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 Photonic neural networks (PNNs) offer significant potential for enhancing 

deep learning networks, providing high-speed processing and low energy 

consumption. In this paper, we present a novel PNN architecture that 

employs nonlinear optical neurons using multi-operand 4×4 multimode 

interference (MMI) multi-operand ring resonators (MORRs) to efficiently 

perform vector dot-product calculations. This design is integrated into a 

photonic convolutional neural network (PCNN) with two convolutional 

layers and one fully connected layer. Simulation experiments, conducted 

using Lumerical and Ansys tools, demonstrated that the model achieved a 

high test accuracy of 98.26% on the MNIST dataset, with test losses 

stabilizing at approximately 0.04%. The proposed model was evaluated, 

demonstrating high computation speed, improved accuracy, low signal loss, 

and scalability. These findings highlight the model’s potential for advancing 

deep learning applications with more efficient hardware implementations. 
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1. INTRODUCTION 

Convolutional neural networks (CNNs), influenced by the principles of biological nervous systems, 

have developed into a strong form of artificial neural network [1]. They are utilized in image recognition 

tasks, allowing for a notable reduction in the complexity of the network while still providing highly accurate 

predictions. Further, there are many applications, consisting of image classification, object detection, facial 

recognition, real-time language translation, and other related fields [2], [3]. The growing complexity of 

applications like self-driving vehicles and cloud-based artificial intelligence (AI) services is driving the need 

for faster, more energy-efficient neuromorphic hardware. 

However, current methods, which largely rely on the von Neumann computing architecture, face a 

fundamental challenge involving a trade-off between the speed of data transfer and the amount of energy 

consumed. This limitation arises mainly from the fact that, in these systems, memory, and processing units 

are physically separated, leading to inefficiencies in performance and energy consumption [4]-[7]. This 

separation creates bottlenecks when handling large volumes of data, making it difficult to simultaneously 

optimize both speed and energy efficiency. 

Furthermore, convolution operational layers make up about 90% of a CNN's computations [8]. 

While there is strong parallelism within layers, data dependencies across layers challenge any effort of inter-

layer parallelization. This leads to scalability issues with power and performance, which are worsened by the 

inherent power and speed limits of electronics. 

https://creativecommons.org/licenses/by-sa/4.0/
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Photonic neural networks (PNNs) are considered highly promising for the next generation of 

hardware processors designed for neuromorphic computing. Photonic devices have very low loss, helping to 

greatly minimize signal attenuation. Furthermore, they can overcome the bandwidth bottlenecks found in 

electrical systems, achieving high computing speeds [9]-[12]. Moreover, in PNNs, light transmission  

directly facilitates data processing, effectively eliminating the need for data shuttling, which is a key 

inefficiency in the von Neumann computing model. Over recent years, PNNs have garnered significant 

attention for enabling high-speed, large-scale, and highly parallel optical neuromorphic hardware. Various 

photonic CNN implementations have been classified into four groups: optical CNNs based on light 

diffraction [13]-[17], optical CNNs using light interference [18]-[21], optical CNNs utilizing wavelength 

division multiplexing [22]-[24], and optical CNNs relying on tunable optical attenuation [25], [26]. 

However, previous traditional PNNs are constrained by high area costs and the limitation of one 

multiply-accumulate (MAC) operation per photonic device. Using matrix singular value decomposition 

(SVD) and unitary matrix parametrization as described in Reck et al. [27] and Ribeiro et al. [28].  

Shen et al. [29] developed and implemented a fully PNN, achieving a multilayer perceptron (MLP) 

architecture through arrays of Mach-Zehnder interferometers (MZIs). However, its area cost improvement is 

limited. These scalability limitations are a key challenge that PNNs seek to overcome. A hardware-software 

co-design of slimmed PNN based on MZIs has been proposed [30] to achieve a reduction of 15% to 38% in 

the number of MZIs required for different network sizes. Moreover, an FFT-based architecture proposed by 

Gu et al. [31] achieves 2.2 3.7x area cost improvement compared with other PNNs.  

Furthermore, many PNNs only achieve accuracy below 95%, which is significantly lower than the 

average 99% of electrical CNNs [32]-[34]. Therefore, there is a strong need to design a new PNN 

architecture that can achieve high accuracy and low loss comparable to that of electrical CNNs. 

