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 The increasing demand for reliable cryptographic operations for securing 

current systems has given birth to well-advanced and developed hardware 

solutions, in this paper we consider issues within the traditional symmetric 

advanced encryption standard (AES) cryptographic system as major 

challenges. Additionally, problems such as throughput limitations, 

reliability, and unified key management are also discussed and tackled 

through appropriate hierarchical transformation techniques. To overcome 

these challenges, this paper presents the design and field programmable gate 

array (FPGA)-based implementation of a cryptographic coprocessor 

optimized for substitution box (S-Box) operation which is considered as a 

key component in many cryptographic algorithms such as AES. The 

architecture of the co-processor proposed in this article is based on the 

advanced characteristics of FPGAs to accelerate the S-Box transformation, 

improve throughput and reduce latency compared to software 

implementations. We discussed carefully the design considerations along 

with resource utilization, speed optimization, and energy efficiency. The 

obtained experimental results present significant performance 

improvements, the FPGA-based implementation ensured higher throughput 

and lower execution time compared to traditional central processing unit 

(CPU)-based methods. We presented in this work the effectiveness of using 

FPGAs for the acceleration of cryptographic operations in secure 

applications which will therefore be a robust solution for the next generation 

of secure systems. 
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1. INTRODUCTION 

Modern embedded systems, particularly those used in internet of things (IoT) and wireless 

communication, require high levels of security while maintaining efficiency, flexibility, and adaptability. 

Reconfigurable platforms such as field programmable gate arrays (FPGAs) have become essential in 

addressing these requirements due to their parallel processing capabilities and customizable architectures. For 

data security, encryption is used to hide readable information (plaintext) using a specialized algorithm 

(cipher), ensuring that only authorized parties with the correct key can decode it [1]. The result of this 

process is ciphertext, a secure form of data. Decryption reverses the process, converting ciphertext back into 

plaintext using the appropriate decryption algorithm [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Initially applied in defense and governmental communications, encryption now plays a critical role 

in civil applications to protect both data in transit and at rest. Consequently, integrating cryptographic 

methods into system design has become essential. Among the various encryption algorithms, the advanced 

encryption standard (AES) is one of the most reliable and widely adopted [3], [4]. 

Encryption algorithms can be classified into two categories: symmetric and asymmetric. While 

asymmetric systems offer strong security, they often suffer from high computational complexity and resource 

consumption [5]. To mitigate these drawbacks, lightweight asymmetric models have been developed to 

reduce hardware requirements and simplify key management [6]. 

The rapid expansion of connected devices and IoT ecosystems has exposed systems to more 

vulnerabilities, highlighting the urgent need for efficient and secure hardware implementations. AES remains 

a preferred choice for wireless and telecommunication systems due to its structured key management, strong 

security, and compatibility with efficient hardware architectures [7], [8]. Recent studies have focused on 

optimizing AES for better performance and real-time compatibility. For example, Shahbazi and Ko [9] 

proposed architectural modifications to improve throughput, while [10], [11] focused on area and resource 

efficiency in FPGA-based implementations. 

A key computational challenge in AES is the substitution box (S-Box), responsible for introducing 

confusion during encryption. While crucial for security, the S-Box is also computationally intensive and can 

create latency bottlenecks. To address this, FPGA-based cryptographic co-processors have emerged as a 

promising solution. By offloading intensive tasks such as S-Box computations, these co-processors exploit 

hardware parallelism to perform multiple operations simultaneously [12]–[14]. 

In this paper, we propose a cryptographic co-processor implemented on a Spartan FPGA, optimized 

for real-time AES encryption. The design leverages pipelining and parallelism to accelerate S-Box 

computations, reduce latency, and enhance overall throughput. It also supports scalability and adaptation for 

future cryptographic needs. 

The rest of the paper is structured as follows: section 2 presents related work; section 3 details the 

proposed architecture and methodology; section 4 discusses implementation and performance evaluation; and 

section 5 concludes the paper and outlines potential future work. 

