
International Journal of Reconfigurable and Embedded Systems (IJRES) 

Vol. 14, No. 2, July 2025, pp. 339~352 

ISSN: 2089-4864, DOI: 10.11591/ijres.v14.i2.pp339-352      339  

 

Journal homepage: http://ijres.iaescore.com 

Systematic review of a lightweight convolutional neural network 

architectures on edge devices 
 

    

Muhammad Abbas Abu Talib1, Samsul Setumin1, Siti Juliana Abu Bakar1, Adi Izhar Che Ani1, Denis 

Eka Cahyani2 

1Centre for Electrical Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh, Malaysia 
2Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Nov 15, 2024 

Revised May 8, 2025 

Accepted Jun 10, 2025 

 

 A lightweight convolutional neural network (CNN) has become one of the 

major studies in machine learning field to optimize its potential for 

employing it on the resource-constrained devices. However, a benchmark for 

fair comparison is still missing and thus, this paper aims to identify the 

recent studies regarding the lightweight CNN architectures including the 

types of CNN, its applications, edge devices usage, evaluation types and 

matrices, and performance comparison. The preferred reporting items for 

systematic reviews and meta-analysis (PRISMA) framework was used as the 

main approach to collect and interpret the literature. In the process, 37 

papers were identified as meeting the criteria for lightweight CNNs aimed at 

image classification or regression tasks. Of these, only 20 studies explored 

the use of these models on edge devices. To conclude, MobileNet appeared 

as the most used architecture, while the types of CNN focused on image 

classification for the general-purpose application. Following that, the 

NVIDIA Jetson Nano was the most utilized edge device in recent research. 

Additionally, performance evaluation commonly included measures like 

accuracy and time, along with metrics such as recall, precision, F1-Score, 

and other similar indicators. Finally, the average accuracy for performance 

comparison can serve as threshold value for future research in this scope of 

study. 
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1. INTRODUCTION 

Researchers these days are primarily focused on the advancement of artificial intelligence (AI) 

technology in order to enhance society's quality of life and facilitate the industrial revolution. Although this 

discipline was introduced back in the 1950s, it has gone through rapid development in the past decades, 

which has covered both inside and outside of the computer science field [1], [2]. It can be seen that many 

technologies and non-technology-based journals have published articles related to AI [1], [2]. AI has 

progressed from simple rule-based systems to more complicated algorithms that can make autonomous 

decisions and solve problems. The primary idea underlying AI is to develop systems capable of doing 

activities that would normally need human intellect, such as visual perception, speech recognition, decision-

making, and language translation [1], [2]. Figure 1 shows the inter-relation of data science to artificial neural 

network through AI, machine learning (ML), and deep learning (DL) [1]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Furthermore, ML is one of the most common subfields in AI, where it takes a different approach 

from a classical programming method. So, instead of using an algorithm for a specific problem or function, 

ML use a certain dataset for its algorithm to learn, predict, and decide the outcome [1], [2]. Primarily, ML is 

typically categorized into four major types such as supervised learning, which involves training models on 

labelled data, unsupervised learning, which involves searching for patterns in unlabeled data, semi supervised 

learning, which includes both supervised and unsupervised learning, and reinforcement learning, which 

teaches models to make decisions based on trial and error [1], [2]. In addition, the application of ML is 

commonly divided into object classification or regression (i.e., prediction). Some typical examples of 

algorithms in ML include artificial neural network, decision trees, linear regression, and support vector 

machine [1], [2]. 

Moreover, convolutional neural network (CNN) is one of ML’s artificial neural network algorithms 

that is specialized for image-based tasks [1], [3]-[6]. In other words, CNN is fundamental in many computer 

vision tasks such as image detection, recognition, classification, regression, and segmentation. CNN is made 

up of three main layers, including convolutional, pooling, and fully connected layers [1], [3]-[6]. Figure 2 

depicts the basic CNN architecture and its training process [1], [3]-[6]. First, convolutional layers apply 

filters to incoming data, capturing spatial hierarchies and local patterns that are necessary for applications 

such as image identification [1], [3]-[6]. Second, pooling layers lowers the dimensionality of the data, 

increasing computing efficiency and resilience [1], [3]-[6]. Third, fully connected layers make high-level 

decisions based on the extracted characteristics [1], [3]-[6]. Simply put, the first two main layers perform 

feature extraction from the input data and the third main layer maps the extracted features to decide or predict 

the output data [1], [3]-[6].  

