
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 14, No. 2, July 2025, pp. 398~411

ISSN: 2089-4864, DOI: 10.11591/ijres.v14.i2.pp398-411  398

Journal homepage: http://ijres.iaescore.com

Design and evaluation of clock-gating-based approximate

multiplier for error-tolerant applications

Chowdam Venkata Sudhakar1, Suresh Babu Potladurty2, Prasad Reddy Karipireddy3
1Department of Electronics and Communication Engineering, School of Engineering, Mohan Babu University (Erstwhile Sree

Vidyanikethan Engineering College), Tirupati, India
2Department of Electronics and Communication Engineering, Sri Venkateswara College of Engineering, Tirupati, India

3Functional Safety Expert, Espoo, Finland

Article Info ABSTRACT

Article history:

Received May 23, 2024

Revised Apr 18, 2025

Accepted Jun 10, 2025

 The multiplier is an essential component in real-time applications. Even

though approximation arithmetic affects output accuracy in multipliers, it

offers a realistic avenue to constructing power area and speed-efficient

digital circuits. The approximation computing technique is commonly used

in error-tolerant applications such as signal, image, and video processing. In

this paper, approximate multipliers (AMs) are designed using both

conventional and approximate half adders (A-HA) and full adders (A-FA),

which are strategically placed to add partial products at the most significant

bit (MSB) positions, and OR gates are used to add partial products at the

lower significant bit (LSB). In addition, this research article demonstrates

unsigned and signed multipliers using the ripple carry adder (RCA), carry

save adder (CSA), conditional sum adder (COSA), carry select adder

(CSLA), and clock gating technique. The proposed multipliers are

implemented in Verilog hardware description language (HDL) and simulated

on the Xilinx VIVADO 2021.2 design tool with target platform Artix-7

AC701 FPGA. The simulation results found that unsigned and signed

approximate multiplier power consumption was reduced by 13% and

18.18% respectively and enhanced accuracy.

Keywords:

Approximate adders

Approximate computing

Clock-gating multiplier

Field-programmable gate array

implementation

Power efficiency

Verilog hardware description

language

This is an open access article under the CC BY-SA license.

Corresponding Author:

Venkata Sudhakar Chowdam

Department of Electronics and Communication Engineering, School of Engineering

Mohan Babu University (Erstwhile Sree Vidyanikethan Engineering College)

Tirupati-517102, India

Email: adrianat@itmorelia.edu.mx

1. INTRODUCTION

An effective multiplier ought to have a small area and high concert [1]. A well-known strategy for

improving circuit concert without increasing hardware complication is to use approximations rather than

exact computations for the hardware implementation of multipliers [2]. When developing a multiplier using

the approximate method, abate design characteristics such as delay and power needs while sacrificing

precision. This technique may diminish results accuracy, but it is appropriate for error-resilience applications

such as signal, image, and video processing [3]. The approximate multiplication is potentially significant in

hardware complexity reduction, power consumption, and processing time reduction [4].

There are various techniques and strategies employed in designing approximate multipliers for

reducing hardware complexity, power consumption, and delay while accepting a certain level of error in the

result [5], [6]. Some common techniques and strategies employed in designing approximate multipliers

include approximate arithmetic techniques, truncated multiplication, parallelism and pipelining, approximate

https://creativecommons.org/licenses/by-sa/4.0/

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Design and evaluation of clock-gating-based approximate multiplier for … (Chowdam Venkata Sudhakar)

399

carry-save and sum (CSA) trees, approximate booth encoding, approximate multiplication algorithms,

dynamic voltage and frequency scaling, error estimation and compensation, application-specific

customization, hardware-software co-design [7]. These methods are used with a variety of multiplier

architectures, such as array multipliers, booth multipliers, and Wallace tree multiplier (WTA) [8]. The

technique chosen for the multiplier design will be determined by the application's specific requirements, such

as the level of precision required, power consumption constraints, and available hardware resources.

The objective of the research is to design and evaluation of approximation multipliers for achieving

low power consumption, low area, and delay by using clock-gating, approximate arithmetic circuits. In this

paper, AMs are designed using both conventional and A-HAs and A-FAs, which are strategically placed to

add partial products at the most significant bit (MSB) positions, and OR gates are used to add partial products

at the lower significant bit (LSB).

Salehi [4] designed and synthesized 4-to-128-bit multipliers using system Verilog and Synopsys

design compiler. According to post-synthesis studies, a 128-bit multiplier hoarded energy, 65% less critical

delay, and around 45% chip area than an accurate equivalent. In evaluating the efficiency of the method, a

real-world image analysis application revealed up to 68.3% energy reduction with minimal losses. A 16-bit

approximation multiplier constructed in a 28 nm CMOS technology exhibits a 20% and up to 69% reduction

in delay and power, respectively, when compared to the WTA [9]. Venkatachalam and Ko [10] suggested

two approximate multipliers with power saving by 72% and 38%, respectively. When compared to current

approximation multipliers, they exhibit greater precision. The suggested approximation multipliers have

mean relative error estimates as low as 7.6% and 0.02%, respectively, which is better than the prior works. In

recent years, approximate computing methods significantly increase energy efficiency by removing the

requirement for totally exact or completely deterministic computations [11]. Immareddy and Sundaramoorthy