 

 

2. BACKGROUND AND RELATED WORK 

The growing demand for secure and efficient encryption in modern embedded systems has led to the 

development of specialized hardware solutions. Cryptographic coprocessors are dedicated hardware modules 

that accelerate operations such as encryption, decryption, and key management by offloading these tasks 

from the main processor. This reduces processing overhead and improves system responsiveness, making 

them suitable for real-time and resource-constrained environments. 

One of the most critical components in encryption algorithms, particularly AES, is the S-Box. It 

introduces non-linearity and confusion in the transformation of plaintext to ciphertext. However, due to its 

computational intensity, the S-Box is often a performance bottleneck, especially in software-based  

systems [15]. 

To address this issue, several studies have focused on hardware-based S-Box implementations using 

FPGAs. Techniques such as pipelining, parallel processing, lookup tables (LUTs), and dynamic 

reconfiguration have been employed to optimize speed, reduce area, and enhance flexibility [9]–[11], [16], 

[17]. These approaches significantly reduce latency and improve security by executing transformations in a 

constant time, thus also mitigating timing attacks. 

FPGAs are ideal platforms for implementing cryptographic accelerators due to their parallelism, 

reconfigurability, and efficiency. Prior work includes the development of AES accelerators optimized for 

throughput and area [12]–[14], with some implementations also supporting inverse transformations for 

decryption [18], [19]. Despite these efforts, many designs still struggle to balance resource usage, speed, and 

scalability. Moreover, few architectures offer unified support for both encryption and decryption using shared 

hardware resources. 

Motivation for this work to overcome these limitations, this work proposes an FPGA-based AES 

cryptographic coprocessor that:  

− Implements both encryption and decryption, 

− Optimizes S-Box and Inv-S-Box using precomputed LUTs, 

− Use a dynamic control mechanism to switch between modes, 

− Leverages Spartan-6 FPGA resources efficiently. 

The next section presents the detailed methodology of the design and implementation process. 
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3. METHOD 
This section presents the methodological framework used to design, implement, and evaluate the 

proposed FPGA-based cryptographic coprocessor. It includes a description of the system architecture, 

hardware tools and platforms, experimental setup, and functional validation through simulation. 

  

3.1.  System overview 

The proposed cryptographic coprocessor is designed to accelerate AES encryption and decryption 

operations by optimizing the execution of the S-Box, a core non-linear transformation within AES. The 

coprocessor aims to address performance bottlenecks found in software implementations by leveraging 

hardware parallelism and pipelining techniques on an FPGA platform. The system targets high-speed secure 

applications in embedded and IoT systems, where low latency and resource efficiency are crucial. It supports 

both encryption and decryption processes and is scalable for integration into more complex security 

architectures. 

 

3.2.  Architecture description 

The architecture of the coprocessor shown in Figure 1 is modular and consists of the following core 

components: 

a. Input register: the input register plays a vital role in receiving data and control signals from external 

sources. It acts as a temporary storage unit before processing begins, ensuring proper data alignment. This 

module is synchronized with the clock signal to manage the timing of operations and is reset as necessary 

to maintain system stability and avoid erroneous data propagation. 

b. 16×16 register file: the 16×16 register file serves as the primary memory storage for cryptographic 

operations. It provides a structured register matrix that facilitates efficient data manipulation. Ra, Rb, and 

Rd address entries allow selective access to specific registers, ensuring flexibility in data retrieval and 

storage. This module interacts with both the input register and the combinational logic block, enabling 

transparent data flow and optimized execution. 

c. Combinational logic block: the combinatorial logic block is responsible for executing the main 

cryptographic transformations, integrating multiple processing units to ensure efficient data manipulation. 

As shown in the Figure 2, this block includes a nonlinear search operation unit, an arithmetic logic unit 

(ALU), and a shifter, all of which contribute to different aspects of cryptographic processing as follows: 

− Nonlinear lookup operation unit is primarily used for substitution functions, such as S-Box 

transformations in AES, ensuring nonlinearity and resistance to cryptanalytic attacks. 

− ALU performs essential arithmetic and logic operations, including modular arithmetic crucial for 

encryption algorithms. 

− Shifter facilitates bitwise transformations, improving data delivery and strengthening cryptographic 

security. 