Nevertheless, the development of CNN’s applications usually involves with big data which relies 

heavily on cloud infrastructure and resources for high computation complexity, memory and load power 

consumption [4]-[8]. In recent years, the widespread use of cloud computing in many fields of CNN’s 

applications has raised some concern regarding strict latency requirements, strained network capacity, as well 

as privacy and security issues [4]-[8]. Ultimately, in order to overcome these problems and optimize CNN’s 

applications, an increasing demand for deploying DL models directly onto edge devices to enable real-time 

inference and decision-making has been introduced. Edge computing includes processing data at or near the 

source of data creation which is called edge devices, such as IoT devices, smartphones, or sensors, rather 

than using a centralized cloud infrastructure.  

 

 

 
 

Figure 1. The inter-relation of data science to artificial neural network through AI, ML, and DL [1], [2] 

 

 

 
 

Figure 2. The basic CNN architecture and its training process [1], [2] 

 

Fig. 1. The basic CNN architecture and its training process [1], [2]. 
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Many researchers have employed edge computing to gain various benefits, including shorter 

latency, lower bandwidth use, and greater privacy and security [4]-[8]. For that, edge devices equipped with 

strong central processing units (CPUs) and specialized hardware accelerators like graphical processing units 

(GPUs), tensile processing units (TPUs), and neural processing units (NPUs) can execute complicated AI and 

ML models locally. However, optimizing CNN architecture’s efficiency for edge devices deployment poses a 

critical challenge since their applications vary from each other and due to the limited computational resources 

and power constraints of the edge devices. To date, most study in this subject have used different method of 

optimization to produce their lightweight CNN for edge device deployment and the benchmark for a fair 

comparison is still missing [8]-[12].  

Now, this systems literature review (SLR) aims to collect, analyze, and interpret the current or 

recently published articles on the lightweight CNN architectures for edge devices and categorized them in 

terms of the specific architecture or based-model, CNN’s types (i.e., classification or regression), and 

applications (i.e., the subject or purpose of each CNN’s architectures) used for their research. Next, based on 

the types of edge device, the evaluation criteria (e.g., time and accuracy), evaluation matrices (e.g., accuracy, 

precision, F1-Score, and root mean squared error (RMSE)), and performance comparison between each study 

in the first question will be recorded and discussed. In short, the research questions in this paper are as 

follows and can be seen as illustrated in Figure 3: 

− RQ1: What is the current lightweight CNN architectures used on the limited computational resources or 

edge devices? 

− RQ2: What is the current performance of the lightweight CNN architecture used on the limited 

computational resources or edge devices? 

This SLR is divided into four major sections. In the first section, the introduction is reviewed 

regarding the background knowledge of AI, ML, CNN, and edge device, the focused limitations, and the 

research questions of this literature. For the second section, most of the related articles on the lightweight 

CNN on edge devices will be collected and mapped by using the preferred reporting items for systematic 

reviews and meta-analysis (PRISMA) framework as the methodology part of this study. Thirdly, all the 

results will be analyzed and discussed in order to answer the research questions of the current lightweight 

CNN architectures used on the limited computational resources or edge devices and its performances, as the 

third section of this paper. Finally, this SLR will be concluded in the fourth section by providing the 

summarized findings and an insight for future recommendations on this scope of study. 

 

 

 
 

Figure 3. Mind map illustration of the research questions 

 

 

2. RESEARCH METHOD  

In this SLR, a detailed technique for identifying relevant research on the subject regarding 

lightweight CNN architectures on edge devices was conducted. This approach was adopted based on the 

PRISMA framework [13], and the modified flowchart in Figure 4 shows the practical view of each step of 

this SLR’s methodology. Basically, there were three major phases involved in completing this paper. 

Initially, the identification phase determined the records acquired from the search strategy used in any kind of 

academic research database. Secondly, the initial part of the screening phase involves executing the selection 

criteria in order to only consider the necessary categories for the descriptive analysis. Thirdly, the quality 

assessment is also included as the second part of the screening phase in order to find out the eligibility of 



                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 339-352 

342 

each article for this scope of study. Finally, the included phase shows the final number of articles that will be 

used in literature classification in order to satisfy all the research questions stated beforehand. 