To address the area cost limitations and achieve high accuracy with low loss in PNNs, we propose a 

novel PNN architecture using a new multi-operand ring resonator (MORR) design, which relies on a single 

4×4 multimode interference (MMI) coupler on silicon waveguides. The key advantages of this new design 

include low loss, compatibility with complementary metal oxide semiconductor (CMOS) technology, high 

bandwidth, relaxed fabrication tolerances, and reduced sensitivity to wavelength or polarization variations 

due to the use of the MMI coupler. The main contributions are as follows: 

- Scalability: we introduce a scalable PNN architecture that surpasses previous PNNs in terms of footprint, 

offering a more compact and efficient design. 

- Efficiency: the proposed PNN architecture supports high levels of parallel computation, achieving both 

high accuracy and low loss. This addresses key challenges found in traditional electrical CNNs, offering 

improved performance in PNN systems. 

 

 

2. METHOD 

In this section, we first design a novel MORR functioning as a neuron in a PNN. It is constructed 

using a 4×4 MMI coupler with silicon-based waveguides. Following this, a complete PNN architecture is 

proposed, demonstrating how data can be transformed and processed within photonic components. The 

output is generated by converting optical signals into digital data, which is then used to classify images on 

the MNIST dataset. The experiment to validate the proposed PNN and its performance on the dataset is 

conducted via simulation using Lumerical and Interconnect (Ansys) tools, integrated with Python (PyTorch) 

to execute a fully operational PNN. 

 

2.1.  Proposed multi-operand ring resonator profile 

We present a novel MORR controlled by 𝑛 electrical signals 𝑥1, 𝑥2,. . .  𝑥𝑛 (see Figure 1). The MORR 

is integrated with a 4×4 MMI coupler on silicon waveguides. The waveguide are made of a silicon on 

insulator with dimensions of 500 nm in width and 250 nm in height for both input and output paths. The 

selected length (𝐿𝑀𝑀𝐼) and width (𝑊𝑀𝑀𝐼) of the 4×4 MMI are 𝐿𝑀𝑀𝐼 =
3𝐿𝜋

2
= 214 𝜇𝑚 and 𝑊𝑀𝑀𝐼 = 6 𝜇𝑚, 

respectively [35]. Where 𝐿𝜋 =
𝜋

𝛽0−𝛽1
 is the beat length of the MMI; 𝛽0 and 𝛽1 are the propagation constants 

of the fundamental and first-order modes supported by the multimode waveguide with the width of 𝑊𝑀𝑀𝐼 . 

Each input signal 𝑥𝑖 induces a phase shift 𝜙𝑖(𝑥𝑖), with the total accumulated phase shift given by 𝜙 =
∑ 𝜙𝑖

𝑛
𝑖=1 (𝑥𝑖). We employ them as neurons in PNN. The in/tensity buildup function of 𝜙 described by the 

following [36]: 

 
𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
= 𝑓(𝜙) = |

𝑎2−2𝑎𝑟𝑐𝑜𝑠𝜙+𝑟2

1−2𝑎𝑟𝑐𝑜𝑠𝜙+𝑎2𝑟2| ,  𝜙 = ∑ 𝜙𝑖
𝑛
𝑖=1 (𝑥𝑖) ∝ 𝑤𝑖𝑥𝑖  
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In this equation, 𝐼𝑜𝑢𝑡  and 𝐼𝑖𝑛 represent the output and input light intensity at the input and through 

ports, respectively. Both of them are normalized within a range between 0 and 1 (𝐼𝑜𝑢𝑡 , 𝐼𝑖𝑛 ∈ [0,1]), 𝑎 is  

self-coupling coefficient and 𝑟 is the single-pass amplitude transmission factor. The variable 𝑥𝑖 denotes the 

input voltage in the electric domain, and 𝑤𝑖  is the weight associated with that input. The weight 𝑤𝑖  can be 

adjusted through various mechanisms such as altering the size of active regions or modifying driving 

voltages. The 𝑓(𝜙) transfer function is non-linear and can be leveraged in neural network computation. 

