented programming are based on central

management.

− Independent development technologies.

In this paper we present a first attempt to applying AOP in IoT technology for consider crosscutting

concerns in IoT technology based Petri net model presenting in detail the hardware and software

implementation, thus our contribution focuses on separating all crosscutting concerns from de microservices

used by the IoT application and the solution found to integrate them in Aspect code. The method and

proposed algorithm, discussion with a conclusion are proposed.

2. PROPOSED ALGORITHM

In this section, we introduce an algorithm that applies the AOP concept to separate crosscutting

concerns occurring in microservices used for IoT systems, using Petri net-based formal semantics.

Algorithm 1 illustrates the proposed method. Given as input three set L (representing sensors), A

(representing crosscutting concerns implementing as an aspect code) and μS (representing the decomposed

services requested by users).

The algorithm is based on generating the data collected by the sensors:

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐺𝑒𝑡 − 𝑑𝑎𝑡𝑎(𝐼𝐷𝑖 , 𝑂𝐷𝑖) (1)

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Enhancing cross-cutting concerns in the internet of things with applying aspect … (Khalifa Fatiha)

747

First the data is collected and recorded based on the type and requirements of the sensors, we have:
𝐼𝐷𝑖 𝑂𝐷𝑖 𝐷𝑖 . This function allow data to be stored in a database according to the sensor's ID, type, and

specific requirements:

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑑𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝜇𝑆′
𝑖 , 𝑆𝑖) (2)

This function enables to create services as needed. For example, if a temperature control service is required,

this service will be automatically added:

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑠𝑝𝑒𝑐𝑡𝐴𝐷𝐷(𝑊𝑒𝑎𝑣𝑒𝑑,S𝑖 , 𝐴) (3)

After data collection and service processing the algorithm finalizes the transition points in the Petri net graph

(lines 15–20).

𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑑 = 𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑑. 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 (4)

Algorithm 1. AOP for IoT based Petri net graph
Input: Graphstart (Petri graph net start),

 S (Set of available microservices) → S = {S1,S2 ,S3, . . ,Sn},
A (Set of Aspects) → A = {A1, A2, A3, . . , An},
L (Set of Sensors) → L={𝑆1, 𝑆2, 𝑆3, … . . , 𝑆𝑛}
n (maximum number of Sensor)

 A Sensor Sa = (Da, Ta, Aa, Wa, IDa, ODa ,Sa), Data Da = {D1, D2, D3, . . , Dn}
Output: Graphend (completed or failure)

 1: Graphend=empty;

 2: IDa ∈ Da

 3: m = ∑Services ∈ S //A microservice can intervene in one or more sensors.
 4: 𝑆0=null

 5: for i=1 to n do L={𝑆1, 𝑆2, 𝑆3, … . . , 𝑆𝑛}

 6: for each sensor 𝑆𝑖 ∈ 𝐿 do:
 7: function Get-data (IDi, ODi)
 8: function AddService (𝑆i, 𝑆𝑖)

 9: for each 𝐴 ∈ 𝑅 do
10: if (𝑆𝑖 . 𝐶𝐶𝐶) = (𝐴. 𝐶𝐶𝐶) then // 𝐶𝐶𝐶 : Crosscutting Concerns
11: function AspectADD(𝑊𝑒𝑎𝑣𝑒𝑑, 𝜇𝑆𝑖 , 𝐴)
12: end if

13: end for

14: end for

15: OutputParameters=OutputParameters ∪ 𝑆𝑖 . 𝑃𝑜

16: AddService (𝑆i, 𝑆𝑖)

17: Graphend= Graphend.proceed

18: end for

19: Graphend= Graphend.Completed

20: return failure

2.1. Layer diagram

Figure 1 shows our proposed AOP layer-based IoT architecture, where aspects for microservices

that are readily reusable in IoT applications can be generated, the device layer, communication layer, data

acquisition layer, aspect-oriented abstract layer, and application layer are the five layers that make up this

layer diagram. The device layer consists of sensors and actuators that interact with the IoT area network to

collect data e.g., temperature and humidity, which will be sent to the data acquisition layer through the

communication layer via the transmission control protocol (TCP) and user datagram protocol (UDP) transfer

protocols. The data acquisition and processing layer consists of a microcontroller that allows read data from

the sensors, controls the actuators, and creates microservices [18].

The device layer consists of physical devices belonging to the IoT environment, which collect and

they can also change the state of the environment. The collected data will be transmitted to the data

acquisition system through the communication layer using the two transfer protocols, TCP and/or UDP [19].