 

 

 
 

Figure 4. The modified PRISMA framework [13] with all the records for this SLR’s methodology 

 

 

2.1.  Search strategy 

First of all, the search strategy was specifically executed in two academic database indexers, such as 

Scopus, and web of science (WoS), as well as two published article databases, such as IEEE and 

ScienceDirect. Moreover, the search only included journal articles, review papers, and conference papers or 

proceedings for Scopus and WoS, while only records for journal articles from IEEE and ScienceDirect were 

extracted. Next, the keywords used for all the database searches were “lightweight CNN” AND “edge 

devices” in the search fields of title, abstract, and author’s keyword. Then, in order to focus more on the 

recent and updated papers, the publications’ years in the databases were limited from 2020 to 2024. Also, the 

search focused on papers published only in English. By applying these terms, the search was narrowed down 

to a specific area and scope related to this study. At this stage, a total record of 460 articles’ metadata was 

obtained throughout the search.  

 

2.2.  Selection criteria 

For the selection criteria, all the recorded metadata was combined in a single spreadsheet for the 

screening process. The major goal was to map the available literature on the use of lightweight CNN in edge 

devices according to the source title, journal publisher, year of publications, research field, and number of 

citations, as these categories will be used in the descriptive analysis of the result and discussion section. All 

data for other categories was excluded and removed. For the next step, all the papers’ digital object 

identifiers (DOIs) were sorted out in order to remove duplicate records easily using the spreadsheet's tool. 

Last but not least, review papers and conference proceedings were also excluded in order to keep the records 

more relevant. Due to these criteria, 281 research publications were rejected during the initial screening 

process, and only 179 records were left for further assessment. 

 

2.3.  Quality assessment 

Following the initial screening phase, a quality assessment was performed on each research paper in 

order to further ensure that only the most eligible studies were included in this SLR for a critical review. 
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Each article's title and abstract were scrutinized thoroughly to ensure their relevancy and contribution to the 

topic under review. By executing this process, it helps to purify the selection, ensuring only pertinent and 

high-quality academic literature is included in the review process. As a result, a total of 132 articles were 

removed from the records, with three of them being a review papers and others being articles that were not 

related to image classification or regression (i.e., signal classification, sound classification, object detection, 

segmentation, and localization). At this stage, there were only 37 research papers left in the record for the 

final process of data extraction. 

 

2.4.  Data extraction 

During the data extraction phase, 37 publications were carefully selected for their relevance and 

capacity to address the research questions given in the preceding section. For that, by understanding the 

current trend of lightweight CNN on edge devices, all the data will be analyzed as a literature classification in 

the latter part of the result and discussion section. With that, various lightweight CNN architectures that have 

been conducted in previous research with resource-constrained devices will be highlighted, including their 

task-based categories, applications, as well as the types of edge devices and their specifications. Then, the 

key performance of lightweight CNN architectures on these low-resource devices will be examined in terms 

of evaluation types, matrices, and performance comparisons as reported by various researchers. 

 

 

3. RESULTS AND DISCUSSION  

In this section, all the results obtained after conducting the approach discussed in the previous 

section will be observed and analyzed. This section is divided into two subsections. The first subsection will 

focus on the descriptive analysis to see the general trend of the research, and the second subsection, literature 

classifications, will further discuss the content in order to fulfil the research questions in this paper. 

 

3.1.  Descriptive analysis 

From the methodology conducted, the obtained literature for this systematic literature review has a 

total of 37 papers that are specifically related to the research of lightweight CNN architectures implemented 

or were designed for resource-constrained edge devices. Based on Table 1, all the papers were classified 

according to the year of publication, journal publishers, and number of citations. Then, the number of related 

papers published in the following year, 2021–2024, is depicted in Figure 5, publisher classification in  

Figure 6, and the number of citations from each paper in Figure 7. 

