International Journal of Reconfigurable and Embedded Systems (LJRES)

Vol. 14, No. 1, March 2025, pp. 1~11

ISSN: 2089-4864, DOI: 10.11591/ijres.v14.i1.pp1-11 a 1

Implementing a very high-speed secure hash algorithm 3

accelerator based on PCI-express

Huu-Thuan Huynh, Tuan-Kiet Tran, Tan-Phat Dang

University of Science, Vietnam National University, Ho Chi Minh City, Vietnam

Article Info

ABSTRACT

Article history:

Received May 6, 2024
Revised Jul 25, 2024
Accepted Aug 12, 2024

Keywords:

Edge computing
Hardware accelerator
KECCAK

Peripheral component
interconnect express
Secure hash algorithm 3

In this paper, a high-performance secure hash algorithm 3 (SHA-3) is proposed
to handle massive amounts of data for applications such as edge computing,
medical image encryption, and blockchain networks. This work not only fo-
cuses on the SHA-3 core as in previous works but also addresses the bottleneck
phenomenon caused by transfer rates. Our proposed SHA-3 architecture serves
as the hardware accelerator for personal computers (PC) connected via a pe-
ripheral component interconnect express (PCle), enhancing data transfer rates
between the host PC and dedicated computation components like SHA-3. Ad-
ditionally, the throughput of the SHA-3 core is enhanced based on two different
proposals for the KECCAK-f algorithm: re-scheduled and sub-pipelined archi-
tectures. The multiple KECCAK-f is applied to maximize data transfer through-
put. Configurable buffer in/out (BIO) is introduced to support all SHA-3 modes,
which is suitable for devices that handle various hashing applications. The pro-
posed SHA-3 architectures are implemented and tested on DE10-Pro supporting

Stratix 10 - 1SX280HU2F50E1VG and PCle, achieving a throughput of up to
35.55 Gbps and 43.12 Gbps for multiple-re-scheduled-KECCAK-f-based SHA-
3 (MRS) and multiple-sub-pipelined-KECCAK-f-based SHA-3 (MSS), respec-
tively.

This is an open access article under the CC BY-SA license.

&0

Corresponding Author:

Tan-Phat Dang

University of Science, Vietnam National University
Ho Chi Minh City, Vietnam

Email: dtphat@hcmus.edu.vn

1. INTRODUCTION

The increasing demand for massive amounts of real-time data transformations and processing neces-
sitates high-performance data servers. This process acquires data from various sources, such as remote devices
via the Internet, and then transmits it to dedicated hardware like graphic processing units (GPU) or hardware
accelerators through burst or streaming mechanisms. peripheral component interconnect express (PCle) has
been utilized to enhance the data transfer rate to dedicated hardware [1], [2]. Operating on point-to-point topol-
ogy, PCle enables devices to communicate directly with other components without sharing bandwidth with
other devices on the bus. PCle utilizes multiple independent lanes, ranging from one lane to 32 lanes, for data
transfer between the host and end device. Each lane comprises two pairs of differential signaling wires, one
for transmitting data (Tx) and one for receiving data (Rx). Therefore, the PCle operation speed can range from
2.5 GT/s to 32 GT/s for Genl to Gen3, respectively. Furthermore, the implementation of a direct memory
access (DMA) for PCle to eliminate a central processing unit (CPU) intervention has appeared in earlier works
[1], [3], which involves transferring data from the main memory of the host device to a temporary DMA local

Journal homepage: http://ijres.iaescore.com

2 a ISSN: 2089-4864

register before sending it to the address of the end device.

Regarding the dedicated computing hardware, the field programmable gate array (FPGA)-based hard-
ware accelerators for cryptography have been attractive in research domains [4], [5], because of the increasing
need for robust cryptographic algorithms to secure sensitive information and communications. Cryptographic
hash functions play a fundamental role in ensuring integrity [6] and authenticity [7], [8]. In recent years, one
such hash function that has garnered significant attention and adoption is the SHA-3. Standardized by the Na-
tional Institute of Standards and Technology (NIST) in 2015, SHA-3 represents the latest iteration in the secure
hash algorithm (SHA) family [9]. Unlike its predecessors, SHA-1, which has been susceptible to vulnerabilities
and collision attacks [10], SHA-3 offers enhanced security properties and resistance to known cryptographic
attacks. SHA-3 is designed to produce fixed-size hash values, or message digests, from input data of arbitrary
length.

In high-performance applications, SHA-3 is utilized more and more frequently. For multimedia data,
such as image encryption, the SHA-3 algorithm is employed to generate key streams from multiple blocks that
are divided from the original images [11], [12]. In the security channel, the transmission of medical data and
high-definition images between doctors and patients often necessitates hashing to prevent malicious modifica-
tion, which is a crucial requirement in the medical field [13], [14]. Moreover, with the increase of internet of
things (IoT) devices, the adoption of edge and fog computing has become increasingly common [15]. This
trend has led to the emergence of high-performance devices optimized for processing speed, with a particular
focus on security, including hash function algorithms [16], [17]. Consequently, there is a growing demand to
enhance the performance of cryptographic algorithms to protect the vast amounts of data transmitted between
these devices. On the other hand, hash functions like SHA-3 play a crucial role in blockchain technology, en-
suring the integrity, security, and transparency of distributed ledger systems. The hash function helps maintain
transaction integrity based on the Merkle tree structure [18]. Notably, miners are tasked with validating trans-
actions under consensus mechanisms such as proof of work (PoW) [19]. To be eligible for rewards, miners
must quickly generate nonce, underscoring the need for a high-performance hash function [20].

