
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 14, No. 2, July 2025, pp. 375~387

ISSN: 2089-4864, DOI: 10.11591/ijres.v14.i2.pp375-387  375

Journal homepage: http://ijres.iaescore.com

An approximate model SpMV on FPGA assisting HLS

optimizations for low power and high performance

Alden C. Shaji, Zainab Aizaz, Kavita Khare

Department of Electronics and Communication, Maulana Azad National Institute of Technology, Bhopal, India

Article Info ABSTRACT

Article history:

Received May 4, 2024

Revised Jun 4, 2025

Accepted Jun 10, 2025

 High performance computing (HPC) in embedded systems is particularly

relevant with the rise of artificial intelligence (AI) and machine learning at

the edge. Deep learning models require substantial computational power,

and running these models on embedded systems with limited resources

poses significant challenges. The energy-efficient nature of field-

programmable gate arrays (FPGAs), coupled with their adaptability,

positions them as compelling choices for optimizing the performance of

sparse matrix-vector multiplication (SpMV), which plays a significant role

in various computational tasks within these fields. This article initially did

analysis to find a power and delay efficient SpMV model kernel using high

level synthesis (HLS) optimizations which incorporates loop pipelining,

varied memory access patterns, and data partitioning strategies, all of this

exert influence on the underlying hardware architecture. After identifying

the minimum resource utilization model, we propose an approximate model

algorithm on SpMV kernel to reduce the execution time in Xilinx Zynq-

7000 FPGA. The experimental results shows that the FPGA power

consumption was reduced by 50% when compared to a previously

implemented streaming dataflow engine (SDE) flow, and the proposed

approximate model improved performance by 2× times compared to that of

original compressed sparse row (CSR) sparse matrix.

Keywords:

Field-programmable gate array

High level synthesis

High performance computing

Optimization methods

Sparse matrix-vector

multiplication

This is an open access article under the CC BY-SA license.

Corresponding Author:

Alden C. Shaji

Department of Electronics and Communication, Maulana Azad National Institute of Technology

Bhopal, India

Email: aldencshaji@gmail.com

1. INTRODUCTION

High performance computing (HPC) plays a vital role in the field of artificial intelligence (AI) by

providing computational power required for training and running complex models. Many HPC systems

incorporate specialized hardware accelerators, such as field-programmable gate arrays (FPGAs) or graphics

processing units (GPUs), to offload floating-point computations from traditional CPUs. These accelerators

are optimized for parallel processing and can significantly boost performance for floating-point-intensive

workloads [1]. Floating-point accelerators are engineered to deliver robust computational capabilities while

also taking into account energy efficiency, a critical consideration in HPC systems where power consumption

and heat management are major challenges. Also, some of the key challenges associated with sparse matrix-

vector multiplication (SpMV) computation on FPGAs are irregular memory access patterns, load imbalance,

limited on-chip memory resources and energy efficiency. The flexibility of FPGAs, being programmable

hardware, allows for the customization of floating-point accelerators to suit specific workloads. This

adaptability give advantage in HPC applications, by providing solutions that can deliver optimal performance

for diverse computational tasks [2], [3].

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 375-387

376

SpMV is a foundational operation within HPC and holds vital significance across scientific,

engineering, and data analysis domains. This operation entails the multiplication of a sparse matrix

distinguished by a substantial volume of zero elements with a dense vector. SpMV utility extends to tasks

such as solving linear equation systems, simulating physical phenomena, and conducting graph

computations, under-scoring its essential role in diverse applications [4]. Custom memory access patterns are

critical for improving the performance of SpMV on embedded FPGAs. By tailoring memory hierarchies and

data structures, FPGAs can minimize memory latency and maximize bandwidth, leading to enhanced

efficiency in SpMV computations [5].

SpMV involves accessing non-contiguous memory locations owing to the sparse nature of matrices.

This irregular memory access pattern can lead to cache misses, causing increased memory latency and

affecting the overall performance of both CPUs and GPUs [6], [7]. In addition, the workload in SpMV is not

evenly distributed among the processing elements owing to the varying sparsity of the matrices. This load

imbalance can lead to inefficient utilization of resources, especially on GPUs where thread-level parallelism

is crucial. Consequently, CPUs and GPUs may not be the most suitable platforms for accelerating SpMV

kernels. In contrast, FPGAs emerge as a promising solution for SpMV acceleration. FPGAs boast large

off-chip storage bandwidth, allowing them to efficiently handle memory bound applications. Their tailored

logical components and efficient floating-point computations enhance its standing even more in FPGAs as an

attractive platform for accelerating SpMV computations [8].