 

 

Table 1. Research database descriptive analysis 
Ref. Number Year Publisher Cited Ref. Number Year Publisher Cited 

[14] 2024 Elsevier 1 [33] 2023 Elsevier 2 
[15] 2024 Elsevier 0 [34] 2023 Elsevier 9 

[16] 2024 Wiley 0 [35] 2022 IEEE 40 

[17] 2024 Elsevier 1 [36] 2022 Springer 11 
[18] 2024 Elsevier 4 [37] 2022 MDPI 0 

[19] 2024 MDPI 0 [38] 2022 KIPS 6 

[20] 2024 MDPI 3 [39] 2022 Wiley 3 
[21] 2023 CSIR-NIScPR 2 [40] 2022 Springer 2 

[22] 2023 CSIR-NIScPR 1 [41] 2022 Elsevier 22 

[23] 2023 Springer 3 [42] 2022 Springer 1 

[24] 2023 Wiley 1 [43] 2021 MDPI 3 

[25] 2023 IEEE 0 [44] 2021 IEEE 12 

[26] 2023 IEEE 7 [45] 2021 Wiley 16 
[27] 2023 Elsevier 3 [46] 2021 KSS 2 

[28] 2023 Elsevier 4 [47] 2021 IEEE 33 

[29] 2023 Elsevier 16 [48] 2021 Elsevier 41 
[30] 2023 CSIR-NIScPR 1 [49] 2021 MDPI 5 

[31] 2023 CSIR-NIScPR 5 [50] 2021 MDPI 18 

[32] 2023 IEEE 9     

 

 

In Figure 5, the pie chart shows that in the year 2021, the number of published papers was 8, which 

was also the same number produced in 2022. However, in 2023, the number was almost twice the previous 

published paper, which was 14. Moreover, by the mid-year of 2024, the already-published articles were 7. 

Hence, it can be seen and predicted that by the end of 2024, the number of published papers will be twice as 

large. 

Next, Figure 6 shows the number of research articles by publishers. According to this pie chart, the 

highest number of papers were published by Elsevier, which is 11 papers and 29.7% of the total papers 
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reviewed in this article. Following that, IEEE and MDPI published six papers, with 16.2% from each 

publisher. Other than that, 4 papers and 10.8% were published by each of Wiley, Springer, and  

CSIR-NIScPR, leaving 1 paper and 2.7% of the total papers being published by KIPS and KSS, respectively. 

 

 

  
 

Figure 5. Number of papers published from each 

year within 2021 until 2024 

 

Figure 6. Number of papers published by each 

publisher 

 

 

After that, Figure 7 analyzed the number of citations from each paper in this SLR. The horizontal 

axis denotes the reference number of each article, and the vertical axis shows the number of its citation. 

Based on the bar graph, the highest number of citations is 41, followed by 40, 33, and 22. Only 4 papers from 

the total article have the number of citations above 20; other than that, most papers have the number of 

citations below 20, which range from 0 to 18. In summary, by observing and analyzing these simple literature 

classifications, it suggests that the research focused on this field is still currently in the beginning phase. 

Therefore, further research is needed in order to contribute more novelty and a state-of-the-art approach to 

the study of lightweight CNN on edge devices. 

 

 

 
 

Figure 7. Number of citations from each paper 

  

 

3.2.  Literature classifications  

For the literature classification, the reviewed articles were classified accordingly by referring to the 

lightweight CNN architectures for the purpose of edge device implementation. Table 2 summarize all those 

lightweight CNN architectures or based models, the types of the CNN, and its applications. Meanwhile, 

Table 3 focused on those lightweight CNN architectures that have been experimented on edge devices, which 

includes its performance evaluation in terms of their evaluation types, matrices, and performance comparison 

in terms of average accuracy. 
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Table 2. Research database literature classifications 
Ref.  Architectures/models Types of CNN Applications 

[14] Lite-MDC Classification types of pigeon pea's 
diseases 

Plant disease detection for pigeon pea 

[15] VGG-16 Classification of cracked/non-

cracked surfaces 

Automated crack detection in building 

inspection and maintenance 
[16] SDLM Classification of cataract/non-

cataract eye 

Cataract eye detection 

[17] ShuffleNetV2_YOLOv5s Classification types of canola kernel 
grades 

Real-time canola damage detection 

[18] OnDev-LCT Classification General purpose for image classification 

[19] Zero-FVeinNet Classification types of fingers vein Finger vein recognition 
[20] YOLOv5 Classificy the maturity of blueberry 

fruit 

Blueberry fruit maturity detection 

[21] MobileNetV2, 
CondenseNetV2, ShuffleNetV2 

Classification of fabric, surface, and 
casting defect 

Product defect detection in MFG 
industries 

[22] MobileNetV2 Classification types of fabric defect Fabric defect detection in textile MFG 

[23] CCNNet Classification types of traditional 

Chinese medicine (TCM) 