To enhance the performance of SHA-3, various research has been conducted, ranging from software
optimizations on GPU to hardware accelerators [21]-[29]. The efficiency of implementing SHA-3 in a GPU
environment has been demonstrated in [21]. Parallel Thread eXecution (PTX) is utilized to leverage the parallel
permutation capabilities of the SPONGE construction and compute unified device architecture (CUDA) streams
are employed to enable GPUs to receive and compute data simultaneously. Moreover, hardware accelerators
for SHA-3 on FPGA are more attractive than implementing it in a GPU environment due to reduced technology
dependence. A significant number of works aim to enhance the throughput and efficiency of SHA-3 through
unrolling, pipelined, and sub-pipelined techniques and optimization of arithmetic cores (KECCAK-f) [23]-
[29]. Unlike other works using the hardware description language (HDL), the work in [22] uses open computing
language (OpenCL) to implement SHA-3 as a co-processor on FPGA to demonstrate the efficiency of the
hardware implementation of SHA-3.

In this paper, we adopt an FPGA-based hardware design approach for implementing the SHA-3 al-
gorithm using the Verilog language. This choice is motivated by the fact that SHA-3 computations mainly
involve permutations using XOR, AND, and NOT gates, as well as inherent parallel processing capabilities.
Unlike previous works [23]-[29] that primarily focus on the KECCAK-f function, we also address another
core component of the SHA-3 algorithm, such as buffer in and out. Moreover, high-performance applications
not only demand high-speed dedicated hardware but also require efficient data transmission. To address this
requirement, we utilize PCle, which enables high-throughput communication and leverages the computational
power of the PC for data setup and management via software. The key contributions of our proposed methods
are as:

- We present our SHA-3 design implemented on FPGA as a hardware accelerator for PC via PCle links. DMA
read and write is used to accelerate the data transfer rate without the observation of the CPU. In addition,
ping-pong memory enables simultaneous computation and data transmission between the PC and our SHA-3
accelerator, thereby maximizing the parallel processing capabilities of SHA-3.

- To support various applications, we introduce configurable buffers that are flexible enough to switch between
modes and minimize buffer usage for both input and output data while maintaining flexibility and efficiency.

- Multiple KECCAK-f are introduced to enhance maximum performance. Two architectures for KECCAK-f,
including the re-scheduled and sub-pipelined architectures, are presented, contributing to overall perfor-
mance enhancement in our SHA-3 design.

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 1-11

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864) 3

The remaining sections of the paper are organized as follows. Section 2 provides background informa-
tion on SHA-3 algorithms. Our hardware design is comprehensively analyzed in section 3, covering the model
of the SHA-3 accelerator to PC through PCle, configurable buffers, and multiple KECCAK-f architecture.
Evaluation and comparison of our results with other approaches are presented in section 4. Finally, section 5
concludes the paper.

2. SHA-3 PRELIMINARY

The construction of SHA-3 differs from the Merkle-Damgard design in SHA-1 and SHA-2, instead
adopting the SPONGE construction [9], which is comprised of two main phases: absorbing and squeezing,
as shown in Figure [T} Prior to the absorbing and squeezing phases, the input message m of arbitrary length
undergoes a padding process. This ensures that the message is expanded to a multiple of bits (1152, 1088,
832, or 576 bits) by appending the pattern "/0*]”. However, the SHA-3 hash function requires that the
message m must append the suffix ”01” to support domain separation [9]]. Consequently, the pattern "0110*1”
is appended to message m, as illustrated in Figure [I| During the absorbing phase, the padded message m is
partitioned into several blocks of size r. Each r-sized block is then combined with a capacity ¢ to form a
1600-bit block, which is subsequently processed sequentially by each KECCAK-f function until all blocks are
processed. In the squeezing phase, the length of the output d (224, 256, 384, or 512 bits) can vary depending
on the selected mode.

| message m padding output d ‘
. Block 0 Block 1 §
0110...1 [[T i
Oig-l)
r I
r .. — P
f @
c —{ F e
— — ,,,"’ A \J"L\ - B
Absorbing. . Squeezing

f: KECCAK-f

r=1152/1088/832/576 bits for SHA3-224/256/832/512.
d =224/256/384/512 bits for SHA3-224/256/832/512.

¢ =D -r, where b = 1600 bits.

Figure 1. Padding and SPONGE construction

The KECCAK-f function is a fundamental component in SHA-3 and is utilized in both the absorbing
and squeezing phases. The input message is converted into a three-dimensional array, denoted by x, y, and z,
formatting a 5 x 5 x 64 state array. The KECCAK-f function operates on this state array during 24 rounds of a
round function (Rnd), with each round consisting of five step mappings: 6 (theta), p (rho), 7 (pi), x (chi), and
¢ (iota).

3. DESIGN AND IMPLEMENTATION

In this section, we provide an overview of the proposed SHA-3 architecture at the system level. We
analyze the comprehensive data flow, showing the interaction with each component within the system. Next,
we discuss the implementation of configurable buffers to support multiple modes. Lastly, our re-scheduled and
sub-pipelined techniques are introduced in detail for the KECCAK-f function.

Implementing a very high-speed secure hash algorithm 3 accelerator based on PCI ... (Huu-Thuan Huynh)

4 m) ISSN: 2089-4864

3.1. Overview architecture

System level overall architecture and data flow for SHA-3 accelerator described in Figure 2. The sys-
tem architecture of the proposed SHA-3 accelerator is depicted in Figure [J{a). The PC serves as a host server,
receiving requests from various remote devices and responding to the results. Requests related to the hash
function are transmitted to the SHA-3 accelerator via PCle. In this work, we utilize Intel intellectual property
(IP) named Intel L/H-Tile Avalon-MM for PCle on the DE10-Pro device [30]. Specifically, PCle Gen 3x8 is
employed, operating at a frequency of 250 MHz, allowing for a throughput of up to 63 Gbps. Additionally, this
IP serves as a bridge, converting PCle protocol to the Avalon bus. Before the SHA-3 accelerator begins opera-
tion, essential information, such as the size of the processed string, is transferred to its Control/Status Registers
block. This is employed through the use of a base address register (BAR) with 32-bit non-prefetchable memory.
To enable high-performance transmission, a DMA engine is employed along with separate read-and-write data
modules. Additionally, two random-access memories (RAM) operate in a ping-pong manner for both input and
output data. After the hash computation is completed, the hash values cannot immediately be sent to the PC;
they must wait for a request from the PC. Therefore, a ping-pong RAM Out is utilized to temporarily store the
hash values. The ping-pong way ensures that the dedicated hardware accelerator remains fully utilized, min-
imizing any idle time. Two clock domains are utilized in this system. The first clock operates at a frequency
of 250 MHz for the PCle IP, while the second clock operates at the frequency of the SHA-3 accelerator. This
configuration optimizes the throughput of each domain to accelerate the entire system.

