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 The multiplier is an essential component in real-time applications. Even 

though approximation arithmetic affects output accuracy in multipliers, it 

offers a realistic avenue to constructing power area and speed-efficient 

digital circuits. The approximation computing technique is commonly used 

in error-tolerant applications such as signal, image, and video processing. In 

this paper, approximate multipliers (AMs) are designed using both 

conventional and approximate half adders (A-HA) and full adders (A-FA), 

which are strategically placed to add partial products at the most significant 

bit (MSB) positions, and OR gates are used to add partial products at the 

lower significant bit (LSB). In addition, this research article demonstrates 

unsigned and signed multipliers using the ripple carry adder (RCA), carry 

save adder (CSA), conditional sum adder (COSA), carry select adder 

(CSLA), and clock gating technique. The proposed multipliers are 

implemented in Verilog hardware description language (HDL) and simulated 

on the Xilinx VIVADO 2021.2 design tool with target platform Artix-7 

AC701 FPGA. The simulation results found that unsigned and signed 

approximate multiplier power consumption was reduced by 13% and 

18.18% respectively and enhanced accuracy. 
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1. INTRODUCTION  

An effective multiplier ought to have a small area and high concert [1]. A well-known strategy for 

improving circuit concert without increasing hardware complication is to use approximations rather than 

exact computations for the hardware implementation of multipliers [2]. When developing a multiplier using 

the approximate method, abate design characteristics such as delay and power needs while sacrificing 

precision. This technique may diminish results accuracy, but it is appropriate for error-resilience applications 

such as signal, image, and video processing [3]. The approximate multiplication is potentially significant in 

hardware complexity reduction, power consumption, and processing time reduction [4]. 

There are various techniques and strategies employed in designing approximate multipliers for 

reducing hardware complexity, power consumption, and delay while accepting a certain level of error in the 

result [5], [6]. Some common techniques and strategies employed in designing approximate multipliers 

include approximate arithmetic techniques, truncated multiplication, parallelism and pipelining, approximate 
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carry-save and sum (CSA) trees, approximate booth encoding, approximate multiplication algorithms, 

dynamic voltage and frequency scaling, error estimation and compensation, application-specific 

customization, hardware-software co-design [7]. These methods are used with a variety of multiplier 

architectures, such as array multipliers, booth multipliers, and Wallace tree multiplier (WTA) [8]. The 

technique chosen for the multiplier design will be determined by the application's specific requirements, such 

as the level of precision required, power consumption constraints, and available hardware resources.  

The objective of the research is to design and evaluation of approximation multipliers for achieving 

low power consumption, low area, and delay by using clock-gating, approximate arithmetic circuits. In this 

paper, AMs are designed using both conventional and A-HAs and A-FAs, which are strategically placed to 

add partial products at the most significant bit (MSB) positions, and OR gates are used to add partial products 

at the lower significant bit (LSB). 

Salehi [4] designed and synthesized 4-to-128-bit multipliers using system Verilog and Synopsys 

design compiler. According to post-synthesis studies, a 128-bit multiplier hoarded energy, 65% less critical 

delay, and around 45% chip area than an accurate equivalent. In evaluating the efficiency of the method, a 

real-world image analysis application revealed up to 68.3% energy reduction with minimal losses. A 16-bit 

approximation multiplier constructed in a 28 nm CMOS technology exhibits a 20% and up to 69% reduction 

in delay and power, respectively, when compared to the WTA [9]. Venkatachalam and Ko [10] suggested 

two approximate multipliers with power saving by 72% and 38%, respectively. When compared to current 

approximation multipliers, they exhibit greater precision. The suggested approximation multipliers have 

mean relative error estimates as low as 7.6% and 0.02%, respectively, which is better than the prior works. In 

recent years, approximate computing methods significantly increase energy efficiency by removing the 

requirement for totally exact or completely deterministic computations [11]. Immareddy and Sundaramoorthy 

[12] proposed a tuneable error characteristics multiplier with an average error of 1.39%-3.32%, these 

inaccurate multipliers save an average of 31.78%-45.4% in power when compared to similar accurate 

multiplier designs. Rajo and Rao [13] discussed the history and advancements of approximation multiplier 

architectural design, as well as a prospective analysis for future advancements. Ramasamy and Nagarajan 

[14] developed an 8-bit hybrid segment approximate multiplier (HS-AM) and an extended HS-AM for image 

compression with accuracy 99.85% and 99.999%, respectively, for varied inputs. Osta et al. [15] constructed 

an approximate multiplier based on inexact adder circuits and achieved a power savings of up to 17.39% 

while improving time delay by 13.49% at a cost of less than 5% accuracy loss [16]. 