The final output of these units is selected via a multiplexer (MUX). 

− MUX to determine the processed result based on control signals. This structured design optimizes speed 

and efficiency, ensuring that the combinational logic block meets the high-performance requirements of 

cryptographic operations. 

The architecture is designed to support parallel execution of S-Box operations and includes dynamic 

control logic to toggle between encryption and decryption modes. 

 

 

  
  

Figure 1. Architecture of the cryptographic 

coprocessor 

Figure 2. Architecture of the combinational logic 

block 

 

 



                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 587-596 

590 

3.3.  Field programmable gate array platform and tools 

The design and implementation of a cryptographic coprocessor needs a structured approach ensuring 

efficiency and hardware optimization. Hardware description languages (HDL) such as very high speed 

integrated circuit hardware description language (VHDL) and verilog are new essential tools for the 

modeling and synthesis of current digital circuits, allowing very precise control of hardware functionalities. 

In the context of cryptographic coprocessors, VHDL facilitates the development of key functional 

units such as ALUs, nonlinear LUTs (S-Boxes), shifters, and control logic blocks. By leveraging HDL-based 

design methodologies, engineers can effectively implement parallelism, pipeline, and resource optimization 

techniques to improve cryptographic performance. These languages offer engineers the simulation and 

implementation of complex digital systems [20]. 

For the implementation, the Mimas V2 Spartan-6 FPGA was selected as the target hardware 

platform. This FPGA shown in Figure 3 offers a balance of performance, flexibility, and cost effectiveness, 

making it suitable for cryptographic applications. The Spartan-6 architecture provides numerous logic 

resources, digital signal processing (DSP) blocks and memory units, enabling efficient execution of 

cryptographic operations. Additionally, its high-speed processing capability and reconfigurability make it an 

ideal choice for real-time encryption and security applications. 

 

 

 
 

Figure 3. Mimas V2 Spartan-6 FPGA development board [21] 

 

 

By integrating HDL-based design methodologies with the Mimas V2 Spartan-6 FPGA, this work 

aims to develop a cryptographic coprocessor that maximizes processing efficiency, minimizes execution 

time, and optimizes hardware utilization, thereby ensuring a secure and scalable cryptographic solution [22]. 

The main development environment used to implement our coprocessor is Xilinx ISE Design Suite. It is a 

software that provides a comprehensive suite of tools for designing, simulating, and implementing VHDL 

FPGAs, making it an ideal solution for developing hardware-accelerated cryptographic architectures. 

Xilinx ISE was used for coding, debugging, and synthesis of the VHDL-based cryptographic 

coprocessor. The software's integrated simulation environment enabled rigorous testing and validation of key 

functional units, such as the ALU, S-Box calculations, and control logic blocks. Additionally, the  

place-and-route (PAR) tool was used to optimize resource allocation and ensure efficient use of the FPGA 

logic elements [23]. 

By leveraging Xilinx ISE, the design process was streamlined, enabling efficient verification and 

implementation of the cryptographic coprocessor on the Mimas V2 Spartan-6 FPGA. This approach ensured 

a balance between performance, resource utilization and real-time processing capabilities, making it suitable 

for high-security applications. 
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3.4.  Experimental setup and performance evaluation 

The VHDL program implementing the combinatorial logic unit of our coprocessor is responsible for 

executing the essential cryptographic operations. It integrates an ALU, a shifter and a nonlinear search unit, 

with a control logic mechanism that dynamically selects the appropriate calculation. 

The entity includes: i) A_BUS (16-bit input): the first data input bus; ii) B_BUS (16-bit input): the 

second data input bus; iii) CTRL (4-bit input): the control signal that selects the operation; and iv) RESULT 

(16-bit output): the computed result based on selected operations. 

This entity acts as a central processing unit (CPU) within the cryptographic coprocessor. The 

behavioral architecture consists as described in Figure 4 of three main elements: 

a. Arithmetic logic unit 

The program implements a 16-bit ALU capable of performing fundamental arithmetic and logic 

operations. The design includes an adder, bit-level logic operations and data manipulation functions, 

controlled by a 4-bit ALUctrl signal. It integrates addition, subtraction, bitwise operations (AND, OR, XOR, 

and NOT), and data transfer functionalities. 