The proposed SHA-3 accelerator comprises three main components: padding, buffer including buffer
in (BI) and buffer out (BO), and multiple KECCAK-f units. The padding and BI operations are executed
concurrently. Once BI accumulates sufficient data serially from RAM In 0/1, the output of this buffer is
parallelly combined with the data output from the padding unit through OR operation. This data is then fed into
multiple KECCAK-f units, which process multiple data simultaneously. The hash value generated by multiple
KECCAK-f units is transferred to BO in parallel. Subsequently, BO serially writes the data to RAM Out.

The data, comprising multiple short and long messages intended for SHA-3 processing, is stored in the
system memory of the PC. Under CPU control using Terasic’s PCle driver, this data is continuously transferred
from the system memory to the SHA-3 accelerator. In cases where the data size exceeds the capacity of RAM
In 0/1, the ping-pong mechanism comes into play. As depicted in Figure 2[b), long data is initially transferred
from the system memory to RAM In 0, and subsequently to RAM In 1. Once RAM In 0 is filled with Data O,
the SHA-3 computes the hash value and temporarily stores the results in RAM Out 0. Concurrently, the SHA-3
initiates processing Data 1 from RAM In 1. Once all results of Data 0 are available in RAM Out 0, they are
read using DMA read and returned to the PC’s system memory. The result of Data 1 is transferred from RAM
Out 1 to the system memory, once DMA read for Data 0 is completed. Thus, the ping-pong approach for RAM
In and RAM Out facilitates pipeline processing at the system level for increased performance.

Figure[2c) illustrates three stages for data transfers and hashing computation. In stage 0, the PCle link
connected to the PC retrieves data from the system memory, operating at a speed of 63 Gbps according to Intel
specifications [30]. Moving on to stage 1, the PCle IP utilizes the Avalon-MM master to transfer data to RAM
In according to the DMA technique. The DMA process supports burst transfers on a 256-bit interface width
with a frequency of 250 MHz. While the throughput of DMA can reach up to 64 Gbps, the burst count is limited
to 5 bits. Consequently, when the data size exceeds 8192 bits, the throughput of DMA becomes unstable. Our
experiments show that the throughput of the DMA stage fluctuates between approximately 20 Gbps and 55
Gbps, thereby impacting the SHA-3 block. To mitigate this issue, ping-pong memory is employed for RAM In,
where one memory receives data while the other provides data for computation. Hash computation is initiated
only when one of the two memories is filled, ensuring that DMA does not affect stage 2. In addition, another
crucial factor influencing DMA throughput is the size of each RAM In. Small sizes can lead to unstable DMA
throughput, while large sizes may result in redundancy. Based on experimental results, a size of 10 KB for each
RAM In 0/1 is chosen, as detailed in section 4. Stage 2 relies on the SHA-3 computation rate, which can run
up to 43 Gbps.

The detailed SHA-3 architecture is shown in Figure 3, progressing from a coarse to a fine level of gran-
ularity. Specifically, the two primary components-the Buffer and Multiple KECCAK-f units, illustrated in Fig-
ure 3(a)-are explained in more depth in the subsequent subsections. Additionally, the two optimized KECCAK-
f architectures, namely re-scheduled and sub-pipelined, which have the greatest impact on the throughput of
the overall design, are depicted in Figure 3(b). Furthermore, a more detailed explanation of the 6 and (p - 7
- X - ¢) stages is provided in Figure 3(c), offering a deeper insight into the micro-architecture of the proposed

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 1-11

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864) 5

design, which will also be elaborated on in the subsequent subsection.

: System : System|memory: System memory| (System memo
»_memory || Data0 Data 1 Data 0 Data 1

SHA-3 Application

\ \ pC
. ~ PCle —
HEY Terasic's PCle driver|: DMA Write DMA Read
by : Intel L/H-Tile Avalon-MM N FPGA
for PCI Express
DMAengine || | ||| T U e

—| BAR
Read | Write

PC Avalon Bus RA :
time

b
S =
Registers Stage 0 Stage 1 Stage 2
RAM In 0) /\ /\ /\
256 bits RAM In 1 || [Multiple DMA Write
KECCAK-f

RAM Out 0

256 bits RAM Out 1

. 63Gbps N 256 bits [

ystem X

memory PCle IP 256 bits RAM In/Out SHA-3
Clock domain 0 Clock domain 1 L

J
FPGA DMA Read

(a) (c)

System
meory

Figure 2. Overall architecture and data flow for SHA-3 accelerator on the system level (a) system architecture,
(b) data flow on the system level, and (c) the three stages involve transferring data from the system memory to
the SHA-3 accelerator

len
: : '
data_in {52 T el |
i 5 KECCAK-f1
valid in § v 1§57
i (BI1-3 i F ; A
236 . 2| Round | |PH[P
= LU —J)|
sel ! sin '_I \ ‘/ : mu
vo | EEED T 5 o | L
256 i : i Re-scheduled Sub-piy i B
i i : architecture architecture I
; i : Multiple H :
156 e Buffer : : KECCAK-f : 3
data_out 4+ i "CAK- ;

(a) (b) (c)

Figure 3. The proposed SHA-3 architecture in detail (a) the buffer and multiple KECCAK-f architectures and
(b) the two Rnd architectures: re-scheduled and sub-pipelined ways, and (c) 6 and (p - 7 - x - ¢) architectures

