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 This paper presents a practical end-to-end paper demonstrating real-time 

face recognition using a Raspberry Pi and open source computer vision 

library (OpenCV) consisting of three main stages: training the recognizer, 

real-time recognition, and face detection and data gathering. The paper 

offers a comprehensive guide for enthusiasts venturing into computer vision 

and facial recognition. Employing the Haar Cascade classifier for accurate 

face detection and the local binary patterns histograms (LBPH) face 

recognizer for robust training and recognition, the paper ensures a thorough 

understanding of key concepts. The step-by-step process covers software 

installation, camera testing, face detection, data collection, training, and real-

time recognition. With a focus on the Raspberry Pi platform, this paper 

serves as an accessible entry point for exploring facial recognition 

technology. Readers will gain insights into practical implementation, making 

it an ideal resource for learners and hobbyists interested in delving into the 

exciting realm of computer vision. 
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1. INTRODUCTION 

This paper explores the dynamic field of real-time face recognition, utilizing the open source 

computer vision library (OpenCV) on the Raspberry Pi platform. The paper aims to investigate face detection 

and recognition with a focus on efficiency and real-time responsiveness critical aspects in modern 

technological advancements [1], [2]. Face recognition systems have gained significant traction due to the rise 

of artificial intelligence (AI) and their potential applications in security, user authentication, and personalized 

services. The Raspberry Pi, a compact yet versatile computing device, provides an accessible and cost-

effective platform for implementing such systems. While face recognition has been explored through various 

methods, current solutions often struggle with real-time processing constraints or require more powerful and 

costly hardware. This paper seeks to address these limitations by utilizing OpenCV, a robust, open-source 

computer vision library, in conjunction with the Raspberry Pi to create an efficient and reliable real-time face 

recognition system. The paper is structured into three key phases: face detection and data gathering, training 

the recognizer, and face recognition, each designed to demonstrate the practical implementation of facial 

recognition technology. The core of this research is the application of the Haar Cascade classifier for accurate 

and efficient face detection. Additionally, the use of the local binary patterns histograms (LBPH) face 

recognizer for training and recognition enhances the system’s accuracy and reliability. These methods are 

well-suited to the resource-constrained Raspberry Pi environment, ensuring that the system operates 

https://creativecommons.org/licenses/by-sa/4.0/
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effectively without significant computational overhead. Throughout the narrative, readers are guided through 

the process of software installation, camera testing, face detection, data accumulation, training, and real-time 

recognition. This paper is poised to serve as a guiding light for those who seek to unravel the potential of 

facial recognition technology while wielding the Raspberry Pi as a versatile tool of innovation. In a world 

where technological boundaries are ceaselessly pushed, this exploration stands as a testament to the fusion of 

computer vision and practical application. By encapsulating the essence of efficiency, accuracy, and real-time 

response, the paper ushers in a new era of possibilities in the domain of facial recognition. 

The problem that this research aims to address is the lack of efficient and affordable real-time face 

recognition solutions that can be implemented on low-cost hardware such as the Raspberry Pi. The challenge 

lies in balancing the accuracy of face detection and recognition with the computational efficiency required 

for real-time performance. Many existing face recognition systems, while highly accurate, are designed to 

run on powerful machines equipped with high-end GPUs or specialized hardware accelerators. These systems 

are not only expensive but also power-hungry, making them unsuitable for embedded systems or edge 

devices where power and cost are critical constraints. The goal of this paper is to build a real-time face 

recognition system that runs on a Raspberry Pi using OpenCV, providing a reliable solution for real-world 

applications, such as home security systems, office entry systems, and low-cost user authentication 

mechanisms. Specifically, the research explores how face detection and recognition algorithms can be 

optimized for low-power, resource-constrained environments, without sacrificing accuracy or responsiveness. 

 

 

2. LITERATURE SURVEY 

The field of real-time face recognition has seen significant advancements in recent years, driven by 

the increasing demand for secure and efficient identification methods. Various approaches and techniques 

have been explored to achieve accurate and rapid face recognition. Turk and Pentland [1] introduced the 

Eigenface method in their seminal paper, which laid the foundation for many subsequent developments. 