Traditional Chinese medicine image 

classification 

[24] MobileNet Classification General purpose for image classification 

[25] VGG16_BN, ResNet-50, 
RegNet-X 

Classification General purpose for image classification 

[26] CH-CNN Classification General purpose for image classification 
[27] MobileViTFace Classification of different breeds of 

sheep 

Sheep face recognition 

[28] VGGNet-16, ResNet-
50/56/110, GoogLeNet, 

DenseNet-40 

Classification General purpose for image classification 

[29] LiteCNN Classification of different types of 
plant diseases 

Plant disease identification 

[30] ShuffleNetv2 Classification of 

defective/nondefective casting 

Casting defect detection 

[31] CondenseNetV2 Classification types of surface 

defect 

Surface defect detection in industrial 

intelligent production 

[32] CNN Classification types of facial 
emotion 

Facial emotion recognition for VIP 

[33] EBNAS Classification General purpose for image classification 

[34] YOLOv5s-BiFPN Classification of pig body region of 
interest (RoI), regression of pig 

body temperature 

Pig body temperature automatic detection 
for early disease warning 

[35] EdgeFireSmoke Classify the occurance of forest 
fires 

Fire-smoke detection of forest fires 

[36] TripleNet Classification General purpose for image classification 

[37] CondenseNeXtV2 Classification General purpose for image classification 
[38] InceptionV3, MobileNet, 

VGG16 

Classification types of face with 

mask/without mask 

Face mask classification 

[39] HFENet Classification of 
defective/nondefective ceramic tile 

surface 

Ceramic tile surface defect detection 

[40] ShuffleNet Classification of 3D object images 3D object recognition for 3D scaning 
technology 

[41] MobileNetv2 Regression of crowd decsity 

estimation 

Estimating crowd density for public 

security management 
[42] RDPNet Classification General purpose for image classification 

[43] Ensemble Binarized DroNet 

(EBDN) 

Classification task for collision-

avoidance, regression task for 
prediction of desired steering angle 

Autonomous driving for unmanned 

autonomous vehicles (UAV) 

[44] BC-Net Classification General purpose for image classification, 

speech recognition of keyword spotting, 
facial expression recognition 

[45] MobileNet-v2 Classification types of solid waste Waste classification for solid waste 

management 
[46] DenseNet Classification General purpose for image classification 

[47] MobileNetV3 Classification types of icing grades Icing monitoring of transmission lines 

[48] SparkNet Classification General purpose for image classification 
[49] MobileNetV2 & SqueezeNet Classification types of waste Reverse vending machine for types of 

waste recycles 

[50] ASIR-Net Classification types of different 
ground vehicle target 

Automatic target recognition (ATR) in 
synthetic aperture radar (SAR) images for 

military surveillance 
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Table 3. Research database edge devices’ performance classifications  
Ref.  Edge device types Evaluation types Evaluation matrices Ave. accuracy (%) 