In this layer diagram, our proposed system utilizes a weaving process using the AspectJ of the AOP

programming language, which is an underlay between the aspect layer and microservices layer. This

underlayer allows you to create and add aspects in the aspect layer to separate cross-cutting concerns that

occur in different microservices of the IoT application through the weaving process. Finally, the information

will be sent to the client by the application layer in the form of web services via http, rest, coap, and message

queue telemetry transport (MQTT) protocols [20].

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 745-753

748

Figure 1. Layer diagram of AOP proposed model in IoT

3. METHOD

In this section, we explain how IoT technology uses the AOP paradigm to consider cross-cutting

concerns in sensor microservices by employing a Petri net graph as the conceptual model. We give some

definitions to help illustrate the concepts that are necessary background information.

3.1. Aspect oriented model for internet of things

Introducing aspect-oriented programming in IoT technology for interpreting cross-cutting concerns

in sensor microservices using the Petri net model focuses on five points: as shown in Figure 2.

− Data entry: IoT sensors collect data from their cover area. The collection of data depends on some factors,

such as the range of area needs and the user request. For example, in the application of IoT technology in

agriculture, we need the use of data on temperature, humidity, and watering.

− Data analysis: to utilize the data collected in the IoT system, the data must be within the acceptable range.

The user request sends requests to the sensor network to detect temperature values within a predefined

interval (TempMIN and TempMAX). Each device can issue several requests with different parameters.

An example of a query sent by a monitoring device: find all sensors with temperature values in the range

{10–12}.

− Aspects creation: this step permits aspects to be added. Aspects are the most important entities in aspect-

oriented programming because they permit the separation and reuse of the cross-cutting concerns existing

in the microservices of the sensor code.

− Data weaving with aspect: aspects will be weaved dynamically with the final code before the transmission

of data to the sink.

− Data transmission: the collected and analyzed data must undergo the processing required by the

microservices, and finally, it will be transmitted to the web service.

Definition 1: a sensor (S) is defined by a 7 tuple.

− S = (D, TP, A, DA, ID, OD,S), where,

− D = { D1, D2, D3, … , Dn} represents the data collected,

− TP = { TP1, TP2, TP3, … , TPn } represents the protocol used to transmit data to the sink,

− A = { A1, A2, A3, … , An } represents aspects that consider crosscutting concerns in microservices used by

the sensors,

− DA ⊆ (D × TP) ∪ (TP × D) directed arcs,

− ID: input data,
− OD: output data after analysis and treatment,

− S: sensor microservices.

Definition 2: weaving processes (WP).

Each aspect Ai ∈ A is represented by the tuple Ai =< CCC, Jpoint, Pcut, Adv >,
− CCC: represents the crosscutting concerns that occur in microservices,

− Adv: is a functionality designed to encapsulates CCC,

− Jpoint: specific points in the microservices code that correspond to the aspect’s pointcuts,

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Enhancing cross-cutting concerns in the internet of things with applying aspect … (Khalifa Fatiha)

749

− Pcut: is a function that connects a joinpoint to the advice.

A weaving process establishes an explicit connection between each S and these cross-cutting concerns

functionality CCC.

WP=IDi → μSi ∆ {A1, A2, A3. . , An} → ODi

− The WP have as input: IDi (input data of sensor number “i”),

− and as output parameter: IDo(output data of sensor number “i”).

The WP permits to weave all aspects {𝐴1,𝐴2,𝐴3..,𝐴𝑛} with each S offered by sensors. The weaving process

can be executed in three types:

− A WP type «before»: in this type the advice is executed before the the microservice Si.

− An WP type «after»: the advice is executed after the execution of the microservice Si.

− An WP type «around»: the advice exeuted around execution of the microservice Sa.

Figure 2. AOP architectural IoT Petri net graph

In Figure 3, we illustrate a diagram of our AOP model proposed for IoT technology, this functional

diagram shows how our model uses AOP to manage core functionality. Data is initially collected by IoT

sensors according to the parameters required (e.g., temperature readings). The data is then filtered and

analyzed by the microservices layer according to contextual demands or threshold levels. Aspects hold

crosscutting concerns occured in the application, and they are implemented and deployed separately to

promote modularity and code reusability. Weaving process, provided by the AOP, integrates those concerns

into the primary application by introducing their behavior at specific points in the execution (jointpoint,

pointcut and advice), based on the information logged and on the setup of the final application.