Eigenface utilizes principal component analysis (PCA) to reduce facial images' dimensionality, enabling 

efficient face representation and recognition. Building upon Eigenface, Belhumeur et al. [2] proposed the 

Fisherface method, incorporating Fisher linear discriminant analysis (FLDA) to enhance discriminative 

power. Fisherface has demonstrated improved performance in face recognition tasks, particularly when 

dealing with variations in lighting and facial expressions. Local binary patterns (LBP) have also emerged as a 

powerful feature extraction technique. Ahonen et al. [3] introduced the LBP-based method in, which captures 

texture information for improved recognition accuracy and robustness. Deep learning techniques have made 

significant contributions to face recognition. Schroff et al. [4] introduced the FaceNet model, which employs 

a deep convolutional neural network (CNN) to directly learn discriminative features from face images. 

FaceNet's impressive accuracy and ability to handle large datasets have propelled its adoption in various 

applications. Furthermore, Haar Cascade classifiers have proven effective for face detection. Viola and Jones 

[5] introduced this method, enabling real-time detection of objects, including faces, in images and videos. In 

the context of embedded systems like Raspberry Pi, Al‑Osaimi et al. [6] presented a comprehensive study on 

optimizing face recognition algorithms for resource-constrained platforms. Their work addresses the 

challenges of achieving real-time performance on devices with limited computational resources. The field of 

real-time face recognition has witnessed significant advancements, with various methods and techniques 

proposed for accurate and efficient identification. Liu et al. [7] introduced a deep learning-based method 

called DeepFace, which employs a multi-layer neural network to directly learn discriminative features from 

raw face images. DeepFace demonstrated remarkable performance on large-scale datasets, highlighting the 

potential of deep learning in face recognition. Inspired by the human visual system, Zhang et al. [8] presented 

the sparse representation-based classification (SRC) method. SRC represents a face image as a linear 

combination of training samples and achieves robustness against occlusions and variations. Local feature 

analysis (LFA) was introduced by Wang et al. [9], focusing on exploiting local information for face 

recognition. LFA captures discriminative features by considering the local geometry of face images. CNNs 

have also been essential in the advancement of facial recognition. Sun et al. [10] proposed DeepID, a CNN 

architecture that extracts hierarchical features from face images for improved discrimination. In the context 

of real-time implementation, Ghiasi et al. [11] presented a real-time face detection method using MobileNets. 

MobileNets are lightweight deep neural networks that enable efficient inference on resource-constrained 

devices. Additionally, Chen et al. [12] introduced the Center Face algorithm, which achieves state-of-the-art 

performance in face detection. Center Face utilizes a center point and bounding box regression to improve 

accuracy and efficiency. For embedded systems, Zhang et al. [13] proposed a hardware-friendly face 

recognition architecture, targeting FPGA implementation. Their work emphasizes resource-efficient design 

for real-time applications. A pioneering contribution to this domain is the work of Taigman et al. [14], who 

introduced "DeepFace," a profound deep learning-based approach. DeepFace harnesses the capabilities of a 
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multi-layer neural network to directly extract discriminative features from raw face images. The method 

exhibited exceptional performance on extensive datasets, underlining the transformative potential of deep 

learning in advancing face recognition technology. Drawing inspiration from the human visual system, 

Zhang et al. [8] presented the "SRC" method. SRC represents facial images through a linear combination of 

training samples, showcasing robustness against occlusions and variations that commonly challenge face 

recognition systems. LFA, introduced by Wang et al. [15], shifted the focus towards leveraging local 

information for enhanced face recognition. LFA capitalizes on the inherent local geometry within face 

images to capture and emphasize discriminative features effectively. CNNs have played a pivotal role in 

reshaping face recognition strategies. The "DeepID" architecture proposed by Sun et al. [10] extracts 

hierarchical features from facial images using CNNs, significantly bolstering discriminatory capabilities. 