The ALU supports addition using an N-bit adder module, as well as subtraction, which is 

implemented using two’s complement representation by inverting BBUS and adding one. It also performs 

bitwise logical operations, including AND, OR, XOR, and NOT, which are essential for various 

computational tasks. Additionally, the ALU can execute a move operation, where it simply transfers the 

value of ABUS to the output without modification [24]. 

The control logic is implemented using a case statement, which evaluates ALUctrl and selects the 

corresponding operation to be performed on the input data. The result of the chosen operation is then 

assigned to the 16-bit output bus (ALUOUT), making the ALU a critical component for digital processing 

and FPGA-based applications. 

b. Shifter 

This program defines a shifter module that processes a 16-bit input vector based on a 4-bit control 

signal. The entity shifter as it’s shown in Figure 5 has an input SHIFTINPUT, a control signal SHIFT_Ctrl, 

and an output SHIFTOUT. The architecture uses a process block to check SHIFT_Ctrl and apply different 

shift operations: 

− "1000" performs an 8-bit right rotation (ROR8). 

− "1001" performs a 4-bit right rotation (ROR4). 

− "1010" performs an 8-bit left shift (SLL8), filling with zeros. 

− Other cases set the output to zero. 

c. Non linear lookup 

This VHDL program implements a substitution operation using a LUT. It takes an 8-bit input and 

maps it to an 8-bit output using a predefined set of 256 values stored in an array. The mapping follows a non-

linear transformation, commonly used in cryptographic applications to introduce security. The input is 

converted into an integer index, which retrieves the corresponding value from the LUT. The process operates 

asynchronously, meaning the output updates as soon as the input changes, without requiring a clock signal. 

The 256 values in the S-Box shown on Figure 6 are generated using a mathematical transformation that 

ensures non-linearity, diffusion, and resistance to cryptanalysis. 
 

 

 
 

Figure 4. Xilinx block diagram of the combinational logic unit 
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Figure 5. Xilinx internal block diagram of the shifter unit 
 

 

 
 

Figure 6. S-Box LUT representation 
 
 

The process typically follows these steps: 

− Multiplicative inversion in GF(2⁸) 

Each byte in the range 0 to 255 is considered an element of the finite field GF(2⁸). The 

corresponding S-Box value is determined by computing its multiplicative inverse within this field, with the 

exception of 0, which remains unchanged. This transformation guarantees that each value is unique, ensuring 

a strong cryptographic mapping. 

− Affine transformation 

After finding the multiplicative inverse, an affine transformation is applied: 
 

𝑆(𝑥) = 𝐴. 𝑥 + 𝐶  
 

where: x is the 8-bit result from the previous step, A is a fixed invertible matrix over GF(2), and C is a 

constant vector. 

When an 8-bit input is provided, the program uses it as an index to access the S-Box, which contains 

256 precomputed values. The input byte is replaced with the corresponding value from the table. For 

example, if the input is 0×53, looking up the S-Box table returns 0×ED, which becomes the new output 

value. Similarly, if the input is 0×7A, the program will return 0×3F as the output. 

The multiplicative inversion ensures the non-linearity of the transformation. In AES, each byte is 

treated as an element of the finite field GF(2⁸), and its inverse is determined based on the rules of this field. 

For example, if the input is 0×B4, its inverse in GF(2⁸) is 0×2D. However, to avoid complex calculations in 

real time, these values are precomputed and stored in the LUT [25]. 
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Once the inversion is performed, the affine transformation is applied. This involves matrix 

multiplication followed by an XOR with a constant (0×63). For example, if the inversion step produces 

0×2D, applying the affine transformation to this value results in 0×95. This second step adds even more non-

linearity and ensures that even a minimal change in the input produces a completely different output. 

The VHDL program executes this transformation instantly by storing the results in a LUT. When an 

FPGA runs this code, it directly accesses the table in a single operation without performing any complex  

real-time calculations. This significantly optimizes execution speed, making the implementation efficient for 

real-time cryptographic applications. 