Figure 3. Functionality diagram of a basic AOP model for IoT

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 745-753

750

4. RESULTS AND DISCUSSION

4.1. Experimental analysis

Our AOP model IoT is implemented and developed by the Java language using the software Eclipse

Kura, inspired from [21], which utilizes a gateway for the IoT, the AspectJ [22] language for aspect-oriented

programming, and by using the Eclipse Paho MQTT library, the software Kura provides a means of

communication for those applications to take the data gathered from the sensors to the gateway by the MQTT

brokers and web services [23]-[25].

4.2. Illustration and discussion

An example will be given in this section to better illustrate the proposed AOP model for the IoT-

based Petri net graph. Consider, for example, a smart agriculture area equipped with data collection for

temperature control, gas control, smart water service, smart weather service, and energy management service.

Consider the following services that can be used in this agriculture area:

a. Temperature monitoring service: manages and processes the temperature monitoring (TM) data.

b. Weather service: manages and processes the wind speed (WS) data.

c. Watering service: manages and processes the soil moisture (SM) data.

d. Lighting service: manages and processes the natural light measured (NLM) data.

e. Energy management service: manages and processes the electrical voltage measured (EVM) data.

Let consider five types of sensors: S1, S2, S3, S4, and S5 and let remember that sensor is defined by:

S (D, TP, DA, , ID, OD,S). All information is given in Table 1.

Table 1. Sensors information
Sensor type Data (D) ID S Aspect cross-cutting concerns

S1 TM TM{0-100}/° Data centered on temperature If Tem <10° or Tem >40° then call A1

S2 WS WS{0,.15}/ms Data centered on wind speed If weather state=WS call A2

S3 SM SM{0–100%} Data centered on soil measure If SM<30° call A3 (alert threshold)

S4 NLM NLM{1, 10, 30,

100} mille lux

Lighting servcie If NLM<10 call A4 for supplemental
lighting

S5 EVM EVM{0-250 v} Energy management servcie If EVM> 250 call service A5

Understanding the contribution of aspect-oriented programming to IoT applications necessitates the

careful definition of aspect entities and their role in separating crosscutting concerns within the

microservices. The aspects are programmed with the AspectJ. These aspects have been utilized to the

information in Table 1. Although both TCP and UDP transmission protocols can be used in IoT systems, we

have used only the TCP protocol in this work. The MQTT protocol was employed to enable communication

between the sensors and the end user.

In order to understand the contribution of applying aspects for separate crosscutting concerns in the

IoT application, Figure 4 displays a bar graph that provides a statistical representation of the use of aspects in

an IoT application. To sum up, applying aspect-oriented programming in IoT applications with the AsecptJ

language has shown a considerable increase in reusability and modularity, which are key factors contributing

to a higher level of programming quality.

Figure 4. Code reusability in AspectJ

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Enhancing cross-cutting concerns in the internet of things with applying aspect … (Khalifa Fatiha)

751

4.3. Relative performance analysis of programming methods in internet of things

IoT applications often rely on a large number of sensors operating under limited resources

particularly memory and energy. Among these constraints, memory and energy consumption are especially

critical. when these sensors are deployed using object-oriented programming (OOP), the OOP handle the

crosscutting concerns by duplicating the Business logic across multiple modules. This leads to lager

codebase, increased CPU usage and consequently higher memory consumption and energy consumption,

values per percentage is shown in Figure 5 and Table 2.

Figure 5. The benchmark methods comparison

Table 2. Comparison of memory consumption
Methods OOP (%) AOP (%)

Memory consumption 100 60
Execution efficiency 100 80

Code redundancy 120 15.3

Scalability in IoT systems 60 80

Using the current AOP programming method, the memory consumption is lower due to its modular

aspect design up to 60% compared by OOP which is higher because of the duplicated logic across final code

approaching to 100% use of memory. The execution efficiency in a simulation of an IoT application, lasting

10 minutes and using 500 sensors with a reading every 5 seconds, was evaluated using Java for OOP and

AspectJ for AOP. The results showed that execution time was significantly higher in the OOP model due to

redundant logic. In contrast, the increase in reusability and modularity in the AOP approach enabled a

reduction in execution time, decreasing from 100% to 80%.

5. CONCLUSION

Aspect AOP enables better separation of crosscutting concerns from the main application code by

encapsulating them into modular aspects. In this research, we demonstrate that applying AOP in IoT

applications compared to OOP can lead to a reduction in memory and energy consumption by up to 50%,

while also improving code reusability by eliminating redundant code in the final application. Furthermore,

execution time was improved by up to 65%. In future work, we propose to explore the dynamic deployment

of aspect-oriented components to further enhance adaptability and efficiency.