[12] proposed a tuneable error characteristics multiplier with an average error of 1.39%-3.32%, these

inaccurate multipliers save an average of 31.78%-45.4% in power when compared to similar accurate

multiplier designs. Rajo and Rao [13] discussed the history and advancements of approximation multiplier

architectural design, as well as a prospective analysis for future advancements. Ramasamy and Nagarajan

[14] developed an 8-bit hybrid segment approximate multiplier (HS-AM) and an extended HS-AM for image

compression with accuracy 99.85% and 99.999%, respectively, for varied inputs. Osta et al. [15] constructed

an approximate multiplier based on inexact adder circuits and achieved a power savings of up to 17.39%

while improving time delay by 13.49% at a cost of less than 5% accuracy loss [16].

This research assists VLSI engineers in developing power, area, and delay efficient circuits at the

cost of accuracy in error tolerance applications such as audio and video processing employing machine

learning methods, computer graphics, wireless communication, robotics, and internet of thing (IoT) devices.

The rest of the article is organized as follows: sections 2 and 3 elaborated on materials and methods used for

designing approximation multipliers (respectively). Section 4 illustrates results and discussions followed by

conclusions and references in section 5.

2. RESEARCH MATERIALS

A typical approximate multiplier is implemented in three stages. The 1st stage includes partial

product generation using AND gates. In the 2nd stage, partial products (PPs) are added using approximate

arithmetic circuits to diminish the number of additions along with speeding up the multiplication, in the 3 rd

stage final product is obtained using four different adders namely ripple carry adder (RCA), conditional sum

adder (COSA), carry save adder (CSA), and carry select adder (CSLA), and computed multiplier’s

parameters power, area, and delay. The results are related to find which is efficient among them.

2.1. Approximate adders

Approximation adders are designed and implemented to minimize the multiplier complexity and

power ingesting in error-tolerant applications. Approximate adder circuits are used in multipliers to perform

partial product addition operations with some level of approximation, often sacrificing accuracy for gains in

performance, power efficiency, latency, and area reduction [16].

2.1.1. Half adders

Approximate half adder (A-HA) is a component used in digital circuits to execute an addition of two

single binary bits with some level of approximation [17]. Figure 1(a) shows a conventional half adder

(C-HA) in which output sum (S) is implemented using an exclusively-OR (XOR) gate and its Boolean

expression represented in (1) and carry (C) output implemented with logic AND gate and its Boolean

expression is given in (2):

S = A ⊕ B (1)

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 398-411

400

C = A · B (2)

where ⊕ signifies the XOR operation and period ‘·’ signifies the AND operation.

Figure 1(b) shows an A-HA in which output SUM(S) is implemented using a logic OR gate and

CARRY (C) output implemented with logic AND gate. The output logic expressions of A-HA are given in

(3) and (4). In the A-HA, the XOR gate is replaced by an OR gate to obtain the sum out [18]:

SUM = A + B (3)

CARRY = A · B (4)

where ‘+’ represents the OR operation.

(a) (b)

Figure 1. Half adder logic circuits: (a) C-HA and (b) A-HA

Table 1 presents the truth table for a C-HA and A-HA, with one absolute difference highlighted in

red. In C-HA the S output is calculated with the XOR gate, which returns high (or 1) only when the number

of high inputs is odd. The AND gate is used to calculate the C output, which only returns high (or 1) if both

inputs are high.

Table 1. Half adder truth table with an absolute difference

Inputs
Outputs

Absolute difference C-HA A-HA

A B S C SUM CARRY

0 0 0 0 0 0 0
0 1 1 0 1 0 0

1 0 1 0 1 0 0

1 1 0 1 1 1 1

2.1.2. Full adders

Figure 2(a) shows a conventional full adder (C-FA), It adds three binary bits, usually denoted as A,

B, and C, and produces a Sum(S) bit and a Carry bit as output. In C-FA output Sum(S) is implemented using

XOR gate and output Carry (C) implemented with a AND logic followed by OR logic gates. The logic

expressions of Sum(S) and Carry (C) are given in (5) and (6) respectively.

Sum = A ⊕ B ⊕ C (5)

Cout = A · B + (C · (A ⊕ B)) (6)

Figure 2(b) shows an approximate full adder (A-FA) in which ‘SUM’ is a complement of ‘CARRY’

and ‘CARRY’ is implemented AND gates. The logic expressions of adders are given in (7) and (8). In the

AFA, the XOR gate of the sum is replaced by and-or-inverter (AOI) gates [19].

CARRY = A · B + B · C + C · A (7)

SUM = CARRY′ (8)

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Design and evaluation of clock-gating-based approximate multiplier for … (Chowdam Venkata Sudhakar)

401

(a) (b)

Figure 2. Full adder logic circuits: (a) C-FA and (b) A-FA

Table 2 illustrates the C-FA and A-FA truth table with absolute differences indicated with red color.