Using an LUT also enhances security against certain attacks. For example, in a standard software 

implementation, the time required to compute the inverse in GF(2⁸) may vary depending on the input value, 

which could be exploited by a timing attack. Here, since table access occurs in constant time, this risk is 

eliminated. 

This design is widely used in cryptographic coprocessors to ensure fast and efficient encryption. On 

an FPGA, it allows parallel execution of operations, accelerating the processing of data blocks. For example, 

a full AES encryption process requires multiple S-Box transformations per 128-bit block, and with an LUT, 

these transformations can be performed simultaneously across multiple processing units within the  

FPGA [18]. 

 

 

4. RESULTS AND DISCUSSION 

To validate the functionality and performance of the cryptographic coprocessor, a testbench 

simulation was conducted. The waveform in Figure 7 represents the simulation results, showcasing the 

behavior of key control and data signals over time. 
 
 

 
 

Figure 7. Testbench waveform simulation of the cryptographic co-processor 
 

 

The signals include: i) clock (clock): a periodic signal that synchronizes operations; ii) reset (reset): 

initializes the system; iii) control signal (ctrl[3:0]): defines the operation mode; and iv) register addresses 

(ra[3:0], rb[3:0], rd[3:0]): select registers for processing. 

The simulation was run with a clock period of 20,000 ps (20 ns), aligning with typical FPGA clock 

frequencies. The timing diagram illustrates how control and data signals evolve over time, confirming correct 

data flow and synchronization. For instance, at 275.833 ns, the values of ra, rb, and rd indicate successful 

read/write operations, demonstrating correct register selection and processing. By analyzing these results, we 

can assess the correct execution of arithmetic operations, S-Box transformations, and data transfers within the 

FPGA-based cryptographic coprocessor. These simulations play a crucial role in verifying hardware 

implementation before synthesis and deployment on an FPGA board. 
 

4.1.  Hardware implementation of decryption 

The FPGA-based cryptographic coprocessor developed in this work is designed to support both 

encryption and decryption processes. Since AES decryption is structurally similar to encryption but requires 

inverse transformations, the architecture of the coprocessor has been extended to efficiently handle 

decryption. The main focus is on implementing inverse transformations while maintaining high performance 

and resource efficiency on FPGA hardware [19]. 
 

4.2.  Decryption module architecture 

The decryption module is built upon the same hardware structure used for encryption, with 

additional components for handling inverse transformations. The key elements include: 

− Inverse S-Box LUT (Inv-S-Box): 
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The Inv-S-Box is implemented as a precomputed LUT similar to the encryption S-Box but with 

reversed mappings. Instead of calculating the multiplicative inverse in GF(2⁸) in real-time, the LUT approach 

allows for constant-time substitution.  

Example: if encryption maps 0×53 → 0×ED, the inverse S-Box ensures 0×ED → 0×53. The LUT 

implementation ensures minimal latency while maintaining cryptographic security. 

− Inverse MixColumns unit: 

Since MixColumns in AES encryption spreads the diffusion of bits across a data block, its inverse 

operation restores the original byte relationships using a different matrix multiplication in GF(2⁸). This 

operation is computationally intensive, but parallelized on the FPGA to minimize processing time. The 

inverse transformation follows a different matrix: 

 

[

0𝐸
09
0𝐷

0𝐵 0𝐷 09
0𝐸 0𝐵 0𝐷
09 0𝐸 0𝐵

0𝐵 0𝐷 09 0𝐸

]  

 

− Inverse key expansion module: 

AES decryption requires the round keys to be applied in reverse order compared to encryption. 

Instead of recomputing round keys, the key expansion unit precomputes and stores them in register memory, 

allowing for fast retrieval. 

− ALU and control logic: 

The ALU, register file, and control logic used for encryption are also utilized for decryption, 

optimizing resource allocation and minimizing hardware overhead. To differentiate between encryption and 

decryption operations, a decryption enable flag (DEC_EN) is integrated into the control logic. This flag 

determines the operational mode of the system, ensuring that the appropriate transformations and key 

scheduling are applied based on the selected mode. 