3.2. Buffer

To facilitate flexibility in handling different modes, we introduce a configurable buffer capable of
switching between BI and BO based on the selected mode. Each mode needs a distinct block size r, as il-
lustrated in Figure m For SHA3-224 mode, with a data width of 256 bits, the input block size is 1152 bits,
corresponding to five BIs. Similarly, for SHA3-256/384/512 modes, the required number of Bls is 5/4/3, re-
spectively. Conversely, the output size for SHA3-224/256/384/512 modes in the 256-bit base is 1/1/2/2 BOs.
To optimize the buffer utilization, we propose four Bls (BI O to BI 3), one BO, and one BIO, as depicted in
Figure [3[a). The buffers cascade to each other, with the output of the preceding buffer serving as the input for
the subsequent one. Bls only accept new input when the valid_in signal is activated; otherwise, they retain

Implementing a very high-speed secure hash algorithm 3 accelerator based on PCI ... (Huu-Thuan Huynh)

6 0 ISSN: 2089-4864

the current value. BIO exhibits slightly more complexity than BI, as it can receive data from the preceding
buffer when the sel signal is triggered; otherwise, it functions as a BO, receiving hash values from multiple
KECCAK-f units. BO is responsible for retrieving hash values and serially pushing them to RAM Out. For
SHA3-224/256/384/512 modes, it takes 1/1/2/2 clock cycles to complete writing data to RAM Out. To stream-
line complexity, the receiving process in BI takes 4/4/5/5 clock cycles for SHA3-224/256/384/512 modes,
respectively. Each data loaded into BI requires one clock cycle. Therefore, if the modes do not provide suffi-
cient data within those clock cycles, zero inputs are inserted. For example, in the case of SHA3-512 requiring
three blocks of 256 bits, the subsequent two blocks consist of zeros.

3.3. Multiple KECCAK-f

The multiple KECCAK-f module comprises mapping and three KECCAK-f instances, as illustrated
in Figure[3[a). The 1152-bit data from the preceding phase is fed into the Mapping block, which appends zeros
to expand it to a 1600-bit data size. In our design, we opt for three KECCAK-f instances to reduce the interval
of input data to 8 clock cycles. The output of each KECCAK-f instance is 512 bits in size, and depending on
the selected mode, truncation is applied to the output data.

In this work, we introduce two architectures for KECCAK-f: the re-scheduled and sub-pipelined ar-
chitectures, depicted in Figure[3[b). In a conventional architecture, the sequence of steps includes 6 - p - 7 - x - ¢,
with a register placed at the end of the ¢ step to indicate the completion of one round [31]. Our re-scheduled
architecture reorders these steps to p - 7 - x - ¢ - 6 by inserting a register between the 6 and p steps. As a result,
re-scheduled architecture requires 25 repetitions to complete the hash value, one more compared to the base
architecture. During the first repetition, only the 6§ step is implemented, while the remaining repetitions execute
all steps in the sequence of p - m - x - ¢ - 6. The re-scheduled architecture offers higher efficiency compared
to the conventional architecture. This is proven via synthesis results on the Stratix 10 device, revealing that
the re-scheduled architecture achieves a frequency of 336.36 MHz, surpassing the conventional architecture’s
frequency of 321.85 MHz by 4.31%. Moreover, the re-scheduled architecture utilizes fewer resources, with a
reduction in adaptive logic module (ALM) utilization of 16.67% (4214 ALMs compared to 5057 ALMs in the
conventional architecture).

Unlike previous works [28], [29], where the sub-pipelined technique typically inserts two registers:
one between the 7 and y steps or between the 6 and p steps and another at the end of the ¢ step, our sub-
pipelined architecture uses registers between the 6 and p steps and another register before the 6 step. This
decision is based on the observation that the critical path of the 6 step is greater than that of the p, 7, x, and
¢ steps. Specifically, the 6 step requires at least four XOR gate levels to complete, while the remaining steps
need only AND and two XOR gates, as shown in Figure [3[c). By isolating the 6 step, we aim to improve the
delay for KECCAK-f. However, adding the register in the round increases the number of clock cycles required,
doubling it to 48 clock cycles. To mitigate this increase in clock cycles, our design is capable of handling
two data simultaneously at two different stages. For example, if data 1 is processed in the 6 stage, data 2 is
processed in the (p - m -) - ¢) stage. In the next clock cycle, data 1 moves to the (p - 7 - x - ¢) stage while data 2
transitions to the 6 stage. Thus, the average time to generate one hash value is reduced to 24 clock cycles. The
advantage of our sub-pipelined architecture is that it increases the frequency while maintaining a fixed number
of clock cycles at 24, thereby increasing throughput.

In both re-scheduled and sub-pipelined architectures, the five steps are consistently grouped into two
parts: 6 and (p - 7 - x - ¢). The formulation of the 6 step is optimized by combining C[x] and D|x], as indicated
by the red area in the 6 part of Figure [3{c), denoted as CD|[z] in (1). CD|x] serves as the shared element,
utilized by Az, y], and two levels of XOR operation are employed to reduce the delay for the 6 step.

CD[z] =Alz — 1,0 Alx — 1,1]® Az — 1,2] @ Alx — 1,3] @ Alz — 1,4]®
ROT(Alx +1,0],1) ® ROT(A[x + 1,1],1) ® ROT(A[z + 1,2],1)®
ROT(Alz +1,3],1) @ ROT(Alx + 1,4],1)

Ale,y] = Ale,y] & ODL

)

The hardware implementation of (p + 7) steps utilizes a net connection, which requires no additional
resources or delay, based on the combination of (p + 7) steps illustrated in [32]. Furthermore, the combination
of (p- - x - ¢) steps is depicted in Figure[3[c). Unlike previous works [24], which utilized 64-bit RC, we have
simplified this process by storing only the non-zero bits in RC. Therefore, only the bit positions O, 1, 3, 7, 15,
31, and 63 are stored, effectively reducing resource usage.