This research assists VLSI engineers in developing power, area, and delay efficient circuits at the 

cost of accuracy in error tolerance applications such as audio and video processing employing machine 

learning methods, computer graphics, wireless communication, robotics, and internet of thing (IoT) devices. 

The rest of the article is organized as follows: sections 2 and 3 elaborated on materials and methods used for 

designing approximation multipliers (respectively). Section 4 illustrates results and discussions followed by 

conclusions and references in section 5.  

 

 

2. RESEARCH MATERIALS  

A typical approximate multiplier is implemented in three stages. The 1st stage includes partial 

product generation using AND gates. In the 2nd stage, partial products (PPs) are added using approximate 

arithmetic circuits to diminish the number of additions along with speeding up the multiplication, in the 3 rd 

stage final product is obtained using four different adders namely ripple carry adder (RCA), conditional sum 

adder (COSA), carry save adder (CSA), and carry select adder (CSLA), and computed multiplier’s 

parameters power, area, and delay. The results are related to find which is efficient among them.  

 

2.1.  Approximate adders 

Approximation adders are designed and implemented to minimize the multiplier complexity and 

power ingesting in error-tolerant applications. Approximate adder circuits are used in multipliers to perform 

partial product addition operations with some level of approximation, often sacrificing accuracy for gains in 

performance, power efficiency, latency, and area reduction [16].  

 

2.1.1. Half adders 

Approximate half adder (A-HA) is a component used in digital circuits to execute an addition of two 

single binary bits with some level of approximation [17]. Figure 1(a) shows a conventional half adder  

(C-HA) in which output sum (S) is implemented using an exclusively-OR (XOR) gate and its Boolean 

expression represented in (1) and carry (C) output implemented with logic AND gate and its Boolean 

expression is given in (2): 

 

S =  A ⊕ B (1) 
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C =  A · B (2) 

 

where ⊕ signifies the XOR operation and period ‘·’ signifies the AND operation. 

Figure 1(b) shows an A-HA in which output SUM(S) is implemented using a logic OR gate and 

CARRY (C) output implemented with logic AND gate. The output logic expressions of A-HA are given in 

(3) and (4). In the A-HA, the XOR gate is replaced by an OR gate to obtain the sum out [18]: 
 

SUM =   A +  B (3) 
 

CARRY =  A ·  B (4) 
 

where ‘+’ represents the OR operation. 
 
 

  
(a) (b) 

 

Figure 1. Half adder logic circuits: (a) C-HA and (b) A-HA 
 
 

Table 1 presents the truth table for a C-HA and A-HA, with one absolute difference highlighted in 

red. In C-HA the S output is calculated with the XOR gate, which returns high (or 1) only when the number 

of high inputs is odd. The AND gate is used to calculate the C output, which only returns high (or 1) if both 

inputs are high. 
 

 

Table 1. Half adder truth table with an absolute difference 

Inputs 
Outputs 

Absolute difference C-HA A-HA 

A B S C SUM CARRY 

0 0 0 0 0 0 0 
0 1 1 0 1 0 0 

1 0 1 0 1 0 0 

1 1 0 1 1 1 1 

 

 

2.1.2. Full adders  

Figure 2(a) shows a conventional full adder (C-FA), It adds three binary bits, usually denoted as A, 

B, and C, and produces a Sum(S) bit and a Carry bit as output. In C-FA output Sum(S) is implemented using 

XOR gate and output Carry (C) implemented with a AND logic followed by OR logic gates. The logic 

expressions of Sum(S) and Carry (C) are given in (5) and (6) respectively.  
 

Sum = A ⊕  B ⊕ C  (5) 
 

Cout = A · B + (C · (A ⊕ B)) (6) 
 

Figure 2(b) shows an approximate full adder (A-FA) in which ‘SUM’ is a complement of ‘CARRY’ 

and ‘CARRY’ is implemented AND gates. The logic expressions of adders are given in (7) and (8). In the 

AFA, the XOR gate of the sum is replaced by and-or-inverter (AOI) gates [19]. 
 

CARRY = A · B + B · C + C · A (7) 
 

SUM = CARRY′ (8) 
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(a) (b) 
 

Figure 2. Full adder logic circuits: (a) C-FA and (b) A-FA 
 

 

Table 2 illustrates the C-FA and A-FA truth table with absolute differences indicated with red color. 