Real-time implementation considerations led Ghiasi et al. [16] to devise a swift face detection method 

employing "MobileNets." These lightweight deep neural networks facilitate efficient inference, especially on 

resource-constrained devices. The "Center Face" algorithm, introduced by Law and Deng [17], stands out in 

real-time face detection. By harnessing a center point and bounding box regression, Center Face attains state-

of-the-art accuracy and efficiency. In the realm of embedded systems, Zhang et al. [18] tailored a hardware-

friendly face recognition architecture, optimized for FPGA implementation. Their work underscores the 

critical importance of resource-efficient design for enabling real-time face recognition applications. 

 

 

3. METHOD 

This section elaborates on the method employed for developing the face recognition system, which 

follows a three-phase approach: face recognition, training the recognizer, and face detection, and data 

collection. These stages are essential for building an effective and accurate face recognition system. Each 

stage consists of a series of specific tasks aimed at ensuring the accuracy and reliability of the system. 

  

3.1.  Phase 1: face recognition 

Face recognition technology involves identifying and verifying individuals by analyzing and 

comparing their facial features. Face recognition systems follow a multi-step process starting with face 

detection, where algorithms like single shot multibox detector (SSD) or you only look once (YOLO) are used 

to locate faces in images or video streams, establishing the region of interest for further analysis. Once a face 

is detected, face alignment is performed to standardize the orientation of facial features, ensuring uniformity 

across the dataset. This is crucial for accurate feature extraction. During feature extraction, key facial 

attributes, such as the distance between the eyes and mouth structure, are captured, often using CNNs, which 

excel in identifying complex patterns. These extracted features are then compared with stored templates in a 

database during face matching, utilizing algorithms like Eigenfaces, Fisherfaces, or deep neural networks to 

generate a similarity score. Finally, in the decision-making step, the system verifies the individual by either 

confirming a match or flagging the input for further review, depending on the application's threshold for 

accuracy. 

 

3.2.  Phase 2: training the recognizer 

Training the face recognition model is a critical step in building a robust system. It involves 

teaching the system to recognize and differentiate between various individuals by feeding it a dataset of 

labeled facial images. The process of training a face recognition model involves four key steps. First, data 

collection entails gathering a large and diverse dataset of labeled facial images that represent various lighting 

conditions, expressions, and poses. This ensures that the model can generalize well to real-world scenarios. 

Next, in data pre-processing, the images are normalized, resized, and aligned to standardize facial features, 

ensuring consistency for model input. This step also involves normalizing pixel values to optimize the 

training process. In the feature extraction stage, pre-trained deep learning architectures like VGG, ResNet, or 

MobileNet are employed to extract facial embeddings—unique numerical representations of each face. 

Finally, during model training, the recognizer learns to associate these embeddings with specific identities 

through a classification layer. The model minimizes a loss function by adjusting its parameters using 

techniques like backpropagation and stochastic gradient descent, iteratively improving accuracy until an 

optimal solution is reached. 

 

3.3.  Phase 3: face detection and data collection 

The final phase focuses on face detection and gathering data for training and evaluation. This phase 

sets up the foundation for the initial steps in both training and recognition. The process of face detection is 

critical for identifying and locating faces in images or video frames, serving as the foundation for face 

recognition tasks. Advanced deep learning models such as SSD, YOLO, and region-convolutional neural 

network based (R-CNN) are typically employed, known for their ability to detect faces even in complex 
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settings. These models, pre-trained on large datasets, need to be fast and accurate, especially for real-time 

applications like surveillance and user authentication. Face detection involves selecting an appropriate 

algorithm (e.g., YOLO for speed), implementing it using programming tools like Python and libraries such as 

OpenCV or TensorFlow, and optimizing the model to improve its accuracy and performance. 

In the data collection phase, gathering a well-curated and diverse dataset is crucial for training an 

effective face recognition model. The dataset should encompass images with various lighting conditions, 

facial expressions, and demographic diversity to ensure the model can generalize well in different situations. 

Key steps in this phase include designing the dataset based on the model's purpose (e.g., security or 

authentication), capturing images under diverse conditions, and manually annotating them by marking faces 

and assigning labels [19]-[23]. Afterward, the images undergo data pre-processing, including cropping, 

resizing, normalizing, and augmentation techniques like flipping and rotating. Finally, the dataset is split into 

training, validation, and testing sets to ensure balanced and unbiased model evaluation. Figure 1 shows 

overview of the steps involved in setting up and using OpenCV for computer vision tasks within the Google 

Colab environment. 