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 1-11

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864) 7

4. EVALUATION AND COMPARISON

This section presents the performance evaluation of MRS and MSS on DE10-Pro, considering several
factors that impact the throughput such as the size of each RAM In in the ping-pong way and the number
of KECCAK-f instances. Furthermore, a comparison of KECCAK-f computation with previous works [23],
[24] is conducted on Virtex 7 to indicate the advantages and limitations of our multiple-re-scheduled-based
KECCAK-f (MRK) and multiple-sub-pipelined-based KECCAK-f (MSK) architectures.

4.1. Performance evaluation on DE10-Pro

The SHA-3 hardware accelerator, utilizing the DE10-Pro device, is connected to the PC (Intel®
Core™ i5-10400 2.9 GHz) via PCIe Gen 3x8, as illustrated in Figure [2(a). This setup allows for functional
testing and performance evaluations. On the PC side, C code manages the transfer of data to RAM In 0/1. Each
DMA operation fills one RAM In slot, with subsequent transfers populating the remaining slots in a ping-pong
way. Subsequently, the PC promptly reads hash values from RAM Out for comparison with the golden data to
verify their accuracy.

The experimental results of the two proposed architectures, MRS and MSS, in relation to factors such
as throughput, RAM size, and the number of KECCAK-f units across all modes, are presented in the line charts
in Figure 4. These charts visually represent the optimal configurations, highlighting the correlation between
these key factors and their impact on the overall performance of the SHA-3 accelerator. Specifically, Figure
4(a) illustrates the relationship between throughput and various RAM In sizes, while Figure 4(c) shows the
relationship between throughput and the number of KECCAK-f units. Additionally, Figure 4(b) provides a
detailed view of the data flow, contributing to the analysis of bottlenecks and serving as a basis for determining
the optimal number of KECCAK-f units for an efficient configuration.

The rate at which data is supplied plays a crucial role in determining the performance of the hardware
accelerator. Specifically, in our system, where we employ a ping-pong mechanism, the size of RAM In directly
influences performance as mentioned in subsection 3.1. As depicted in Figure [a), the relationship between
SHA-3 performance and RAM In size was examined across all modes for both MRS and MSS architectures.
The MRS and MSS throughput experiences a notable increase within the range of 1 to 8 KB, followed by a
gradual rise from 12 to 20 KB. Beyond this point, the throughput saturates for all modes in both MRS and MSS
architectures. Consequently, a RAM In size of 20KB (the size of RAM In 0/1 is 10KB) was selected, making
a balance between maximizing MRS and MSS throughput and minimizing resource utilization.

Our proposed SHA-3 architecture employs multiple KECCAK-f instances to enhance throughput.
However, if too many KECCAK-f instances are utilized, a bottleneck phenomenon arises when the multiple
KECCAK-f instances operate faster than the preceding parts, resulting in resource redundancy. Conversely, the
architecture becomes inefficient when only a small number of KECCAK-f instances are used. The selection
of KECCAK-f instances considers various factors, including preceding block architecture and the algorithmic
characteristics of KECCAK-f. As illustrated in Figure [4b), stage 0 (BI + padding) necessitates a maximum
of nine clock cycles, including five cycles for processing data in the worst-case scenarios of SHA3-384/512
modes, three clock cycles for overhead, and one clock cycle for waiting for the ready signal from multiple
KECCAK-f. Moreover, given that the KECCAK-f algorithm requires 24 repetitions for one digest value, stage
1 in Figure f{b) must be completed within approximately eight clock cycles for optimal efficiency. Conse-
quently, three KECCAK-f instances are chosen for the multiple KECCAK-f block. This relationship is further
clarified in Figure fc), revealing the increasing throughput of the MRS and MSS architectures with one to
three KECCAK-f instances. Beyond this range, however, the MRS and MSS throughput saturates with four
KECCAK-f instances. Thus, the optimal number of KECCAK-f instances is determined to be three.

Our proposed architectures are evaluated based on throughput and efficiency. Throughput (TP), mea-
sured in Gbps, is calculated using (2), where #bit represents the number of bits of input data, Fmax denotes the
maximum frequency obtained from synthesis results, and #clock indicates the number of clock cycles elapsed.
Efficiency (Eff.), on the other hand, is determined by the ratio of throughput to the utilized resources, such as
ALMs for Intel devices or slices for Xilinx devices. The (2) illustrates the calculation of efficiency based on
throughput and resource utilization. The evaluation process involves the use of the Intel® Quartus® Prime Pro
Edition Design Software Version 19.1 to obtain reports on frequency and resource utilization.

_ #bit X Fmax

e = #clock @

Implementing a very high-speed secure hash algorithm 3 accelerator based on PCI ... (Huu-Thuan Huynh)

8 0 ISSN: 2089-4864

3)

The throughput measurement results of the two architectures, MRS and MSS, on DE10-Pro are pre-
sented in Table |I} To determine the number of clock cycles (#clock), each architecture is equipped with a
counter to record the elapsed clocks, starting immediately when the core begins operation and stopping upon
completion of the process. The data size for throughput measurement of the MRS and MSS architectures is
tested up to 32 KB. Collaborating with the data length and operating frequencies of MRS and MSS, which are
280 MHz and 380 MHz, respectively, we compute the throughput for each mode. Specifically, the throughput
for MRS is 35.55 Gbps, 33.60 Gbps, 27.69 Gbps, and 19.23 Gbps for SHA3-224, SHA3-256, SHA3-384, and
SHA3-512 modes, respectively. Similarly, for MSS, the throughput is 43.12 Gbps, 41.20 Gbps, 36.27 Gbps,
and 25.11 Gbps for SHA3-224, SHA3-256, SHA3-384, and SHA3-512 modes, respectively. The resources uti-
lized by MRS and MSS are obtained from the Quartus tool, with MSS utilizing 8273 ALMs and 8374 registers,
while MSS utilizes 9485 ALMs and 12832 registers, respectively. As a result, the efficiency of MRS and MSS
for all modes are as follows: 4.30 Mbps/ALM, 4.06 Mbps/ALM, 3.35 Mbps/ALM, and 2.32 Mbps/ALM for
MRS, and 4.55 Mbps/ALM, 4.34 Mbps/ALM, 3.82 Mbps/ALM, and 2.65 Mbps/ALM for MSS, respectively.