[15] Raspberry Pi 3B+ - Accuracy 
- Model size 

- Robustness 

- Accuracy  
- Recall 

- Precision 

- F1-Score 

95.30 

[16] Android Smartphone - Accuracy 

- Model size 

- Time 

- Accuracy  

- Inference time 

- Parameters 

95.63 

[17] NVIDIA Jetson Nano - Speed 

- Sensitivity 

- Precision 

- Recall 

- F1-Score 
- Inference speed 

- 

[21] NVIDIA Jetson Nano - Accuracy  

- Sensitivity 
- Specificity 

- Accuracy  

- Recall 
- Precision 

- F1-Score 

97.00 

[22] NVIDIA Jetson Nano - Accuracy  
- Sensitivity 

- Accuracy  
- Recall 

- Precision 

- F1-Score 

96.52 

[25] - NVIDIA AGX Xavier 

- NVIDIA Jetson Nano 

- Accuracy 

- Computations complexity 

- Time 
- Model size 

- Top-1 accuracy 

- MACs 

- Latency 
- Parameters 

75.57 

[27] NVIDIA Jetson Nano - Accuracy - Accuracy 

- Precision 
- Recall 

97.13 

[29] ZYNQ Z7-Lite 7020 FPGA - Accuracy 

- Speed 
- Time 

- Accuracy  

- Inference speed  
- Latency 

95.71 

[30] NVIDIA Jetson Nano - Accuracy  

- Sensitivity 

- Precision 

- Recall 
- F1-Score 

- Accuracy 

99.58 

[31] NVIDIA Jetson Xavier Nx - Accuracy 

- Sensitivity 

- Accuracy  

- Recall 

- Precision 

- F1-Score 

91.40 

[35] NVIDIA Jetson Nano - Accuracy 

- Sensitivity 

- Time 

- Accuracy  

- Recall 

- Precision 
- F1-Score 

- Hamming loss 

98.97 

[36] Raspberry Pi 4 - Time 
- Computations complexity 

- Latency 
- FLOPS 

- 

[37] NXP BlueBox 2.0 - Model Size 

- Accuracy 
- Time 

- Computations complexity 

- FLOPS 

- Parameters 
- Top-1 accuracy 

- Inference time 

84.55 

[38] Raspberry Pi 4 - Accuracy 

- Speed 

- Loss 

- Accuracy 

- Precision 

- Recall 
- F1-Score 

95.51 

[37] Raspberry Pi 4 - Speed 

- Computations complexity 
- Time 

- Mean absolute error (MAE) 

- RMSE 
- Inference speed and time 

- FLOPS 

- 

[43] Xilinx Zynq 7Z100 FPGA - Accuracy 
- Precision 

- Speed 

- RMSE 
- F1-Score 

- FPS 

95.60 

[44] NUCLEO-F767ZI with 
STM32H743 

- Time - MSE 
- Latency 

- 

[47] Huawei Atlas 200 DK - Accuracy 

- Precision  
- Time 

- Accuracy 

- Time 
- FPS 

74.50 

[48] Intel Arria 10 GX1150 

FPGA 

- Time 

- Speed 

- Inference time  

- Speed up 

- 

[49] - NVIDIA Jetson Nano  

- NVIDIA Jetson TX1 

- Accuracy 

- Time 

- Accuracy 95.00 
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3.2.1. Lightweight convolutional neural network architectures 

Firstly, Figure 8 shows the number of architectures used from all the research in Table 2. Based on 

the architectures or based model, it can be seen that there were several similar networks that were being used 

as their approaches, such as MobileNet with 9 (19.1%), ShuffleNet with 4 (8.5%), VGG-16 with 4 (8.5%), 

CondenseNet with 3 (6.4%), respectively in terms of number of their usage. Meanwhile, the Others with 21 

(44.7%), represent the number of different models with only one usage. All these are some of the state-of-

the-art approaches that are currently being used by researchers in this field. While some of the researchers 

use them as benchmarks, there are also several others that modify these original networks with various 

versions to improve their performances. Aside from that, there were a few with hybrid models or multimodal 

which combined two or more networks together by using novel approaches. For example, research in [27] 

combined a lightweight CNN architecture’s MobileNet model with a Vision Transformer architecture. All in 

all, MobileNet including its various version is the most used lightweight CNN architecture for edge devices 

implementation.  

 

 

 
 

Figure 8. Several different common lightweight CNN architectures 

 

 

3.2.2. Types of convolutional neural network 

Next, as for the types of lightweight CNN architectures in Table 2, most of the research used for 

classification with a few of them used for regression, and some combined both the classification and 

regression. Based on Figure 9, it suggests that the classification type was the main approach that was being 

researched with 34 (91.9%) and the regression type with 1 (2.7%) was much more complicated to be 

researched on. Since the regression types of CNN requires continuous data for prediction, its implementation 

for resource-constrained devices may require a higher computational usage compared to the classification 

types and thus, the result indicated that only minor research has been done for regressions task. However, 

there were still a few studies that applied the regression lightweight CNN, and some also used it in hybrid 

models with classification and regression with 2 (5.4%). In short, most of the research in lightweight CNN 

was leaning towards the classification types of CNN.  

 

 

 
 

Figure 9. The common types of CNN 

 

 

3.2.3. Models’ applications 

From the aspect of applications, Table 2 depicted that this field of research is very comprehensive. 

The studies were conducted from various field including industrial manufacturing (MFG) with 8 (21.6%), 

public surveillance and safety with 8 (21.6%), health with 4 (10.8%), waste management with 2 (5.4%), 

agriculture (i.e., animal and plant) disease detection with 2 (5.4%), and military with 1 (2.7%) as illustrate in 
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Figure 10. Aside from that, the highest number of applications were for general-purpose (GP) uses with 12 

(32.4%) which shows the flexibility and reliability of the network to be used with many different 

applications.  