 

 

 
 

Figure 1. Overview of computer vision task 

 

 

The process begins with installing the OpenCV package, specifically version 3.4.15.55, although 

you may need to check for newer versions and adjust the installation process accordingly. To install OpenCV 

3 in Google Colab, a code snippet can be entered into a cell, which will download and set up the library 

within the Colab session. After executing the commands, OpenCV 3 should be installed and ready to use in 

the Colab environment. However, it is important to note that Google Colab offers a temporary environment, 

meaning any installations are only accessible during the current session. If you plan to work in multiple 

sessions or revisit the notebook later, it is advisable to include the installation code at the beginning of your 

Colab notebook to ensure the necessary dependencies are reinstalled each time you restart the session. 

After installing OpenCV, you need to ensure that Python 3.5 or a later version is being used in your 

Colab environment. This can be confirmed by entering the Python interpreter and checking the version 

number. To further validate the OpenCV installation, you can import the OpenCV library using the command 

import cv2 within the Python interpreter. If the import process completes without any errors, the OpenCV 

library has been successfully installed in your Python virtual environment. This ensures that the library is 

now available for various computer vision tasks. 

Once the installation is verified, you can also check the installed OpenCV version to ensure that the 

correct version has been installed. This is an important step as it allows you to confirm that the installation 

was successful and that the correct version of OpenCV is available for use. The terminal output, as shown in 

the print screen, verifies that all previous steps, from installing the package to confirming the OpenCV 

version, have been executed correctly. 

By following this method, you can set up OpenCV in the Google Colab environment, enabling you 

to perform a wide range of computer vision applications, including image and video processing. This  

step-by-step approach ensures that the installation process is smooth and effective, allowing you to leverage 

the power of OpenCV in your papers without needing to worry about persistent environments, as Google 

Colab’s temporary nature requires reinstallation in each session. 



Int J Reconfigurable & Embedded Syst  ISSN: 2089-4864  

 

Real-time face detection and local binary patterns histograms-based face … (Bharanidharan Chandrakasan) 

531 

4. EXPERIMENTAL EVALUATION 

To ensure the Raspberry Pi Camera (PiCam) functions correctly, the following Python script utilizes 

OpenCV to record and display a live video feed. This test verifies PiCam’s operation by initializing the 

camera as the default device, capturing frames, and displaying them in a window. The process continues until 

the user terminates it by pressing 'q'. Before executing the script, confirm that PiCam is connected and 

configured correctly. If the camera index needs modification, adjust cv2.VideoCapture(0) accordingly. The 

code can be used in a Python script or a Jupyter notebook on a Raspberry Pi. 

 

import cv2 

# Open the video capture object 

cap = cv2.VideoCapture(0) # Use 0 for the default camera (PiCam) 

while True: 

 # Read a frame from the camera 

 ret, frame = cap.read() 

 # Display the frame 

 cv2.imshow('Camera Test', frame) 

 # Break the loop if 'q' is pressed 

 if cv2.waitKey(1) & 0xFF == ord('q'): 

 break 

# Release the capture object and close the OpenCV window 

cap.release() 

cv2.destroyAllWindows() 

 

Running this script on Raspberry Pi will open a window showing the real-time video stream from PiCam in 

BGR color format. The program will terminate when you press 'q', and all system resources are released. 

 

4.1.  Real-time video stream display and explanation 

The video capture starts by initializing the PiCam with cap=cv2.VideoCapture(0), where index 0 

refers to the default camera. The script continuously captures frames in a loop with cap.read(), displaying 

each in a window through cv2.imshow(). The loop terminates when the 'q' key is pressed, releasing the 

camera and closing the display windows using cap.release() and cv2.destroyAllWindows() to free system 

resources. The video stream display allows for real-time monitoring, as shown in Figure 2, which illustrates 

the PiCam output within an OpenCV window. 