In C-FA the output S is calculated with the two XOR gates connected in series, which returns high (or 1) 

only when the number of high (or 1) inputs is odd. The AND logic followed by OR gate calculate the C. 
 

 

Table 2. Full adder truth table with an absolute difference 

Inputs 
Outputs 

Absolute difference Conventional FA Approximate FA 
A B C S Cout SUM CARRY 

0 0 0 0 0 1 0 1 

0 0 1 1 0 1 0 0 
0 1 0 1 0 1 0 0 

0 1 1 0 1 0 1 0 

1 0 0 1 0 1 0 0 
1 0 1 0 1 0 1 0 

1 1 0 0 1 0 1 0 

1 1 1 1 1 0 1 1 

 

 

2.2.  4-bit ripple carry adder  

Figure 3 depicts a 4-bit RCA, which consists of four complete adders. The first bits of operands, A0 

and B0, are transferred to the first full-adder (FA0), with Cin equal to zero (Cin=0). The initial bit of sum 

(S0) is formed, and the output carry (Co) is propagated to the second adder that comes before it. Similarly, 

the second full adder receives the operand's second bit, the third full adder receives the third bit, and the 

fourth adder receives the fourth bit. Each FA generates a corresponding sum, and a carry, both of which are 

rippled to the following FA as input carry. The RCA circuit offers a relatively short design time, but it 

becomes rather slow as the number of stages increases [20]. 
 
 

 
 

Figure 3. 4-bit RCA 

 

 

2.3.  4-bit carry select adder  

An RCA has a smaller area in design while it has low speed. A carry look ahead adder (CLA) is 

faster in operation but it occupies a high area. CSA lies in between the spectrum. Generally, CSLA consists 

of RCA and multiplexers. CSLA is a multi-operand addition circuit that picks the ‘Sum’ and ‘Carry’ output 

from stage-1 RCA when the carry input is '0' and the ‘Sum’ and ‘Carry’ output from stage-2 RCA when the 
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carry input is '1'. An N+1 multiplexer controls the ‘Sum’ and ‘Carry’ outputs of N-bit addition operations. 

Figure 4 shows a 4-bit CSLA using two 4-bit RCA and 5 numbers of 2 to 1 multiplexers [20]. 
 
 

 
 

Figure 4. 4-bit CSLA  

 

 

2.4.  4-bit carry save adder 

A 4-bit CSA helps in summation of three 4-bit operands in a way that reduces the propagation delay 

compared to traditional ripple-carry adders [20]. CSAs are used in the calculation of the accumulation of 

partial products in integer multiplication [21]. A 4-bit CSA adds three 4-bit binary values, A [3:0], B [3:0], 

and C [3:0], to produce a 4-bit partial sum1, M [3:0], and a 4-bit carry, N [4:1], without immediately 

propagating the carry result. The carry bits from each bit location are preserved and applied to the next 

significant position in next step. Figure 5(a) illustrates how it works. 

Figure 5(b) depicts the two steps of implementation for the 4-bit CSA. In the first step, four full 

adders are placed in parallel. Each full adder processes one bit of operands A [3:0], B [3:0], and C [3:0], 

resulting in partial sum1 M [3:0] and carry N [4:1]. Stage 2 is identical to RCA in that the stored carry and 

sum1 bits are combined to produce the final sum S [4:0] and carry-out. 
 

 
1st Operand  A3 A2 A1 A0 

2nd Operand  B3 B2 B1 B0 

3rd Operand  C3 C2 C1 C0 

Sum1  M3 M2 M1 M0 
Carry N4 N3 N2 N1  

Final Sum S4 S3 S2 S1 S0 

(a) 
 

FA

HA

FA FA FA

FA FA FA

B0A0B3 C1A2 B2 C2 A1A3 C0B1C3

N4 N3 N2 N1 M0M1M2M3

S0S1S2S3S4

Cout

0

 
(b) 

 

Figure 5. 4-bit (a) carry save adder logic and (b) carry save adder 

 

 

2.5.  4-bit conditional sum adder  

In this 4-bit COSA, the first FA takes inputs X0, Y0, and Cin and generates Cout. For inputs X1 and Y1, 

there are two adders with carry-ins of 0 and 1, respectively. The sum S1 is the outcome of a multiplexing 
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(MUX) operation between the two sums generated using the select lines as carry-out from the previous FA. 

The second addition is also multiplexed and provided as a select signal to select greater bit additions, as 

illustrated in Figure 6. The interconnector essentially aggregates the input bit lines into a larger sum bus.  