In C-FA the output S is calculated with the two XOR gates connected in series, which returns high (or 1)

only when the number of high (or 1) inputs is odd. The AND logic followed by OR gate calculate the C.

Table 2. Full adder truth table with an absolute difference

Inputs
Outputs

Absolute difference Conventional FA Approximate FA
A B C S Cout SUM CARRY

0 0 0 0 0 1 0 1

0 0 1 1 0 1 0 0
0 1 0 1 0 1 0 0

0 1 1 0 1 0 1 0

1 0 0 1 0 1 0 0
1 0 1 0 1 0 1 0

1 1 0 0 1 0 1 0

1 1 1 1 1 0 1 1

2.2. 4-bit ripple carry adder

Figure 3 depicts a 4-bit RCA, which consists of four complete adders. The first bits of operands, A0

and B0, are transferred to the first full-adder (FA0), with Cin equal to zero (Cin=0). The initial bit of sum

(S0) is formed, and the output carry (Co) is propagated to the second adder that comes before it. Similarly,

the second full adder receives the operand's second bit, the third full adder receives the third bit, and the

fourth adder receives the fourth bit. Each FA generates a corresponding sum, and a carry, both of which are

rippled to the following FA as input carry. The RCA circuit offers a relatively short design time, but it

becomes rather slow as the number of stages increases [20].

Figure 3. 4-bit RCA

2.3. 4-bit carry select adder

An RCA has a smaller area in design while it has low speed. A carry look ahead adder (CLA) is

faster in operation but it occupies a high area. CSA lies in between the spectrum. Generally, CSLA consists

of RCA and multiplexers. CSLA is a multi-operand addition circuit that picks the ‘Sum’ and ‘Carry’ output

from stage-1 RCA when the carry input is '0' and the ‘Sum’ and ‘Carry’ output from stage-2 RCA when the

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 398-411

402

carry input is '1'. An N+1 multiplexer controls the ‘Sum’ and ‘Carry’ outputs of N-bit addition operations.

Figure 4 shows a 4-bit CSLA using two 4-bit RCA and 5 numbers of 2 to 1 multiplexers [20].

Figure 4. 4-bit CSLA

2.4. 4-bit carry save adder

A 4-bit CSA helps in summation of three 4-bit operands in a way that reduces the propagation delay

compared to traditional ripple-carry adders [20]. CSAs are used in the calculation of the accumulation of

partial products in integer multiplication [21]. A 4-bit CSA adds three 4-bit binary values, A [3:0], B [3:0],

and C [3:0], to produce a 4-bit partial sum1, M [3:0], and a 4-bit carry, N [4:1], without immediately

propagating the carry result. The carry bits from each bit location are preserved and applied to the next

significant position in next step. Figure 5(a) illustrates how it works.

Figure 5(b) depicts the two steps of implementation for the 4-bit CSA. In the first step, four full

adders are placed in parallel. Each full adder processes one bit of operands A [3:0], B [3:0], and C [3:0],

resulting in partial sum1 M [3:0] and carry N [4:1]. Stage 2 is identical to RCA in that the stored carry and

sum1 bits are combined to produce the final sum S [4:0] and carry-out.

1st Operand A3 A2 A1 A0

2nd Operand B3 B2 B1 B0

3rd Operand C3 C2 C1 C0

Sum1 M3 M2 M1 M0
Carry N4 N3 N2 N1

Final Sum S4 S3 S2 S1 S0

(a)

FA

HA

FA FA FA

FA FA FA

B0A0B3 C1A2 B2 C2 A1A3 C0B1C3

N4 N3 N2 N1 M0M1M2M3

S0S1S2S3S4

Cout

0

(b)

Figure 5. 4-bit (a) carry save adder logic and (b) carry save adder

2.5. 4-bit conditional sum adder

In this 4-bit COSA, the first FA takes inputs X0, Y0, and Cin and generates Cout. For inputs X1 and Y1,

there are two adders with carry-ins of 0 and 1, respectively. The sum S1 is the outcome of a multiplexing

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Design and evaluation of clock-gating-based approximate multiplier for … (Chowdam Venkata Sudhakar)

403

(MUX) operation between the two sums generated using the select lines as carry-out from the previous FA.

The second addition is also multiplexed and provided as a select signal to select greater bit additions, as

illustrated in Figure 6. The interconnector essentially aggregates the input bit lines into a larger sum bus.

The addition is substantially quicker since higher bit addition operations do not rely on carry propagation

(CP) [20]. However, selecting the proper result requires the preceding carry-out to be established. This is a

somewhat affluent design because N=2n-bit summation requires 2N-1 FAs and (2n − 𝑛 − 2) MUXs, which

are not encountered in RCAs [22].

Figure 6. 4-bit COSA

3. RESEARCH METHOD

Multipliers come in two varieties: unsigned and signed. Unsigned multiplication uses all N-bits to

express the magnitude of the operand. In signed multiplication, the operand's MSB bit (Nth bit) represents

the sign bit, while the remaining N−1 bits reflect the operand's magnitude. The recital of the multiplier in

terms of speed, area, and power utilization is further influenced by the number of bits utilized [23].