——MSS-224 ~=~MSS-256 ——MSS-384 —~MSS-512 e e
MRS-224 MRS-256 —<+—MRS-384 —MRS-512 RAMIn |? :
50 Overhead { t—» ?ﬂ
45 N i
2 40 //——ﬁ = Buffer In » > 7]
o
£ 35 e s [W v .
% 30 =
225 k (KECCAKA0] O—»0—>0—>0—»0—>0—>0—>0—>y W—s—
520 ; i
§ 15 KECCAK-f1 | o—»o—» »> »> > T »o—> %
£ 10 KECCAK-f2 | o—»o—»0—po—bo—po—bo—po——>d—p0—»
5
0 Buffer Out o N
1 4 8 12 16 20 24 28 32 E
Size (KB) RAM Out 7]
(a) (b)

——MSS-224 MSS-256 —+—MSS-384 =—MSS-512
MRS-224 —o~MRS-256 —MRS-384 —MRS-512

1 2 3 4
The number of the KECCAK-f unit

()

Figure 4. The experiment results of MRS and MSS across all modes in (a) the relationship between
throughput and different RAM In sizes, (b) data flow timing chart of multiple KECCAK-f units, and (c) the
relationship between throughput and the different numbers of KECCAK-f units

Table 1. The implementation results of the MRS and MSS architectures on DE10-Pro

Architecture Freq. Area Reg. TP (Gbps) Eff. (Mbps/ALM)
(MHz) (ALM) 224 256 384 512 224 256 384 512
MRS 280 8273 8374 3555 33.60 27.69 1923 430 4.06 335 232
MSS 380 9485 12832 43.12 41.20 3627 25.11 455 434 382 265

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 1-11

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864) 9

4.2. Comparative analysis

For a fair evaluation and comparison between our proposed architectures (MRK and MSK) and pre-
vious ones [23]], [26], we synthesize designs on Virtex-7 XC7VX485T using the Vivado 2020 tool. Since the
previous works [23]], [26] focused solely on the KECCAK-f computation, Table[2]displays the synthesis results
of the KECCAK-f computation only. Given that all modes utilize the same KECCAK-f computation archi-
tecture, Table 2] only presents the results for the SHA3-512 mode for comparison. Additionally, it facilitates
comparison with the proposal in [23]] because the design only supports the SHA3-512 mode.

Table 2. The comparison of KECCAK-f computation architectures between our proposals and FPGA-based
works on Virtex 7

Reference 23], 2022 [26], 2023 Our proposed architecture
Approach Dual Rnd Unrolling factor of 2 MRK MSK
Fmax (MHz) - 378.73 380.95 485.67
Area (Slice) 1521 1375 3203 2917
Register - - 4831 9669
#clock/hash 12 12 8 8
TP (Gbps)* 22.90 18.18 27.43 34.97
Eff. (Mbps/slice)* 15.11 13.22 8.56 11.99

*For SHA3-512 mode

Our MRK architecture requires 3203 slices and 4831 registers, operating at a maximum frequency of
380.95 MHz and achieving a throughput of 27.43 Gbps and an efficiency of 8.56 Mbps/slice. Conversely, the
MSK architecture, aimed at reducing the critical path of Rnd, utilizes more registers than MRK (9669>4831).
However, MSK outperforms MRK in terms of both throughput and efficiency, achieving 34.97 Gbps and 11.99
Mbps/slice, respectively.

Sravani and Durai [23] proposed the dual Rnd architecture, which utilizes one Rnd consisting of five
steps (0 - p - ™ - x - ¢) and registers cascading another Rnd and register to halve the number of clock cycles
(#clock/hash = 12), achieving a throughput of 22.90 Gbps. However, the throughputs of our two architectures,
MRK and MSK, are 1.20 times (27.43 vs. 22.90) and 1.53 times (34.97 vs. 22.90) higher than that achieved by
the dual Rnd architecture. While our architectures prioritize high performance, their efficiency is slightly lower
compared to the dual architecture of Sravani and Durai [23]] with MRK being 0.56 times (8.56 vs. 15.11) and
MSK being 0.79 times (11.99 vs. 15.11). However, despite the lower efficiency, the throughput acceleration of
our MSK architecture (53%) surpasses the efficiency acceleration of their dual Rnd architecture (26%).

When comparing our proposals with that of Sideris et al. [26], who implemented an unrolling factor of
2 to halve the number of clock cycles (#clock/hash = 12), we observe significant improvements in throughput
for both our MRK and MSK architectures. Specifically, our MRK architecture achieves a throughput 1.51
times higher (27.43 vs. 18.18), while our MSK architecture achieves a throughput 1.92 times higher (34.97 vs.
18.18) than the proposal of Sideris et al. [26]. However, despite these substantial throughput improvements,
our efficiency is slightly lower, with MRK being 0.65 times lower (8.56 vs. 13.22) and MSK being 0.91 times
lower (11.99 vs. 13.22), respectively. Nonetheless, this decrease in efficiency is not considered significant
when compared to the notable throughput accelerations of 51% and 92% for MRK and MSK, respectively.

5. CONCLUSION

The demand for high-performance hash functions for modern applications has emerged, especially
for the latest hashing version, SHA-3. The improvement of SHA-3 throughput is proposed in this paper.
Specifically, full SHA-3 architecture is present from buffers and athrimetic core like KECCAK-f to integration
at the system level. The proposed architectures are designed on an FPGA platform, which is connected to a
PC via PClIe. PCle boosts the data transfer rate, which is used popularly in modern applications. The issue of
data transfer in PCle’s DMA is analyzed and resolved through the implementation of ping-pong memory and
the selection of appropriate memory sizes. Furthermore, the configuration BIO is presented to support multiple
SHA-3 modes and minimize the number of buffer instances. This feature benefits modern applications which
require various output lengths of the hash values. The proposed architectures, like MRS and MSS, achieve a
high throughput of up to 35.55 Gbps and 43.12 Gbps, respectively, thanks to the multiple KECCAK-f combined
with one of the re-scheduled and sub-pipelined architectures. MSS demonstrates greater efficiency compared
to MRS, for instance, with 4.55 Mbps/ALM >4.30 Mbps/ALM for the SHA3-224 mode. In addition, our

Implementing a very high-speed secure hash algorithm 3 accelerator based on PCI ... (Huu-Thuan Huynh)

10

a ISSN: 2089-4864

MRK and MSK achieve 27.43 Gbps and 34.97 Gpbs for SHA3-512 mode when implemented on Virtex 7,
respectively.