The addition is substantially quicker since higher bit addition operations do not rely on carry propagation 

(CP) [20]. However, selecting the proper result requires the preceding carry-out to be established. This is a 

somewhat affluent design because N=2n-bit summation requires 2N-1 FAs and (2n − 𝑛 − 2) MUXs, which 

are not encountered in RCAs [22]. 
 

 

 
 

Figure 6. 4-bit COSA  

 

 

3. RESEARCH METHOD 

Multipliers come in two varieties: unsigned and signed. Unsigned multiplication uses all N-bits to 

express the magnitude of the operand. In signed multiplication, the operand's MSB bit (Nth bit) represents 

the sign bit, while the remaining N−1 bits reflect the operand's magnitude. The recital of the multiplier in 

terms of speed, area, and power utilization is further influenced by the number of bits utilized [23].  

Fixed-point signed numbers are represented widely using Sign-magnitude representation or complement 

representation [20], [24]. 

 

3.1.  4-bit approximate multiplier  

Unsigned and signed 4-bit approximate multipliers are crafted with AND gates for producing partial 

products, OR gates utilized in the part of the products accumulation stage to minimize area and energy 

consumption. Inexcat half adders (inHA) and inexact full adders (inFA) [6] are used in the multiplier's upper 

half part (MSB positions), OR gates [25] are applied in the lower part (LSB positions), where partial products 

are segregated as lower and upper parts using the critical column as shown in Figure 7. A traditional RCA is 

utilized as the basic adder block for the final Sum [26].  
 

 

 
 

Figure 7. Dot diagram of approximate 4×4 multiplier 
 
 

An approximate 4-bit multiplier shown in Figure 8 is implemented using an approximate 

arithmetic logic of Gates and circuits to accomplish the multiplication operation between two 4-bit numbers 

that is A[3:0] and B[3:0]. At first, the partial products are produced by AND Gates between all the input bits. 

In the second step, 16 partial products P[15:0] are reduced using full adders, half adders, and OR gates to get 
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the final product. Figure 8 shows the architecture of the approximate 4-bit multiplier. Two FAs, one  

half-adder, and three OR gates are used to minimize the partial products. After two stages of reduction, we 

get the three LSBs of the output, Y[2:0], and two 4-bit values that are accumulated using 

RCA/COSA/C/CSLA/CSA to produce the MSB part of the output, Y[7:3] [27]. An approximation multiplier 

with inexact HA, FA, OR compressors is a simple and efficient approach to approximate the product of two 

binary values. This estimated design provides lower circuit complexity but has the poorest error performance. 
 

 

 
 

Figure 8. Architecture of 4-bit approximate multiplier 

 

 

3.2.  8-bit approximate multiplier  

Figure 9 represents an approximate 8-bit multiplier architecture constructed by using four 

approximate 4×4 multiplier blocks are shown in Figure 8 [10]. The LSB part of product Z[6:0] is achieved 

through OR gates, while CSA provides the MSB portion of product Z[15:7]. The final product (Z[15:0]) is 

obtained by combining the LSB part (Z[6:0]) and the MSB part (Z[15:7]). The architecture is designed to 

provide an approximate result while reducing computational complexity and power consumption [28].  
 

 

 
 

Figure 9. Architecture of 8-bit approximate multiplier using 4-bit multipliers 
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3.3.  16-bit approximate multipliers with clock-gating  

The clock-gating approach used in multipliers reduces both power and circuit area. Applying a 

clock-gating logic prevents unnecessary switching of adders during clock cycles while stored data is intact 

[29]. The suggested architecture reduces dynamic power dissipation by suppressing signal activities with 

clock-gating when they are not required. Figure 10 shows a block diagram of a multiplier with a  

flip-flop-based clock gating multiplier [30]. 

 

 

Partial 
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Delay 
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Figure 10. Generalized flip-flop based clock gating approximate multiplier 

 

 

In Figure 10, the gated-clk goes too high during D-FF output and the clock input is in a high state 

otherwise gated clock is at zero state. In the existing approximate multiplier, the approximation method is 

applied on either side of the critical column, which is named the LSB and MSB. In the suggested new design, 

the approximation over the LSB side remains the same, and the approximation at the MSB side, the 

approximate HAs and FAs have been swapped out with exact half-full adders at the appropriate places [16] 

to enhance the precision of the estimated multiplier. The outcome of the LSB part is enabled by the gated 

clock thus, the power utilization of the multiplier is minimized. Figure 11 depicts the approximate 4-bit 

multiplier, in which the MSB partial products are aggregated using exact full adder (excat FA) and half 

adders (exact HA), resulting in increased accuracy in the final product [31]. 