The Inverse S-Box (Inv-S-Box) must replace the standard S-Box. Instead of using the LUT, which 

is used for encryption, we need a precomputed inverse LUT (INV_SBOX) that reverses the substitution. By 

modifying the instruction to: LUTOUT<=INV_SBOX (to_integer(unsigned(LUTIN))); the system will 

retrieve the correct inverse substitution value, mapping each ciphertext byte back to its original plaintext byte 

during the InvSubBytes step of AES decryption. This ensures the correct reversal of the non-linear 

transformation applied during encryption. The Figure 8 show a testbench for our Inverse  

S-Box VHDL module, which test multiple input values to verify that the correct decryption transformation is 

applied. 

 

 

 
 

Figure 8. Testbench waveform simulation of decryption transformation 

 

 

4.3.  Performance evaluation 

Simulation and synthesis were conducted using Xilinx ISE Design Suite targeting the Mimas V2 

Spartan-6 FPGA. The waveform simulations confirmed the functional correctness of the ALU, shifter, and  

S-Box modules, including the control logic enabling encryption and decryption modes. The timing diagram 

demonstrated low-latency data processing with proper synchronization. 

Key performance metrics include: 

− Execution time reduction due to parallel S-Box computations, 

− Efficient resource usage through unified architecture for both encryption and decryption, 

− Scalability and adaptability for integration into larger cryptographic systems. 

 

4.4.  Comparative analysis 

Compared to similar works [9]–[11], our architecture achieves: 

− Lower latency in S-Box transformation using LUTs, 
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− Reduced hardware redundancy by sharing ALU and register files across encryption and decryption, 

− Improved throughput suitable for high-traffic secure systems. 

While previous works have focused on either encryption [9] or area optimization [10], our design 

integrates both performance and flexibility. The dual-mode functionality adds versatility not commonly 

addressed in single-mode accelerators. 

 

4.5.  Interpretation and implications 

These results demonstrate that FPGA-based cryptographic coprocessors can significantly enhance 

the performance of AES operations in embedded systems. By reducing latency and optimizing resource 

usage, our implementation is particularly suited for real-time and power-constrained applications such as IoT 

nodes, secure mobile devices, and industrial controllers. Moreover, the use of precomputed S-Box and  

Inv-S-Box ensures constant-time operations, which enhances resistance to timing attacks. This contributes to 

a more secure cryptographic execution pipeline. 

 

4.6.  Future work 

Future research directions include: 

− Implementing the design on more advanced FPGA platforms (e.g., Zynq-7000, Virtex-7), 

− Evaluating the power consumption and thermal behavior of the system, 

− Extending the architecture to support other cryptographic algorithms (e.g., Rivest-Shamir-Adleman 

(RSA), elliptic curve cryptography (ECC)), 

− Integrating the coprocessor into a complete secure system-on-chip (SoC) or communication system. 

This work lays the foundation for further optimization and integration of secure hardware modules 

in modern embedded platforms. 

 

 

5. CONCLUSION 
In this paper, we presented the design and FPGA implementation of a cryptographic coprocessor 

optimized for S-Box transformations, a fundamental operation in AES encryption and decryption. Leveraging 

the parallel processing capabilities of the Spartan-6 FPGA, our architecture significantly reduces execution 

latency and improves computational throughput compared to traditional software implementations. 

The proposed coprocessor features a unified design supporting both encryption and decryption 

modes, with shared resources such as the ALU and control logic, which minimizes hardware overhead. The 

use of precomputed S-Box and Inv-S-Box LUTs ensures constant-time operation, enhancing security against 

timing attacks. Simulation results validate the correct behavior of the architecture and demonstrate  

high-performance cryptographic processing suitable for real-time applications. 

Additionally, the system has been designed with scalability in mind, making it adaptable to other 

cryptographic primitives or more advanced FPGA platforms. The coprocessor is particularly well-suited for 

secure embedded applications, such as IoT devices, industrial controllers, and mobile systems. Future work 

will focus on improving power efficiency, extending compatibility to other cryptographic algorithms (e.g., 

RSA and ECC), and integrating the coprocessor into a complete secure SoC architecture. 
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