Fixed-point signed numbers are represented widely using Sign-magnitude representation or complement

representation [20], [24].

3.1. 4-bit approximate multiplier

Unsigned and signed 4-bit approximate multipliers are crafted with AND gates for producing partial

products, OR gates utilized in the part of the products accumulation stage to minimize area and energy

consumption. Inexcat half adders (inHA) and inexact full adders (inFA) [6] are used in the multiplier's upper

half part (MSB positions), OR gates [25] are applied in the lower part (LSB positions), where partial products

are segregated as lower and upper parts using the critical column as shown in Figure 7. A traditional RCA is

utilized as the basic adder block for the final Sum [26].

Figure 7. Dot diagram of approximate 4×4 multiplier

An approximate 4-bit multiplier shown in Figure 8 is implemented using an approximate

arithmetic logic of Gates and circuits to accomplish the multiplication operation between two 4-bit numbers

that is A[3:0] and B[3:0]. At first, the partial products are produced by AND Gates between all the input bits.

In the second step, 16 partial products P[15:0] are reduced using full adders, half adders, and OR gates to get

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 398-411

404

the final product. Figure 8 shows the architecture of the approximate 4-bit multiplier. Two FAs, one

half-adder, and three OR gates are used to minimize the partial products. After two stages of reduction, we

get the three LSBs of the output, Y[2:0], and two 4-bit values that are accumulated using

RCA/COSA/C/CSLA/CSA to produce the MSB part of the output, Y[7:3] [27]. An approximation multiplier

with inexact HA, FA, OR compressors is a simple and efficient approach to approximate the product of two

binary values. This estimated design provides lower circuit complexity but has the poorest error performance.

Figure 8. Architecture of 4-bit approximate multiplier

3.2. 8-bit approximate multiplier

Figure 9 represents an approximate 8-bit multiplier architecture constructed by using four

approximate 4×4 multiplier blocks are shown in Figure 8 [10]. The LSB part of product Z[6:0] is achieved

through OR gates, while CSA provides the MSB portion of product Z[15:7]. The final product (Z[15:0]) is

obtained by combining the LSB part (Z[6:0]) and the MSB part (Z[15:7]). The architecture is designed to

provide an approximate result while reducing computational complexity and power consumption [28].

Figure 9. Architecture of 8-bit approximate multiplier using 4-bit multipliers

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Design and evaluation of clock-gating-based approximate multiplier for … (Chowdam Venkata Sudhakar)

405

3.3. 16-bit approximate multipliers with clock-gating

The clock-gating approach used in multipliers reduces both power and circuit area. Applying a

clock-gating logic prevents unnecessary switching of adders during clock cycles while stored data is intact

[29]. The suggested architecture reduces dynamic power dissipation by suppressing signal activities with

clock-gating when they are not required. Figure 10 shows a block diagram of a multiplier with a

flip-flop-based clock gating multiplier [30].

Partial

Products

D-FF Register

Approximation

Using OR

Gates

Low Power, Area,

Delay

Adder Circuits

Operands

LSB part

MSB part

LSB Output

M
S

B
 O

u
tp

u
t

Enable

Reset

Clk

Final

Prodct

Qout

Gated-Clk

AND

[MSB,LSB]

Figure 10. Generalized flip-flop based clock gating approximate multiplier

In Figure 10, the gated-clk goes too high during D-FF output and the clock input is in a high state

otherwise gated clock is at zero state. In the existing approximate multiplier, the approximation method is

applied on either side of the critical column, which is named the LSB and MSB. In the suggested new design,

the approximation over the LSB side remains the same, and the approximation at the MSB side, the

approximate HAs and FAs have been swapped out with exact half-full adders at the appropriate places [16]

to enhance the precision of the estimated multiplier. The outcome of the LSB part is enabled by the gated

clock thus, the power utilization of the multiplier is minimized. Figure 11 depicts the approximate 4-bit

multiplier, in which the MSB partial products are aggregated using exact full adder (excat FA) and half

adders (exact HA), resulting in increased accuracy in the final product [31].

Figure 11. Dot diagram of approximate 4-bit multiplier with exact HA and FA

The approximate 16-bit multiplier architecture illustrated in Figure 12 is crafted using the four

approximate 8-bit multiplier blocks from Figure 9. In Figure 12 the clock-gating circuit controls the LAB

part of the final product which is Z[14:0]. 16-bit adder generates the MSB part Z[32:15]. The final product is

the combination of Z[14:0] and Z[32:15]. The CSA efficiently combines the partial products from the

approximate 8-bit multiplier blocks to produce the higher bits of the result without introducing significant

overhead.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 398-411

406

Figure 12. Architecture of 16-bit approximate multiplier using 8-bit multiplier and clock gating

4. RESULTS AND DISCUSSION

The simulation result of unsigned as well as signed 16-bit multipliers using inexact adders is shown

in Figures 13 and 14. Figure 13 illustrates the simulation results of 16-bit unsigned approximate multiplier

with a multiplicand a[15:0]=16’d 2987 and a multiplier b[15:0]=16’d 50763 and the final product is

(Cout, z[31:0])=32’d 2151383029. Figure 14 illustrates the simulation results of 16-bit signed approximate

multiplier with a multiplicand a[15:0]= ̶ 16’d 6543 and a multiplier b[15:0]= ̶ 16’d 9776 and the final

product is (Cout, z[31:0])=32’d 325384696.