 

 

 
 

Figure 11. Dot diagram of approximate 4-bit multiplier with exact HA and FA 

 

 

The approximate 16-bit multiplier architecture illustrated in Figure 12 is crafted using the four 

approximate 8-bit multiplier blocks from Figure 9. In Figure 12 the clock-gating circuit controls the LAB 

part of the final product which is Z[14:0]. 16-bit adder generates the MSB part Z[32:15]. The final product is 

the combination of Z[14:0] and Z[32:15]. The CSA efficiently combines the partial products from the 

approximate 8-bit multiplier blocks to produce the higher bits of the result without introducing significant 

overhead. 
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Figure 12. Architecture of 16-bit approximate multiplier using 8-bit multiplier and clock gating 

 

 

4. RESULTS AND DISCUSSION 

The simulation result of unsigned as well as signed 16-bit multipliers using inexact adders is shown 

in Figures 13 and 14. Figure 13 illustrates the simulation results of 16-bit unsigned approximate multiplier 

with a multiplicand a[15:0]=16’d 2987 and a multiplier b[15:0]=16’d 50763 and the final product is  

(Cout, z[31:0])=32’d 2151383029. Figure 14 illustrates the simulation results of 16-bit signed approximate 

multiplier with a multiplicand a[15:0]=  ̶ 16’d 6543 and a multiplier b[15:0]=   ̶ 16’d 9776 and the final 

product is (Cout, z[31:0])=32’d 325384696. 

 

 

 
 

Figure 13. 16-bit unsigned approximate multiplier output with approximate adders 

 

 

 
 

Figure 14. 16-bit signed approximate multiplier output with approximate adders 

 

 

The simulation results of unsigned and signed 16-bit approximate multipliers using clock gating and 

exact adders for MSB part addition are illustrated in Figures 15 and 16. Figure 15 illustrates the simulation 

results of 16-bit clk-gating unsigned approximate multiplier with a multiplicand a[15:0]=16’d 2987 and a 

multiplier b[15:0]=16’d 50763 and the final product is (Cout, z[31:0])=32’d 210141055. Figure 16 illustrates 
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the simulation results of 16-bit signed approximate multiplier with a multiplicand a[15:0]= ̶ 16’d 6543 and a 

multiplier b[15:0]= 1̶6’d 9776 and the final product is (Cout, z[31:0])= 32’d 315850576. 

 

 

 
 

Figure 15. 16-bit unsigned approximate multiplier output with clk-gating and inexact adders 

 

 

 
 

Figure 16. 16-bit signed approximate multiplier output with clk-gating and exact adders 

 

 

4.1.  Quantitative comparison among multipliers 

In this section, we compared approximate multipliers (AM) described in previous sections in terms 

of power, area, and latency. Thus, the next subsections compare the designs in two categories: fixed-point 

unsigned and signed multipliers, it should be emphasized that all of the designs were assessed using the same 

environment. We applied approximation at the partial product accumulation stage to achieve less delay, 

lower power consumption, and increased area efficiency, as well as to improve the precision of the final 

product obtained with COSA/CSLA/RCA/CAS. Tables 3 and 4 show the delay/power/area comparison of  

4-bit, 8-bit, and 16-bit signed and unsigned multipliers among four types of adders. The results found that the 

carry selects adder gave better results in some cases that are highlighted in green color. In general, at the 

same approximation level, CLSA has a low delay, RCA has a low area, and COSA has low power 

consumption than another adder. 

 

 

Table 3. Unsigned approximate multiplier parameters  

Adders 
Power (w) Area (LUT) Critical path delay (ns) 

4-bit 8-bit 16-bit 4-bit 8-bit 16-bit 4-bit 8-bit 16-bit 

COSA 0.141 0.17 0.237 11 67 305 5.343 7.894 10.693 

CSLA 0.141 0.17 0.258 11 61 275 5.336 6.911 9.816 

RCA 0.141 0.174 0.277 11 60 260 5.343 7.302 10.776 

CSA 0.142 0.178 0.316 11 66 293 5.343 7.565 11.67 

 *LUTs: lookup tables 

 

 

Table 4. Signed approximate multiplier parameters  

Adders 
Power (w) Area (LUT) Critical path delay (ns) 

4-bit 8-bit 16-bit 4-bit 8-bit 16-bit 4-bit 8-bit 16-bit 

COSA 0.141 0.182 0.27 10 71 321 5.343 7.792 11.39 

CSLA 0.141 0.186 0.289 10 74 310 5.343 7.588 10.453 
RCA 0.141 0.187 0.315 12 65 315 5.795 7.35 11.128 

CSA 0.141 0.181 0.313 11 68 294 5.343 7.575 11.579 

 

 

Figures 17 to 19 compare the multiplier circuit parameters of unsigned and signed multipliers 

designed using different adders at the final stage. This comparison found that the sensitivity of the 

approximation approaches to the synthesis mode, has not been extensively demonstrated in previous studies. 