 

 

 
 

Figure 1. A multi-operand micro-ring resonator 

 

 

For the proposed MORR structure, the free spectral range (FSR) is very high. As a result, a high 

bandwidth and high bit rate can be achieved. The proposed design is suitable for high-speed systems. The 

finite-difference time-domain (FDTD) simulation for ON and OFF resonances is shown in Figure 2. The 

Figure 2(a) shows the ON resonance state. In this state, the signals within the waveguides constructively 

interfere, resulting in the propagation of the signal through the waveguide system. This state demonstrates 

strong signal transmission as the microring is resonant at the operating wavelength. The Figure 2(b) shows 

the OFF resonance state. In this state, destructive interference occurs, resulting in weak signal transmission or 

almost no signal propagation. This indicates that the microring is not resonant at the operating wavelength, 

effectively blocking the signal. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Simulations of the signal propagation via the MORR using a 4×4 MMI coupler on silicon 

waveguides (a) ON and (b) OFF resonances 

 

 

2.2.  Proposed photonic convolutional neural network 

Building on the proposed MORR, we introduce a novel PNN, where the intensity of input power is 

created by modulating many different light sources, such as laser diodes that operate at different 

wavelengths. Initially, these laser diodes are multiplexed at first and then split onto multiple rows in an array 

of microring resonators (see Figure 3). By utilizing photodiodes at the output to capture the photonic signal 

from each row, the accumulated power of all wavelengths is measured as the output power of light. 

Assuming we have an 𝑋 × 𝑌 matrix of weights mapping onto an array of MORR, it is split into a 

grid 𝑀 × 𝑁 sub-matrices of blocks of size 𝑛 ×  𝑛 (𝑛 - the number of operands in the ring resonators, and 

𝑀 = 𝑋 ÷ 𝑛,  𝑁 = 𝑌 ÷ 𝑛). Each block 𝑛 ×  𝑛 applies block-circulant weight matrix technique [37]. This 

structure allows us to deploy an array of MORRs for nonlinear computations in PNNs. In the 𝑚𝑗−𝑡ℎ row, the 

MORRs resonate at the wavelength 𝜆𝑗 and the output 𝐼𝑗𝑜𝑢𝑡
(𝑦𝑗) = 𝑓(∑ 𝑤𝑗𝑖𝑥𝑗𝑖

𝑛
𝑖=1 ). 𝐼𝑗𝑖𝑛

, as measured by a 

photodetector. Finally, the light intensity 𝑦𝑚 in row 𝑚 is detected and measured as 𝐼𝑚𝑜𝑢𝑡
(𝑦𝑚) = ∑ 𝐼𝑗𝑜𝑢𝑡

𝑁
𝑗=1 . 
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Figure 3. The proposed model 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Simulation of the proposed photonic neural network 

We simulate a MORR neuron with three operands (n=3) at a resonance wavelength of 1,554.28 nm. 

A photonic simulation is conducted to test the functionality of the proposed model within a CNN. The CNN 

configuration includes the first two convolutional layers, followed by a flattened layer for classification. Each 

convolutional layer includes 32 kernels with a size of 5×5, a stride of 2, and a padding of 1. After each 

convolutional layer, we apply batch normalization (BatchNorm) using trans-impedance amplifiers (TIA) and 

offset voltage signals to minimize latency overhead. By adjusting the gain, BatchNorm effectively smooths 

the amplitude of activation signals. The flattened layer is used for the final classification, producing 10 

outputs. 

The PNN is trained for 100 epochs using the Adam optimizer. The dataset is MNIST. Input data, 

kernels, and activation functions are represented in float32 format. The proposed photonic CNN model is 

implemented using an open-source library based on Pytorch and runs on a machine equipped with an Intel 

Core i5-9700 CPU and NVIDIA RTX 3600 GPU. 

 

3.2.  Performance of proposed photonic neural network 

The results indicate that the highest test accuracy of the model is 98.26% at epoch 100. The three 

highest test accuracies are 98.72% (epoch 79), 98.7% (epoch 82), and 98.68% (epoch 91) (see Figure 4). The 

test loss stabilizes at approximately 0.04% from epoch 80 (see Figure 5). The test accuracy of our  

model nearly reaches the 99% level, similar to traditional CNN models like VGG-16, ResNet-50, and 

AlexNet [38]-[41]. However, the speed of our model based on light-based computation, represents a 

significant improvement over the digital computations employed by these traditional CNNs [42], [43]. 