Figure 13. 16-bit unsigned approximate multiplier output with approximate adders

Figure 14. 16-bit signed approximate multiplier output with approximate adders

The simulation results of unsigned and signed 16-bit approximate multipliers using clock gating and

exact adders for MSB part addition are illustrated in Figures 15 and 16. Figure 15 illustrates the simulation

results of 16-bit clk-gating unsigned approximate multiplier with a multiplicand a[15:0]=16’d 2987 and a

multiplier b[15:0]=16’d 50763 and the final product is (Cout, z[31:0])=32’d 210141055. Figure 16 illustrates

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Design and evaluation of clock-gating-based approximate multiplier for … (Chowdam Venkata Sudhakar)

407

the simulation results of 16-bit signed approximate multiplier with a multiplicand a[15:0]= ̶ 16’d 6543 and a

multiplier b[15:0]= 1̶6’d 9776 and the final product is (Cout, z[31:0])= 32’d 315850576.

Figure 15. 16-bit unsigned approximate multiplier output with clk-gating and inexact adders

Figure 16. 16-bit signed approximate multiplier output with clk-gating and exact adders

4.1. Quantitative comparison among multipliers

In this section, we compared approximate multipliers (AM) described in previous sections in terms

of power, area, and latency. Thus, the next subsections compare the designs in two categories: fixed-point

unsigned and signed multipliers, it should be emphasized that all of the designs were assessed using the same

environment. We applied approximation at the partial product accumulation stage to achieve less delay,

lower power consumption, and increased area efficiency, as well as to improve the precision of the final

product obtained with COSA/CSLA/RCA/CAS. Tables 3 and 4 show the delay/power/area comparison of

4-bit, 8-bit, and 16-bit signed and unsigned multipliers among four types of adders. The results found that the

carry selects adder gave better results in some cases that are highlighted in green color. In general, at the

same approximation level, CLSA has a low delay, RCA has a low area, and COSA has low power

consumption than another adder.

Table 3. Unsigned approximate multiplier parameters

Adders
Power (w) Area (LUT) Critical path delay (ns)

4-bit 8-bit 16-bit 4-bit 8-bit 16-bit 4-bit 8-bit 16-bit

COSA 0.141 0.17 0.237 11 67 305 5.343 7.894 10.693

CSLA 0.141 0.17 0.258 11 61 275 5.336 6.911 9.816

RCA 0.141 0.174 0.277 11 60 260 5.343 7.302 10.776

CSA 0.142 0.178 0.316 11 66 293 5.343 7.565 11.67

 *LUTs: lookup tables

Table 4. Signed approximate multiplier parameters

Adders
Power (w) Area (LUT) Critical path delay (ns)

4-bit 8-bit 16-bit 4-bit 8-bit 16-bit 4-bit 8-bit 16-bit

COSA 0.141 0.182 0.27 10 71 321 5.343 7.792 11.39

CSLA 0.141 0.186 0.289 10 74 310 5.343 7.588 10.453
RCA 0.141 0.187 0.315 12 65 315 5.795 7.35 11.128

CSA 0.141 0.181 0.313 11 68 294 5.343 7.575 11.579

Figures 17 to 19 compare the multiplier circuit parameters of unsigned and signed multipliers

designed using different adders at the final stage. This comparison found that the sensitivity of the

approximation approaches to the synthesis mode, has not been extensively demonstrated in previous studies.

Figure 17 depicts the power consumption of signed and unsigned four-bit, eight-bit, and sixteen-bit

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 398-411

408

multipliers. A multiplier with a COSA adder at the final stage utilized less power than one with a

RCA/CSLA/CSA adder at the final stage.

Figure 17. Approximate multipliers power characteristics comparison

Figure 18 depicts the area occupied by the signed and unsigned 4-bit, 8-bit, and 16-bit multipliers.

The multiplier with RCA at the last consumed less power than the COSA/CSA/CSLA adders at the end stage.

Figure 19 shows the delay induced by the signed and unsigned 4-bit, 8-bit, and 16-bit multipliers. A

multiplier with CLSA at the last stage produced less delay than COSA/CSA/CSLA at the end stage.

Figure 18. Approximate multipliers area characteristics comparison

Figure 19. A approximate multipliers delay characteristics comparison

Table 5 shows the delay/power/area comparison of 16-bit signed and unsigned multipliers. The

results found that the carry selected adder gave better results in some cases that are highlighted in green

color. In general, at the same approximation level, CLSA has a low delay, RCA has low area, and COSA has

a lower power consumption than the other adder.