Figure 17 depicts the power consumption of signed and unsigned four-bit, eight-bit, and sixteen-bit 
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multipliers. A multiplier with a COSA adder at the final stage utilized less power than one with a 

RCA/CSLA/CSA adder at the final stage.  

 

 

  
 

Figure 17. Approximate multipliers power characteristics comparison 

 

 

Figure 18 depicts the area occupied by the signed and unsigned 4-bit, 8-bit, and 16-bit multipliers. 

The multiplier with RCA at the last consumed less power than the COSA/CSA/CSLA adders at the end stage. 

Figure 19 shows the delay induced by the signed and unsigned 4-bit, 8-bit, and 16-bit multipliers. A 

multiplier with CLSA at the last stage produced less delay than COSA/CSA/CSLA at the end stage. 

 

 

  
 

Figure 18. Approximate multipliers area characteristics comparison 

 

 

  
 

Figure 19. A approximate multipliers delay characteristics comparison 

 

 

Table 5 shows the delay/power/area comparison of 16-bit signed and unsigned multipliers. The 

results found that the carry selected adder gave better results in some cases that are highlighted in green 

color. In general, at the same approximation level, CLSA has a low delay, RCA has low area, and COSA has 

a lower power consumption than the other adder. 
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From Tables 5 to 7, the proposed clock gating technique design proves to be better than the existing 

inexact adder approximate multiplier design as it reduces power dissipation by 13% and 18.18% for unsigned 

and signed 16-bit clock gating multiplier, the only slight increases in area and delay dissipation which 

remains as a trade-off. 

 

 

Table 5. 16-bit approximate multiplier using clock gating and exact adders 

Adder type 
Unsigned 16-bit multiplier Signed 16-bit multiplier 

Power (W) Area (LUT) Delay (ns) Power (W) Area (LUT) Delay (ns) 

COSA 0.237 305 10.693 0.271 321 11.390 

CSLA 0.258 275 09.816 0.289 310 10.453 

RCA 0.277 260 10.776 0.315 315 11.128 
CSA 0.277 260 10.773 0.303 287 11.307 

 

 

Table 6. Unsigned 16-bit approximate multiplier parameter comparison for CSA 
Multiplier characteristics In-exact adders Exact adder and clk-gating % change 

Power (w) 0.313 0.277 13.00 
Delay (ns) 10.267 10.773 -4.70 

Area (LUTs) 221 260 -15.00 

 

 

Table 7. Signed 16-bit approximate multiplier parameter comparison for CSA 
Multiplier characteristics In-exact adders Exact adder and clk-gating % change 

Power (w) 0.360 0.303 18.81 

Delay (ns) 10.903 11.307 -3.57 
Area (LUTs) 246 287 -14.29 

 

 

Calculating the proportion of power dissipation using (7) allows us to easily understand the power 

efficiency of the suggested multiplier. 

 

Power(%) =
Power utilizationinexact−Power utilizationexact

Power utilizationinxact
  (7) 

 

Where inexact is inexact adders approximate multiplier and exact is exact adder approximate multiplier. 
 

 

5. CONCLUSION 

The paper outlines the design of both unsigned and signed approximate 16-bit multipliers using the 

clock-gating technique. The results found that the multiplier accuracy improved and power dissipation 

decreased along with the trade-off between the parameters power, area, and delay it includes the design of 

clock-gating, which is crafted using Verilog hardware description language (HDL) and simulated on Artix-7 

AC701 FPGA in Xilinx Vivado Tool. The proposed design proves to be better than the existing design as it 

produces more accurate results and reduces power dissipation by 13% and 18.18% for unsigned and signed 

approximate multipliers respectively along with small changes in in area and delay. In the future research, the 

proposed multipliers will be used in image processing applications such as image multiplication, smoothing, 

and sharpening to produce high-quality images with error tolerance. 
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