 

 

 
 

Figure 2. Real-time video stream from PiCam displayed in OpenCV window 

 

 

The video capture process begins with the initialization of the camera using 

cap=cv2.VideoCapture(0), where index 0 refers to the default camera, typically the PiCam. If you are using a 

different camera, this index can be adjusted accordingly. Once the camera is initialized, the script enters a 

continuous loop in which the cap.read() function retrieves frames in real-time from the camera feed. The 

variable ret confirms whether each frame was successfully captured, while frame holds the image data for 

that particular moment. These frames are displayed in an OpenCV window using the cv2.imshow() function, 

providing a live view of the video stream captured by the PiCam. This display continues to update as the loop 

cycles through each frame, effectively showing a real-time feed. To stop the stream, the script listens for the 

'q' key press using cv2.waitKey(1), which breaks the loop when triggered, halting the video capture. Once the 

loop terminates, the script proceeds to release the camera resource with cap.release(), ensuring the video 

capture object is closed properly. 
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4.2.  Face detection using OpenCV and Haar Cascade classifier 

In facial recognition, the first crucial step is face detection, which involves identifying a face within 

an image. The widely used method for this is the Haar Cascade classifier, developed by Paul Viola and 

Michael Jones in 2001. OpenCV provides pre-trained classifiers, simplifying the process of face detection. 

The classifiers can be applied for detecting faces, eyes, and smiles, as illustrated in Figures 3 and 4. 

 

import cv2 

# Load the pre-trained Haar cascade classifier for face detection 

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') 

# Initialize the camera 

cap = cv2.VideoCapture(0) 

while True: 

 # Capture frame-by-frame 

 ret, frame = cap.read() 

 # Convert to grayscale for face detection 

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 

 # Detect faces 

 faces = face_cascade.detectMultiScale(gray, 1.1, 4) 

 # Draw rectangles around the detected faces 

 for (x, y, w, h) in faces: 

 cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) 

 # Display the resulting frame 

 cv2.imshow('Face Detection', frame) 

 # Break the loop if 'q' is pressed 

 if cv2.waitKey(1) & 0xFF == ord('q'): 

 break 

# Release the capture and close the OpenCV windows 

cap.release() 

cv2.destroyAllWindows() 
 

 

 
 

Figure 3. Haar features using II technique 
 
 

 
 

Figure 4. Face and eye detection 
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4.3.  AdaBoost face recognition using Haar-like features 

Face detection using Haar-like features involves computing these features across various image 

regions and scales. AdaBoost learning is commonly employed to enhance the face recognition process by 

reducing the feature space. The Haar-like features are computed using a sliding window approach, classifying 

image regions as faces or non-faces. The integral image (II) technique is used to accelerate the calculation of 

Haar features, as shown in Figure 3. 

 

4.4.  AdaBoost face recognition using Haar-like characteristics 

AdaBoost learning is one of the most popular face identification methods when paired with the 

calculation of Haar-like features. The planetary of Haar features required to identify whether a frame in a 

picture contains a face or not can be significantly reduced using the AdaBoost learning method. A classifier 

consisting of a series of hierarchical phases is employed to arrange certain Haar-like characteristics. The 

input picture is covered with a scanning window at various sizes and positions. The innards of the frame are 

then labeled as prospective faces over the cascades or rejected as non-faces. Face searching frequently uses 

Haar-like characteristics, and the AdaBoost learning technique has been used to train a large number of 

prototypes to properly depict human faces. The open-source OpenCV library offers XML descriptions of 

cascades of classifiers for frontal or partly rotated faces, based on the results of some of these trainings. For 

face detection, Viola and Jones suggested four fundamental categories of scalar characteristics. In (1) is used 

to calculate the Haar-like features in relation to the window's location on the first greyscale picture. A 𝑤𝑗𝑟  

factor is used to weight the total of the pixels across locations (𝑚, 𝑛) inside each rectangle that conforms to 

the Haar feature. The boosting process used during training determines the choice of ℎ𝑗 and related weights. 

In (2) states that stages in the AdaBoost cascade are made up of an increasing number of Haar-features. The 

likelihood of a face or non-face is determined by a threshold θ that is calculated throughout the training 

phase. The strong classifier uses various Haar characteristics, each of which has a different weight when 

making its final judgment. In order to minimize false positives and increase the number of accurate 

detections, thresholds must be selected carefully. 