FUNDING INFORMATION

The authors confirm that no funding supported this research.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 745-753

752

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Khalifa Fatiha ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Guelta Bouchiba ✓ ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY

Data availability is not applicable to this paper as no new data were created or analyzed in this

study.

REFERENCES
[1] P. Goyal, A. K. Sahoo, and T. K. Sharma, “Internet of things: Architecture and enabling technologies,” Materials Today:

Proceedings, vol. 34, pp. 719–735, 2019, doi: 10.1016/j.matpr.2020.04.678.
[2] Y. Qian, D. Wu, W. Bao, and P. Lorenz, “The Internet of Things for Smart Cities: Technologies and Applications,” IEEE

Network, vol. 33, no. 2, pp. 4–5, Mar. 2019, doi: 10.1109/MNET.2019.8675165.

[3] C. V. Mahamuni, “Exploring IoT-Applications: A Survey of Recent Progress, Challenges, and Impact of AI, Blockchain, and

Disruptive Technologies,” in 7th International Conference on Electronics, Communication and Aerospace Technology, ICECA

2023 - Proceedings, Nov. 2023, pp. 1324–1331, doi: 10.1109/ICECA58529.2023.10395064.

[4] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual Understanding of Microservice Architecture: Current and Future
Directions,” ACM SIGAPP Applied Computing Review, vol. 17, no. 4, pp. 29–45, 2017, doi: 10.1145/3183628.31836.

[5] T. Cerny, “Aspect-oriented challenges in system integration with microservices, SOA and IoT,” Enterprise Information Systems,

vol. 13, no. 4, pp. 467–489, Apr. 2019, doi: 10.1080/17517575.2018.1462406.
[6] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach for the internet of things,” in IEEE International

Conference on Emerging Technologies and Factory Automation, ETFA, Sep. 2016, pp. 1–6, doi: 10.1109/ETFA.2016.7733707.

[7] Z. Chen, Y. Zhu, and Z. Wang, “Design and Implementation of an Aspect-Oriented C Programming Language,” Proceedings of
the ACM on Programming Languages, vol. 8, no. OOPSLA1, pp. 642–669, Apr. 2024, doi: 10.1145/3649834.

[8] A. Kumar, A. Kumar, and M. Iyyappan, “Applying Separation of Concern for Developing Softwares Using Aspect Oriented

Programming Concepts,” Procedia Computer Science, vol. 85, pp. 906–914, 2016, doi: 10.1016/j.procs.2016.05.281.
[9] O. A. Abdulhameed, A. Y. Yousuf, and R. H. Abbas, “Aspect oriented programming: Concepts, characteristics and

implementation,” Periodicals of Engineering and Natural Sciences, vol. 7, no. 4, pp. 2022–2033, 2019, doi:

10.21533/pen.v7i4.975.
[10] S. R. Raheman, H. B. Maringanti, and A. K. Rath, “Aspect oriented programs: Issues and perspective,” Journal of Electrical

Systems and Information Technology, vol. 5, no. 3, pp. 562–575, Dec. 2018, doi: 10.1016/j.jesit.2017.06.003.

[11] A. A. Magableh, H. B. Ata, A. A. Saifan, and A. Rawashdeh, “Towards improving aspect-oriented software reusability

estimation,” Scientific Reports, vol. 14, no. 1, pp. 1-20, Jun. 2024, doi: 10.1038/s41598-024-62995-z.

[12] B. Maingret, F. Le Mouël, J. Ponge, N. Stouls, J. Cao, and Y. Loiseau, “Towards a decoupled context-oriented programming

language for the internet of things,” in International Workshop on Context-Oriented Programming, COP 2015 - co-located with
the 29th European Conference on Object-Oriented Programming, ECOOP 2015, pp. 1–6, Jul. 2015, doi:

10.1145/2786545.2786552.

[13] S. M. Balakrishnan and A. K. Sangaiah, “Aspect oriented middleware for internet of things: A state-of-the art survey of service
discovery approaches,” International Journal of Intelligent Engineering and Systems, vol. 8, no. 4, pp. 16–28, Dec. 2015, doi:

10.22266/ijies2015.1231.03.

[14] S. S. Velan, “Introducing aspect-oriented programming in improving the modularity of middleware for internet of things,”
Advances in Science and Engineering Technology International Conferences, ASET 2020, 2020, doi:

10.1109/ASET48392.2020.9118238.