0

0.1

0.2

0.3

0.4

4-Bit 8-Bit 16-Bit

P
o

w
er

(w
)

Unsigned Multiplier

COSA

CSLA

RCA

CSA
0

0.1

0.2

0.3

0.4

4-Bit 8-Bit 16-Bit

P
o

w
er

(w
)

Signed Multiplier

COSA

CSLA

RCA

CSA

0

100

200

300

400

4-Bit 8-Bit 16-Bit

A
re

a(
LU

T)

Unsigned Multiplier

COSA

CSLA

RCA

CSA
0

100

200

300

400

4-Bit 8-Bit 16-Bit

A
re

a(
LU

T)

Signed Multiplier

COSA

CSLA

RCA

CSA

0

2

4

6

8

10

12

14

4-Bit 8-Bit 16-Bit

D
e

la
y(

n
s)

Unsigned Multiplier

COSA

CSLA

RCA

CSA

0

2

4

6

8

10

12

14

4-Bit 8-Bit 16-Bit

D
e

la
y(

n
s)

Signed Multiplier

COSA

CSLA

RCA

CSA

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Design and evaluation of clock-gating-based approximate multiplier for … (Chowdam Venkata Sudhakar)

409

From Tables 5 to 7, the proposed clock gating technique design proves to be better than the existing

inexact adder approximate multiplier design as it reduces power dissipation by 13% and 18.18% for unsigned

and signed 16-bit clock gating multiplier, the only slight increases in area and delay dissipation which

remains as a trade-off.

Table 5. 16-bit approximate multiplier using clock gating and exact adders

Adder type
Unsigned 16-bit multiplier Signed 16-bit multiplier

Power (W) Area (LUT) Delay (ns) Power (W) Area (LUT) Delay (ns)

COSA 0.237 305 10.693 0.271 321 11.390

CSLA 0.258 275 09.816 0.289 310 10.453

RCA 0.277 260 10.776 0.315 315 11.128
CSA 0.277 260 10.773 0.303 287 11.307

Table 6. Unsigned 16-bit approximate multiplier parameter comparison for CSA
Multiplier characteristics In-exact adders Exact adder and clk-gating % change

Power (w) 0.313 0.277 13.00
Delay (ns) 10.267 10.773 -4.70

Area (LUTs) 221 260 -15.00

Table 7. Signed 16-bit approximate multiplier parameter comparison for CSA
Multiplier characteristics In-exact adders Exact adder and clk-gating % change

Power (w) 0.360 0.303 18.81

Delay (ns) 10.903 11.307 -3.57
Area (LUTs) 246 287 -14.29

Calculating the proportion of power dissipation using (7) allows us to easily understand the power

efficiency of the suggested multiplier.

Power(%) =
Power utilizationinexact−Power utilizationexact

Power utilizationinxact
 (7)

Where inexact is inexact adders approximate multiplier and exact is exact adder approximate multiplier.

5. CONCLUSION

The paper outlines the design of both unsigned and signed approximate 16-bit multipliers using the

clock-gating technique. The results found that the multiplier accuracy improved and power dissipation

decreased along with the trade-off between the parameters power, area, and delay it includes the design of

clock-gating, which is crafted using Verilog hardware description language (HDL) and simulated on Artix-7

AC701 FPGA in Xilinx Vivado Tool. The proposed design proves to be better than the existing design as it

produces more accurate results and reduces power dissipation by 13% and 18.18% for unsigned and signed

approximate multipliers respectively along with small changes in in area and delay. In the future research, the

proposed multipliers will be used in image processing applications such as image multiplication, smoothing,

and sharpening to produce high-quality images with error tolerance.

ACKNOWLEDGMENTS

The authors would like to thank the management of Mohan Babu University for providing the

necessary infrastructure to conduct this research. We would want to express our gratitude to the staff and

students of the Department of Electronics and Communication Engineering.

REFERENCES
[1] Z. Wang, G. Zhang, J. Ye, J. Jiang, F. Li, and Y. Wang, “Accurate reliability analysis methods for approximate computing

circuits,” Tsinghua Science and Technology, vol. 27, no. 4, pp. 729–740, Aug. 2022, doi: 10.26599/TST.2020.9010032.

[2] F. Ferdaus, B. M. S. B. Talukder, and M. T. Rahman, “Approximate MRAM: High-performance and Power-efficient Computing
with MRAM Chips for Error-tolerant Applications,” IEEE Transactions on Computers, pp. 1–1, 2022, doi:

10.1109/TC.2022.3174584.

[3] T. Krishnan, P. Anguraj, S. S, V. A, and S. K, “Design of Area Efficient Unified Binary/Decimal Adder/Subtractor Using Triple
Carry Based Prefix Adder,” in 2022 8th International Conference on Advanced Computing and Communication Systems

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 398-411

410

(ICACCS), Mar. 2022, pp. 1720–1725, doi: 10.1109/ICACCS54159.2022.9785045.

[4] S. A. Salehi, “Low-Cost Stochastic Number Generators for Stochastic Computing,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 4, pp. 992–1001, Apr. 2020, doi: 10.1109/TVLSI.2019.2963678.