 

𝐻𝑗(𝑥, 𝑦) =  ∑ [𝑤𝑗𝑟  . ∑ 𝑖(𝑚, 𝑛)(𝑚,𝑛)∈𝑟 ]𝑅
𝑟=1  (1) 

 

𝐻(𝑥, 𝑦) = {
1
0

∑ ℎ𝑗(𝑥, 𝑦) < 0𝐽
𝑗=1  (2) 

 

4.5.  Parallel computation of the integral image 

Computing a phase in the cascade of classifiers inside a detection window requires scanning several 

Haar features at various sizes and locations. Since each Haar feature is a weak classifier and is evaluated by 

adding up its intensities, it is necessary to get all of the pixels that fall inside the feature region. This is not 

good because it requires a lot of lookups. To accelerate the calculation of weak classifiers, a pre-processing 

step can be incorporated by creating an integral image (II) (2). I (x, y) is the value on the input picture, and ii 

(x, y) is the value on the integral image. The value here is recorded on a pixel is the total of the pixel 

intensities above and to the left in the initial input image, as explained in (3) and (4). 

 

𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥′, 𝑦′)𝑥′≤𝑥,𝑦′≤𝑦  (3) 

 

𝑆 = 𝑖𝑖(𝑥𝐶,𝑦𝑐 ) + 𝑖𝑖(𝑥𝐴,𝑦𝐴 ) −  𝑖𝑖(𝑥𝐵,𝑦𝐵 ) −  𝑖𝑖(𝑥𝐷,𝑦𝐷 ) (4) 

 

Facial recognition technology has rapidly advanced, becoming an integral part of various industries, 

from security to healthcare. However, while the technology holds immense potential, its deployment requires 

careful consideration of privacy, ethics, and security. Central to this is the responsible collection and handling 

of personal facial data. Organizations must prioritize obtaining explicit consent from individuals whose facial 

data is collected. This includes clearly informing users about the purposes for which the data is being 

collected, how it will be used, and where it will be stored. Transparency fosters trust, and consent should be 

aligned with data protection regulations such as the general data protection regulation (GDPR). Proper 

documentation, including consent forms, must be maintained to ensure compliance with relevant legal 

frameworks. 

 

 

5. RESULTS AND DISCUSSION 

To verify the functionality of the PiCam, we ran a Python script to capture and display a real-time 

video stream. The script successfully initialized the PiCam and displayed live video frames in an OpenCV 
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window. The frames were displayed both in BGR color and grayscale, allowing us to confirm that the PiCam 

was functioning correctly. The ability to view the video stream in real-time indicates proper connection and 

configuration of the camera. The face detection experiment utilized the Haar Cascade classifier to identify 

faces in real-time. The performance of the face detection system was evaluated based on various metrics, 

including detection accuracy and processing time. Table 1 summarizes the results of face detection using 

different pre-trained classifiers. We tested the system under various conditions to assess its performance. 

Table 2 provides the average processing time for face detection in different lighting conditions. 

 

 

Table 1. Face detection accuracy 
Test condition Face detector True positives False positives False negatives Detection accuracy (%) 

Indoor lighting Haar cascade (frontal) 95 5 3 93.6 

Outdoor lighting Haar cascade (frontal) 88 12 6 85.7 

Mixed lighting Haar cascade (frontal) 92 8 4 91.2 
Indoor lighting Haar cascade (eyes) 90 10 5 87.5 

Outdoor lighting Haar cascade (eyes) 85 15 7 83.3 

 

 

Table 2. Average processing time for face detection 
Test condition Average processing time (ms) 

Indoor lighting 35 

Outdoor lighting 45 
Mixed lighting 40 

 

 

The work presents the performance of a Haar Cascade face detector under various lighting 

conditions, evaluating its ability to detect faces based on true positives, false positives, false negatives, and 

detection accuracy. Under indoor lighting, the Haar Cascade (Frontal) achieved the highest accuracy of 

93.6%, with 95 true positives and only 5 false positives. In outdoor lighting, the performance dropped to 