[15] S. M. Balakrishnan and A. K. Sangaiah, “Aspect oriented modeling of missing data imputation for internet of things (IoT) based
healthcare infrastructure,” in Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications,

Elsevier, pp. 135–145, 2018, doi: 10.1016/B978-0-12-813314-9.00006-2.

[16] R. S. Bansode, “Enhancing IoT Security and Performance Using Aspect- Oriented Programming in Java Applications,”
International Journal of Scientific Research and Engineering Trends, vol. 3, no. 1, pp. 25–29, 2017, doi:

10.61137/ijsret.vol.3.issue1.143.

[17] F. Khalifa and B. Guelta, “Aspect Oriented Web Service Composition Based Petri Net Model,” in Lecture Notes in Networks and
Systems, vol. 591, pp. 148–159, 2023, doi: 10.1007/978-3-031-21216-1_16.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Enhancing cross-cutting concerns in the internet of things with applying aspect … (Khalifa Fatiha)

753

[18] M. A. Jarwar, S. Ali, M. G. Kibria, S. Kumar, and I. Chong, “Exploiting interoperable microservices in web objects enabled
Internet of Things,” in International Conference on Ubiquitous and Future Networks, ICUFN, Jul. 2017, pp. 49–54, doi:

10.1109/ICUFN.2017.7993746.

[19] R. Mehta, J. Sahni, and K. Khanna, “Internet of Things: Vision, Applications and Challenges,” Procedia Computer Science, vol.
132, pp. 1263–1269, 2018, doi: 10.1016/j.procs.2018.05.042.

[20] D. Bilal, A.-U. Rehman, and R. Ali, “Internet of Things (IoT) Protocols: A Brief Exploration of MQTT and CoAP,” International

Journal of Computer Applications, vol. 179, no. 27, pp. 9–14, Mar. 2018, doi: 10.5120/ijca2018916438.
[21] F. Khalifa and S. Chouraqui, “Applying aspect oriented programming in distributed application engineering,” International

Journal of Advanced Computer Science and Applications, vol. 11, no. 7, pp. 226–232, 2020, doi:

10.14569/IJACSA.2020.0110729.
[22] A. Przybyłek, “An empirical study on the impact of AspectJ on software evolvability,” Empirical Software Engineering, vol. 23,

no. 4, pp. 2018–2050, Aug. 2018, doi: 10.1007/s10664-017-9580-7.

[23] Rupali Atul Mahajan, “Enhancing MQTT Security in the Internet of Things with an Enhanced Symmetric Algorithm,” Journal of
Electrical Systems, vol. 20, no. 1s, pp. 126–137, Mar. 2024, doi: 10.52783/jes.758.

[24] M. Trnka, J. Svacina, T. Cerny, and E. Song, “Aspect oriented context-aware and event-driven data processing for internet of

things,” in Proceedings of the 2018 Research in Adaptive and Convergent Systems, RACS 2018, Oct. 2018, pp. 319–323, doi:
10.1145/3264746.3264761.

[25] M. Michaelides, C. Sengul, and P. Patras, “An Experimental Evaluation of MQTT Authentication and Authorization in IoT,” in

WiNTECH 2021 - Proceedings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental Evaluation and
CHaracterization, Part of ACM MOBICOM 2021, Jan. 2022, pp. 69–76, doi: 10.1145/3477086.3480838.

BIOGRAPHIES OF AUTHORS

Khalifa Fatiha Lecturer at the Department of Computer Science at the University

of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB), Algeria. She received his

Ph.D. in Computer Science at the same university in 2020. Her research interests include issues

related to computer engineering, network communication, network security, web semantic;

aspect oriented programming language, internet of things, and pattern extraction. She is author

of a set of research studies published at National and International Conferences, and

International Journals. She can be contacted at email: fatiha.khalifa@univ-usto.dz.

Guelta Bouchiba currently working as an assistant professor in the Faculty of

Mathematics of Computer Science at the University of Sciences and the Technology of Oran

(USTO-MB). He has received his Licence diploma in computer sciences in 2011, then his

master degree in system information and network 2013 and he obtained a Ph.D. degree from the

same university. The Thesis was about multimodal recognition. He presented new versions of

multimodal recognition based on ECG and GAIT in several journal papers and one book. He

can be contacted at email: bouchiba62@univ-usto.dz.

mailto:bouchiba62@univ-usto.dz
https://orcid.org/0000-0003-1857-7273
https://scholar.google.com/citations?hl=fr&user=qswwEIkAAAAJ
https://orcid.org/0000-0002-5148-758X
https://scholar.google.com/citations?user=c0VBZwEAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=57369527800