REFERENCES

(1]
(2]
(3]
[4]

(3]

(6]
(7]
(8]
[91

[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]
[24]
[25]
[26]

[27]

(28]

L. Rota, M. Caselle, S. Chilingaryan, A. Kopmann, and M. Weber, “A PCie DMA architecture for multi-gigabyte per second data
transmission,” IEEE Transactions on Nuclear Science, vol. 62, no. 3, pp. 972-976, 2015, doi: 10.1109/TNS.2015.2426877.

J. Liu, J. Wang, Y. Zhou, and F. Liu, “A cloud server oriented FPGA accelerator for Istm recurrent neural network,” IEEE Access,
vol. 7, pp. 122408-122418, 2019, doi: 10.1109/ACCESS.2019.2938234.

H. Kavianipour, S. Muschter, and C. Bohm, “High performance FPGA-based DMA interface for pcie,” IEEE Transactions on
Nuclear Science, vol. 61, no. 2, pp. 745-749, 2014, doi: 10.1109/RTC.2012.6418352.

J.-S. Ng, J. Chen, K.-S. Chong, J. S. Chang, and B.-H. Gwee, “A highly secure fpga-based dual-hiding asynchronous-logic aes
accelerator against side-channel attacks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 9, pp.
1144-1157, 2022, doi: 10.1109/TVLSI.2022.3175180.

M. Zeghid, H. Y. Ahmed, A. Chehri, and A. Sghaier, “Speed/area-efficient ECC processor implementation over gf (2 m) on FPGA
via novel algorithm-architecture co-design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 8, pp.
1192-1203, 2023, doi: 10.1109/TVLSI.2023.3268999.

S. Shin and T. Kwon, “A privacy-preserving authentication, authorization, and key agreement scheme for wireless sensor networks
in Sg-integrated internet of things,” IEEE access, vol. 8, pp. 67 555-67 571, 2020, doi: 10.1109/ACCESS.2020.2985719.

S. Jiang, X. Zhu, and L. Wang, “An efficient anonymous batch authentication scheme based on hmac for vanets,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 8, pp. 2193-2204, 2016, doi: 10.1109/TITS.2016.2517603.

L. Zhou, C. Su, and K.-H. Yeh, “A lightweight cryptographic protocol with certificateless signature for the internet of things,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 18, no. 3, pp. 1-10, 2019, doi: 10.1145/3301306.

Federal Information Processing Standards Publication, “SHA-3 standard: permutation-based hash and extendable-output functions,”
Aug. 2015, doi: 10.6028/NIST.FIPS.202.

M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The first collision for full sha-1,” in Advances in Cryptology—
CRYPTO 2017: 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Springer, 2017, pp. 570-596, doi: 10.1007/978-3-319-63688-7_19.

X. Zhang, Z. Zhou, and Y. Niu, “An image encryption method based on the feistel network and dynamic DNA encoding,” /IEEE
Photonics Journal, vol. 10, no. 4, pp. 1-14, 2018, doi: 10.1109/JPHOT.2018.2859257.

C. Zhu and K. Sun, “Cryptanalyzing and improving a novel color image encryption algorithm using rt-enhanced chaotic tent maps,”
IEEE Access, vol. 6, pp. 18 759-18 770, 2018, doi: 10.1109/ACCESS.2018.2817600.

W.-K. Lee, R. C.-W. Phan, B.-M. Goi, L. Chen, X. Zhang, and N. N. Xiong, “Parallel and high speed hashing in GPU for
telemedicine applications,” IEEE Access, vol. 6, pp. 37 991-38 002, 2018, doi: 10.1109/ACCESS.2018.2849439.

M. Sravani and S. A. Durai, “Bio-hash secured hardware e-health record system,” IEEE Transactions on Biomedical Circuits and
Systems, 2023, doi: 10.1109/TBCAS.2023.3263177.

M. De Donno, K. Tange, and N. Dragoni, “Foundations and evolution of modern computing paradigms: Cloud, IoT, edge, and fog,”
IEEE Access, vol. 7, pp. 150936-150 948, 2019, doi: 10.1109/ACCESS.2019.2947652.

T.-Y. Wu, Z. Lee, M. S. Obaidat, S. Kumari, S. Kumar, and C.-M. Chen, “An authenticated key exchange protocol for multi-server
architecture in 5g networks,” IEEE Access, vol. 8, pp. 28 096-28 108, 2020, doi: 10.1109/ACCESS.2020.2969986.

W.-K. Lee, K. Jang, G. Song, H. Kim, S. O. Hwang, and H. Seo, “Efficient implementation of lightweight hash functions on GPU
and quantum computers for iot applications,” IEEE Access, vol. 10, pp. 59 661-59 674, 2022, doi: 10.1109/ACCESS.2022.3179970.
Z.Liu, L. Ren, Y. Feng, S. Wang, and J. Wei, “Data integrity audit scheme based on quad merkle tree and blockchain,” IEEE Access,
2023, doi: 10.1109/ACCESS.2023.3240066.

S. Islam, M. J. Islam, M. Hossain, S. Noor, K.-S. Kwak, and S. R. Islam, “A survey on consensus algorithms in blockchain-based
applications: architecture, taxonomy, and operational issues,” IEEE Access, 2023, doi: 10.1109/ACCESS.2023.3267047.

H. Cho, “Asic-resistance of multi-hash proof-of-work mechanisms for blockchain consensus protocols,” IEEE Access, vol. 6, pp.
66210-66222, 2018, doi: 10.1109/ACCESS.2018.2878895.