85.7%, showing 88 true positives but a higher number of false positives (12) and false negatives (6). Under 

mixed lighting, the detector showed a moderate accuracy of 91.2%, maintaining relatively low false positives 

and negatives. When the detection was limited to the eyes, the Haar Cascade (Eyes) had lower accuracy 

across all conditions, particularly under outdoor lighting, where accuracy fell to 83.3%. Detection accuracy 

was calculated using (5): 

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 𝑋 100 (5) 

 

The work highlights the average processing time of a face detector under different lighting 

conditions. Under indoor lighting, the detector processes images the fastest, with an average time of  

35 milliseconds, indicating optimal performance in controlled environments. In outdoor lighting, the 

processing time increases to 45 milliseconds, due to the challenges posed by varying brightness, shadows, 

and reflections, which make face detection more computationally intensive. Under mixed lighting conditions, 

the detector takes 40 milliseconds on average, reflecting a moderate level of complexity. Overall, the results 

show that lighting conditions significantly impact the speed of face detection, with the detector performing 

best in indoor environments. To evaluate the AdaBoost face recognition system, we tested the accuracy of 

face recognition using Haar-like features and the AdaBoost learning method. Table 3 presents the recognition 

accuracy achieved with AdaBoost. 

 

 

Table 3. AdaBoost face recognition accuracy 
Test dataset True positives False positives False negatives Recognition accuracy (%) 

Dataset 1 (standard) 97 3 2 95.6 

Dataset 2 (challenging) 92 8 5 89.6 

 

 

The work compares the performance of a face recognition model on two datasets: a standard dataset 

and a challenging dataset, based on true positives, false positives, false negatives, and recognition accuracy. 

On dataset 1 (standard), the model performs exceptionally well, achieving a high recognition accuracy of 

95.6%, with 97 true positives, 3 false positives, and only 2 false negatives. However, when tested on dataset 

2 (challenging), the model’s performance drops, with a lower accuracy of 89.6%, reflecting 92 true positives, 
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8 false positives, and 5 false negatives. The drop in accuracy and increase in false positives and negatives on 

the challenging dataset indicate that the model struggles more with complex or less ideal conditions, 

highlighting the importance of dataset variability for robust face recognition.  

Recognition accuracy was calculated similarly to face detection accuracy. The combined face and 

eye detection system was evaluated for its ability to detect multiple features simultaneously. Table 4 shows 

the results. 

 

 

Table 4. Face and eye detection performance 
Feature Detected faces Detected eyes Processing time per frame (ms) 

Face detection only 90 - 30 

Face and eyes detection 85 75 50 

 

 

The work compares the performance of a system in two scenarios: face detection only and face and 

eyes detection, based on the number of detected faces, detected eyes, and processing time per frame. In the 

face detection only scenario, the system successfully detects 90 faces with a faster processing time of  

30 milliseconds per frame. When both faces and eyes are detected, the number of detected faces slightly 

drops to 85, and the system detects 75 eyes, but this comes at the cost of increased processing time, which 

rises to 50 milliseconds per frame. 

 

 

6. CONCLUSION 

In this paper, we embarked on a journey to implement real-time face recognition using the OpenCV 

on a Raspberry Pi. Our aim was to develop an end-to-end system capable of detecting and recognizing faces 

in real-time, with a focus on computational efficiency and accuracy. We began by exploring the three 

fundamental phases of face recognition: face detection and data gathering, training the recognizer, and face 

recognition itself. Leveraging the power of the Haar Cascade classifier for face detection and the adaptable 

LBPH face recognizer for training and recognition, we devised a robust framework. By accurately following 

the step-by-step process, from installing OpenCV and testing the camera to gathering data and training the 

recognizer, we demonstrated the practicality of our approach. The integration of pre-existing knowledge, 

such as the Eigenface and Fisherface methods, enriched our understanding of the field and influenced our 

design choices. This paper's significance lies in its successful realization of a real-time face recognition 

system on a Raspberry Pi, making it accessible and feasible for a wide range of applications. As technology 

continues to advance, our paper contributes to the ongoing evolution of face recognition techniques, catering 

to the demands of accuracy, speed, and real-world implementation. 
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