 

 

 
 

Figure 10. Various applications of lightweight CNN use for different sector of industry 

 

 

3.2.4. Types of edge devices 

On the other hand, based on Table 3, 20 study were filtered out for the performance analysis of 

lightweight CNN architecture deployed in edge device. Aside from these 20 research, the other 17 research 

earlier did not continue using edge devices while only evaluating their lightweight CNN with some of the 

benchmark lightweight models. Figure 11 summarizes the types and numbers of edge devices based on the 

research in Table 3. Firstly, it can be seen that edge devices can be categorized into two types which are  

on-the-shelf devices including several system-on-a-chip (SoC) (e.g., NVIDIA Jetson series and Raspberry Pi 

series), microcontroller (MCU) with its development board such as the NUCLEO-F767ZI with STM32H743, 

and Android Smartphone. Meanwhile, the off-the-shelf devices include those being implemented as FPGAs 

(e.g., Xilinx Zynq 7Z100, ZYNQ Z7-Lite 7020, and Intel Arria 10 GX1150). Hence, most of the recent study 

shows that NVIDIA Jetson Nano as the most used edge device with 7 (31.8%), followed by Raspberry Pi 4 

with 3 (13.6%), and FPGAs also with 3 (13.6%) while others (SoC) with 7 (31.8%) represent the other types 

of SoC edge devices that were used only once.  

 

 

 
 

Figure 11. Some of the general edge devices used to embed a lightweight CNN architecture 

 

 

3.2.5. Evaluation types and matrices 

Last but not least, for the evaluation types and matrices, most of these studies focused on accuracy, 

time, speed, sensitivity, model size, computation complexity, and others. Moreover, several matrices, such as 

accuracy, recall, precision, F1-Score, inference time and speed, latency, parameters, floating point operations 

(FLOPs), and others, were always being used in order to ensure that the lightweight CNN for edge devices 

performance was optimized. Some of the evaluation matrices represent each of the evaluation types as the 

matrices are the specific assessment of each of the evaluation types. For example, accuracy and top-1 

accuracy are the evaluation matrices for evaluation type of accuracy, inference time and latency are the 

evaluation matrices for evaluation type of time, and FLOPs and multiply-accumulate operations (MACs) are 

the evaluation matrices for evaluation type of computation complexity. Table 3 describes some of the 
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common evaluation types and matrices that were used in those studies. Furthermore, Figures 12(a) and (b) 

pointed out the numbers of those common evaluation types and matrices. Generally, accuracy with 15 

(29.4%) and 12 (17.6%) was the most used evaluation type and matric, respectively, based on the recent 

studies.  

 

 

 
(a) 

 
(b) 

 

Figure 12. Numbers of (a) the evaluation types and (b) the evaluation matrices used frequently in the recent 

studies 

 

 

3.2.6. Performance comparison 

Finally, the performance of all the lightweight CNN that were deployed in an edge devices was 

compared in terms of its respective average accuracy as one of the typical evaluation parameters and 

summarized in Table 3. Despite that, there were still a few research that did not evaluate the accuracy of the 

model on edge device while focusing more on the precision, time, and others. Figure 13 shows the illustration 

of each edge device performance in average accuracy. While most of them have an average accuracy around 

95% and above, a few of them only have an average accuracy of around 75%. This is because taking into 

account of many factors such as different specifications of each edge device and input database of the 

lightweight CNN used in their respective applications influenced the performance comparison. As such, to 

compare each of those edge devices’ performance is not relevant, however it can still be served for expected 

performance in terms of average accuracy threshold value for future research of a lightweight CNN in 

resource-constrained device. 

 

 

 
 

Figure 13. Performance comparison in terms of average accuracy for each edge device 

 

 

4. CONCLUSION  

In conclusion, the study of this systematic literature review was written in order to understand the 

current trend of lightweight CNN architectures used in edge devices. With that, several lightweight CNN 

architectures and models were identified including the types of the CNN, their applications, edge devices 
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used, evaluation types and matrices, as well as a simple performance comparison regarding their average 

accuracy. As the scope of this field of study is still in the early stage, many contributions and novelty 

approaches are required to ensure a comprehensive advancements of edge device technology with the 

utilization of lightweight CNN. 
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