[5] V. A and R. Dhavse, “Design of High Accuracy, Power Efficient and Area Efficient 16x16 Approximate Multiplier,” in 2020

IEEE 17th India Council International Conference (INDICON), Dec. 2020, pp. 1–6, doi:
10.1109/INDICON49873.2020.9342223.

[6] N. Mehmood, M. Hansson, and A. Alvandpour, “An Energy-Efficient 32-bit Multiplier Architecture in 90-nm CMOS,” in 2006

NORCHIP, Nov. 2006, pp. 35–38, doi: 10.1109/NORCHP.2006.329239.
[7] S. Ullah and A. Kumar, Approximate Arithmetic Circuit Architectures for FPGA-based Systems. Cham: Springer International

Publishing, 2023, doi: 10.1007/978-3-031-21294-9.

[8] Kyung-Ju Cho, Kwang-Chul Lee, Jin-Gyun Chung, and K. K. Parhi, “Design of low-error fixed-width modified booth multiplier,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 5, pp. 522–531, May 2004, doi:

10.1109/TVLSI.2004.825853.

[9] H. Waris, C. Wang, W. Liu, J. Han, and F. Lombardi, “Hybrid Partial Product-Based High-Performance Approximate Recursive
Multipliers,” IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 1, pp. 507–513, Jan. 2022, doi:

10.1109/TETC.2020.3013977.

[10] S. Venkatachalam and S.-B. Ko, “Design of Power and Area Efficient Approximate Multipliers,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 5, pp. 1782–1786, May 2017, doi: 10.1109/TVLSI.2016.2643639.

[11] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for energy-efficient design,” in 2013 18TH IEEE

EUROPEAN TEST SYMPOSIUM (ETS), May 2013, pp. 1–6, doi: 10.1109/ETS.2013.6569370.
[12] S. Immareddy and A. Sundaramoorthy, “A survey paper on design and implementation of multipliers for digital system

applications,” Artificial Intelligence Review, vol. 55, no. 6, pp. 4575–4603, Aug. 2022, doi: 10.1007/s10462-021-10113-0.

[13] D. T. Raju and Y. S. Rao, “Investigation of Error-Tolerant Approximate Multipliers for Image Processing Applications,” 2022,
pp. 357–370, doi: 10.1007/978-981-19-2130-8_29.

[14] J. Ramasamy and S. Nagarajan, “Hybrid Segment Approximate Multiplication for Image Processing Applications,” Circuits and
Systems, vol. 07, no. 08, pp. 1701–1708, 2016, doi: 10.4236/cs.2016.78147.

[15] M. Osta, A. Ibrahim, H. Chible, and M. Valle, “Approximate Multipliers Based on Inexact Adders for Energy Efficient Data

Processing,” in 2017 New Generation of CAS (NGCAS), Sep. 2017, pp. 125–128, doi: 10.1109/NGCAS.2017.41.
[16] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-Power Digital Signal Processing Using Approximate Adders,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 1, pp. 124–137, Jan. 2013, doi:

10.1109/TCAD.2012.2217962.
[17] P. Puneeth, A. S. Raghuvanshi, and S. Yadav, “Design and Implementation of High Frequency 16-bit full adder on FPGA

Families,” in 2023 4th International Conference for Emerging Technology (INCET), May 2023, pp. 1–7, doi:

10.1109/INCET57972.2023.10170506.
[18] V. J. Arulkarthick and A. Rathinaswamy, “Delay and area efficient approximate multiplier using reverse carry propagate full

adder,” Microprocessors and Microsystems, vol. 74, p. 103009, Apr. 2020, doi: 10.1016/j.micpro.2020.103009.

[19] M. Priyadharshni and S. Kumaravel, “A Comparative Exploration About Approximate Full Adders for Error Tolerant
Applications,” 2019, pp. 61–74, doi: 10.1007/978-981-13-5950-7_6.

[20] B. Koyada, N. Meghana, M. O. Jaleel, and P. R. Jeripotula, “A comparative study on adders,” in 2017 International Conference

on Wireless Communications, Signal Processing and Networking (WiSPNET), Mar. 2017, pp. 2226–2230, doi:
10.1109/WiSPNET.2017.8300155.

[21] B. S. Naik and C. V. Sudhakar, “Study, Implementation and Comparison of Different Multipliers Based on Array, Vedic and

KCM using Squarer Mathematics using EDA Tools,” International Journal of VLSI System Design and Communication Systems,
vol. 2, no. 4, pp. 0250–0255, 2014.

[22] K. N. B Gowthami and C. V. Sudhakar, “Design and Simulation of an Efficient Vedic Booth Multiplier,” International Journal of

Advanced Research in Electronics and Communication Engineering (IJARECE), vol. 4, no. 4, pp. 914–919, 2015.
[23] P. Anguraj and T. Krishnan, “Design and realization of area-efficient approximate multiplier structures for image processing

applications,” Microprocessors and Microsystems, vol. 102, p. 104925, Oct. 2023, doi: 10.1016/j.micpro.2023.104925.