 

 

 
 

Figure 4. Train accuracy and test accuracy 
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Figure 5. Train loss and test loss 

 

 

We adjust the number of convolutional layers to observe the changes in accuracy and loss. By 

evaluating different configurations, we assess how the number of convolutional layers impacts the model’s 

performance in terms of both accuracy and loss. The results show that as the number of convolutional layers 

increases, accuracy improves while loss decreases (see Table 1). The optimal setup includes three 

convolutional layers and one fully connected layer, achieving the highest accuracy (99.07%) and the lowest 

loss (0.03%). However, adding a fourth convolutional layer may lead to overfitting and increased 

computational complexity. Additionally, increasing the number of layers raises the computational load and 

resource requirements, which should be carefully considered, particularly when deploying models on devices 

with limited hardware capabilities. 

 

 

Table 1. Our models on different number of layers 
Our models Accuracy (%) Loss (%) 

1. Conv+1 FC 97.39 0.08 

2. Conv+1FC 98.7 0.06 
3. Con+1FC 99.07 0.03 

 

 

3.3.  Comparison with other photonic neural network 

We run our model using a precision of 7 bits for both inputs and weights. The model achieves an 

accuracy of approximately 98.1% (see Figure 6), with a loss of around 0.04%. When compared to other PNN 

(see Table 2), the results indicate that our model outperforms them in terms of accuracy on the same MNIST 

dataset. 

 

  

 
 

Figure 6. Test accuracy on 7-bit for parameters 
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Table 2. Comparison between our model with other previous PNN models 
Model Layers Quantization Accuracy (%) 

Our model 2 Conv+1 FC 7 bit 98.1 
IDNN-VMM [16] 2FC / 92.6 

MRR-VMM [17] 3FC 4 bit 97.41 

MZI-VMM [18] 2FC 5 bit 76.70 
PCM-VMM [19] 1 Conv+1FC 7 bit 95.30 

TOPS-CA [20] Conv+1FC 7 bit 88 

 

 

3.4.  Area reduction and system efficiency 

By taking advantage of using the block-circulant weight matrix technique presented by  

Ding et al. [37], our model can reduce the number of weight matrices for better efficiency and area reduction. 

Figure 7 illustrates the transformation from an unstructured weight matrix with 18 parameters to a  

block-circulant weight matrix with only 6 parameters in a neural network. In the block-circulant matrix, rows 

are generated by cyclically shifting the elements of the first row, significantly reducing the number of stored 

parameters. 

 

 

 
 

Figure 7. Block-circulant weight technique [37] 

 

 

By utilising the MORR device, we can compress a vector dot-product operation into a single micro-

ring. Specifically, a 𝑋 × 𝑌 matrix in our model contains 𝑀 × 𝑁 sub-matrices of block of size 𝑛 × 𝑛 (𝑛 - the 

number of operands in the ring resonator). Each sub-matrix of size 𝑛 × 𝑛 is used in the form of a circulant 

matrix. This means that the sub-matrix has a special structure in which each row (or column) is a cyclic shift 

of the first row (or column). This circulant structure allows for reducing the number of weights required and 

making matrix multiplication more efficient. Further, the circulant matrix structure allows for area reduction 

in device and wavelength usage. As a result, it leads to 𝑂(𝑛2) times area reduction and 𝑛 times wavelength 

usage savings. In comparison, other PNNs, such as the one designed and fabricated by Shen et al. [29], 

require O(𝑛2) MZIs for implementation. Besides this, wavelength savings make optical systems more 

efficient in terms of cost, energy, and performance while reducing complexity and optimizing processing 

capabilities. 

 

 

4. CONCLUSION 

In this study, we introduced a novel photonic convolutional neural network (PCNN) based on multi-

operand 4×4 MMI micro-ring resonators, demonstrating its effectiveness in deep learning tasks like image 

recognition. Our model achieved high accuracy, low signal loss, rapid light-based computation, showing 

great potential compared to traditional digital CNN architectures. The flexibility of this model allows it to be 

adapted to various CNN structures, including AlexNet, ResNet, and VGG16, offering promising results for 

future AI and deep learning advancements. 

This study shows that PNN can significantly improve speed and efficiency in large-scale data 

processing and autonomous systems. Future research should focus on integrating this model into more 

complex architectures and testing its real-time performance. Overcoming challenges in large-scale 

implementation and adapting it to various environments will further enhance its impact. These findings 

suggest that PNN could play a key role in the future of AI, offering faster and more efficient solutions for 

practical applications. 
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