H. Choi and S. C. Seo, “Fast implementation of sha-3 in GPU environment,” IEEE Access, vol. 9, pp. 144 574-144 586, 2021, doi:
10.1109/ACCESS.2021.3122466.

H. Bensalem, Y. Blaquiere, and Y. Savaria, “An efficient opencl-based implementation of a SHA-3 co-processor on an fpga-centric
platform,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 3, pp. 1144-1148, 2022, doi: 10.1109/TC-
SI1.2022.3223179.

M. M. Sravani and S. A. Durai, “On efficiency enhancement of SHA-3 for FPGA-based multimodal biometric authentication,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 4, pp. 488-501, 2022, doi: 10.1109/TVLSI.2022.3148275.
S. El Moumni, M. Fettach, and A. Tragha, “High throughput implementation of sha3 hash algorithm on field programmable gate
array (FPGA),” Microelectronics journal, vol. 93, p. 104615, 2019, doi: 10.1016/j.mejo.2019.104615.

B. Li, Y. Yan, Y. Wei, and H. Han, “Scalable and parallel optimization of the number theoretic transform based on FPGA,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2023, doi: 10.1109/TVLSI1.2023.3312423.

A. Sideris, T. Sanida, and M. Dasygenis, “Hardware acceleration design of the SHA-3 for high throughput and low area on FPGA,”
Journal of Cryptographic Engineering, pp. 1-13, 2023, doi: 10.1007/s13389-023-00334-0.

H. E. Michail, L. Ioannou, and A. G. Voyiatzis, “Pipelined SHA-3 implementations on FPGA: architecture and performance
analysis,” in Proceedings of the Second Workshop on Cryptography and Security in Computing Systems, 2015, pp. 13-18, doi:
10.1145/2694805.2694808.

G. S. Athanasiou, G.-P. Makkas, and G. Theodoridis, “High throughput pipelined FPGA implementation of the new SHA-3 cryp-
tographic hash algorithm,” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP).
IEEE, 2014, pp. 538-541, doi: 10.1109/ISCCSP.2014.6877931.

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 1-11

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 0 11

[29] M. M. Wong, J. Haj-Yahya, S. Sau, and A. Chattopadhyay, “A new high throughput and area efficient SHA-3 implementation,” in
2018 IEEE International Symposium on Circuits and Systems (ISCAS), 1EEE, 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.8351649.

[30] Intel, L-Tile and H-Tile Avalon® Memory-Mapped Intel® FPGA IP for PCI Express* User Guide (version 23.4), 2024, 2024.
[Online]. Available: https://www.intel.com/content/www/us/en/docs/programmable/683667/23-4/introduction.html, (accessed Apr.
10).

[31] H. Mestiri and 1. Barraj, “High-speed hardware architecture based on error detection for keccak,” Micromachines, vol. 14, no. 6, p.
1129, 2023, doi: 10.3390/mi14061129.

[32] A. Arshad, D.-e.-S. Kundi, and A. Aziz, “Compact implementation of SHA3-512 on FPGA,” in 2014 Conference on Information
Assurance and Cyber Security (CIACS), 2014, pp. 29-33, doi: 10.1109/CIACS.2014.6861327.

BIOGRAPHIES OF AUTHORS

Huu-Thuan Huynh © kd B8 | received the B.S., M.S., and Ph.D. degrees in radio physics and
electronics from the University of Science, Ho Chi Minh City (HCMUS), in 1997, 2001, and 2010,
respectively. Since 2006, he has been with the Faculty of Electronics and Telecommunications (FE-
TEL), HCMUS. His current research interests are SoC FPGA-based real-time digital signal process-
ing. He can be contacted at email: hhthuan @hcmus.edu.vn.

Tuan-Kiet Tran (> 4 B © received a bachelor of science (B.Sc.) degree and a master of science
(M.S.) degree in electronics telecommunications engineering and electronics engineering, awarded
by the University of Science, Ho Chi Minh City (HCMUS) in 2017 and 2019, respectively. He
o ff currently serves as a faculty member at the Faculty of Electronics and Telecommunications (FETEL)
/ &) at HCMUS, Vietnam. His research interests include hardware accelerators for cryptography and
A /N parallel processing in Al. He can be contacted at email: trtkiet@hcmus.edu.vn.

Tan-Phat Dang © & E 13| received a bachelor of science (B.Sc.) degree and a master of science
(M.S.) degree in electronics telecommunications engineering and electronics engineering, awarded
by the University of Science, Ho Chi Minh City (HCMUS) in 2018 and 2023, respectively. Presently,
he is an active member of the Faculty of Electronics and Telecommunications (FETEL) at HCMUS,
Vietnam. His primary focus lies in FPGA-based hardware accelerators for cryptography, digital
signal processing, and video compressing. He can be contacted at email: dtphat@hcmus.edu.vn.

Implementing a very high-speed secure hash algorithm 3 accelerator based on PCI ... (Huu-Thuan Huynh)

https://orcid.org/0009-0003-3984-3355
https://scholar.google.com/citations?hl=id&user=6SldX2gAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55948143700
https://www.webofscience.com/wos/author/record/KXQ-7042-2024
https://orcid.org/0009-0008-5601-6382
https://scholar.google.com/citations?hl=en&authuser=5&user=mjBVgQQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57215727984
https://www.webofscience.com/wos/author/record/KWU-8572-2024
https://orcid.org/0009-0000-9369-9583
https://scholar.google.com/citations?user=UKBa2F4AAAAJ&hl=en&authuser=5
https://www.scopus.com/authid/detail.uri?authorId=57219503026
https://www.webofscience.com/wos/author/record/KWU-7304-2024

	Introduction
	SHA-3 preliminary
	Design and Implementation
	Overview architecture
	Buffer
	Multiple KECCAK-f

	Evaluation and Comparison
	Performance evaluation on DE10-Pro
	Comparative analysis

	Conclusion