[24] Z. Li et al., “Adaptable Approximate Multiplier Design Based on Input Distribution and Polarity,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 30, no. 12, pp. 1813–1826, Dec. 2022, doi: 10.1109/TVLSI.2022.3197229.

[25] Y. Guo, H. Sun, and S. Kimura, “Design of Power and Area Efficient Lower-Part-OR Approximate Multiplier,” in TENCON

2018 - 2018 IEEE Region 10 Conference, Oct. 2018, pp. 2110–2115, doi: 10.1109/TENCON.2018.8650108.
[26] G. G. Kumar, C. V. Sudhakar, and M. N. Babu, “Design of high-speed Vedic square by using Vedic multiplication techniques,”

International Journal of Scientific & Engineering Research, vol. 4, no. 1, pp. 1–4, 2013.

[27] E. Zacharelos, I. Nunziata, G. Saggese, A. G. M. Strollo, and E. Napoli, “Approximate Recursive Multipliers Using Low Power
Building Blocks,” IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 3, pp. 1315–1330, Jul. 2022, doi:

10.1109/TETC.2022.3186240.

[28] G. Thakur, H. Sohal, and S. Jain, “Power–Area-Optimized Approximate Multiplier Design for Image Fusion,” Circuits, Systems,
and Signal Processing, vol. 43, no. 4, pp. 2288–2319, Apr. 2024, doi: 10.1007/s00034-023-02559-0.

[29] T. Lang, E. Musoll, and J. Cortadella, “Individual flip-flops with gated clocks for low power datapaths,” IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 6, pp. 507–516, Jun. 1997, doi: 10.1109/82.592586.
[30] Y. Wu et al., “A Survey on Approximate Multiplier Designs for Energy Efficiency: From Algorithms to Circuits,” ACM

Transactions on Design Automation of Electronic Systems, vol. 29, no. 1, pp. 1–37, Jan. 2024, doi: 10.1145/3610291.

[31] S. Chandaka and B. Narayanam, “Hardware Efficient Approximate Multiplier Architecture for Image Processing Applications,”
Journal of Electronic Testing, vol. 38, no. 2, pp. 217–230, Apr. 2022, doi: 10.1007/s10836-022-06000-3.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Design and evaluation of clock-gating-based approximate multiplier for … (Chowdam Venkata Sudhakar)

411

BIOGRAPHIES OF AUTHORS

Dr. Chowdam Venkata Sudhakar received B.Tech., degree in Electronic

Instrumentation and Control Engineering from Sri Venkateswara University, Tirupati, Andhra

Pradesh, India in 2006. He received M.Tech., degree in Digital Systems and Computer

Electronics from J.N.T.U.H. Kukatpally, Hyderabad, Telangana India in 2010 and received

Ph.D. in the Department of Electronics and Communication Engineering from Sri

Venkateswara University in 2024. Currently working as an Assistant Professor in the

Department of Electronics and Communication Engineering, at Mohan Babu University

(Erstwhile Sree Vidyanikethan Engineering College). His areas of interests include VLSI

architectures for image processing, sensors, and signal processing, and remote sensing imagery

data analysis. He can be contacted at email: sudhakar.chowdam@gmail.com.

Dr. Suresh Babu Potladurty received B.Tech. degree in Electronic and

Communication Engineering from Sri Venkateswara University, Tirupati, Andhra Pradesh,

India in 2005. He received M.Tech. degree in Electronics Instrumentation and Communication

Systems from Sri Venkateswara University, Tirupati, Andhra Pradesh, India in 2008 and

received Ph.D. in the Department of Electronics and Communication Engineering from Sri

Venkateswara University in 2024. He published more than 15 papers in various reputed

Journals and Conferences. Currently working as an Associate Professor in the Department of

Electronics and Communication Engineering, at Sri Venkateswara College of Engineering

(Autonomous), Tirupati. His areas of interests include radar signal processing, VLSI design,

digital image processing, embedded systems, and IoT. He can be contacted at email:

sureshbabu.413@gmail.com.

Prasad Reddy Karipireddy received B.Tech. degree in Electronic

Instrumentation and Control Engineering from Sri Venkateswara University, Tirupati, Andhra

Pradesh, India in 2006. He obtained his Master of Science (M.S.) degree in Machine

Automation from Tampere University of Technology, Tampere, Finland in 2010. He is

currently working as a Functional Safety and Cyber security expert at Huld oy, Espoo, Finland.

He is a certified expert in Functional safety and Cyber security by TÜV SÜD. His areas of

interests include functional safety and cyber security in oil and gas, chemical, pulp and paper,

automotive, machinery, and rail industries. He can be contacted at email:

karipireddyprasadreddy@gmail.com.

https://orcid.org/0000-0002-0205-4470
https://scholar.google.co.in/citations?hl=en&user=3gsvKK8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57211910377
https://www.webofscience.com/wos/author/record/CAA-0982-2022
https://orcid.org/0009-0002-1706-5380
https://scholar.google.co.in/citations?hl=en&user=ir5N8wMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57215695316
https://www.webofscience.com/wos/author/record/JSL-7036-2023
https://orcid.org/0000-0003-1192-3639