Research findings indicate that high level synthesis (HLS) holds promise for furnishing

high-performance, energy-efficient solutions, thereby expediting time-to-market and tackling the

complexities of modern systems concurrently [9], [10]. Our investigation focuses on exploring the

application of HLS, a technique that is gaining popularity for accelerating algorithms on embedded

heterogeneous platforms. After finding the efficient optimization technique we calculated the kernel power

consumption in the embedded FPGA, then propose two novel approximate compressed spectral regression

(CSR) matrix to minimize the execution time for the kernel in the hardware.

The remainder of this paper is organized as follows. Section 2 provides background information and

related work on the SpMV and HLS flows. Section 3 presents the methodology used in this study paper to

bring out the results, including the usage of pragmas and a novel approximation model algorithm. The result

and discussion are presented in section 4. The paper concludes with the conclusion and future scope in

section 5.

2. THE COMPREHENSIVE THEORETICAL BASIS

2.1. Sparse matrix-vector multiplication

Sparse matrices, in contrast to dense matrices that hold a substantial amount of redundant

information, primarily consist of zero values, leading to more efficient memory usage. SpMV involves the

multiplication of a sparse matrix with a dense vector, ultimately producing a new vector that represents the

linear transformation of the original data expressed as (1).

𝑌𝑖 = ∑ ∑ 𝐴𝑖𝑗 × 𝑋𝑗 ,𝐶𝑜𝑙
𝑗=0 𝑖𝑓 𝐴𝑖𝑗 ≠ 0 𝑅𝑜𝑤

𝑖=0 (1)

Sparse matrices are typically encoded in condensed formats that only contain the non-zero members

in order to restrict the data collection needed. The ratio of total zero elements to total elements in a sparse

matrix determines the matrix's sparsity. Figure 1 provides an overview of the SpMV process along with the

common compressed formats used to store sparse matrices. The example SpMV kernel in Figure 1(a) is

represented using three commonly used compressed formats COOrdinate (COO), compressed sparse column

(CSC), and compressed sparse row (CSR) as shown in Figure 1(b). Out of these widely used is CSR format.

The val vector holds the non-zero elements mentioned by nnz determines their size and their corresponding

column indices are saved in col vector. In ptr vector, the difference between adjacent cells gives the no. of

non-zero elements (nnz) present in corresponding row in sparse matrix. The CSR format is appropriate for

computing with streaming data and only requires a brief preparation stage [11]. Also, CSR reduce the

memory needed from O(m×n) to O(2nnz+m) due to this we have used it in our work.

SpMV is a versatile operation with applications in a wide range of fields, offering computational

efficiency and memory savings when dealing with sparse data structures. Its broad applicability makes it a

fundamental operation in various scientific, engineering, and data-driven disciplines. SpMV application in

convolutional neural networks (CNN) training is shown in Figure 2, this training scheme was used in [12] to

get fast execution of CNN on GPUs. During the forward pass of CNN training, SpMV is applied when

computing the output of convolutional layers. The sparse weight matrices are multiplied by the input data

vectors, and the resulting sparse vector contributes to the activation of neurons in subsequent layers. In the

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An approximate model SpMV on FPGA assisting HLS optimizations for low power … (Alden C. Shaji)

377

backward pass (backpropagation) during training, gradients with respect to the weights are calculated

efficiently, taking advantage of the sparsity in both the input data and the weight matrices. This enables faster

updates to the weights during optimization.

(a) (b)

Figure 1. Sparse matrix-vector multiplication and conventional compress format (a) an example of SpMV

and (b) conventional compressed formats

Figure 2. SpMV application in CNN training

2.2. High level synthesis

Vitis HLS is a tool provided by Xilinx that takes high-level C or C++ functions and translates them

into RTL code, which can then be implemented in the programmable logic region of a system on chip (SoC).

It generates a hardware solution by considering the defined target flow, default tool settings, design

constraints, and optimization pragmas provided. Optimization directives are utilized to customize and

manage the internal logic and input/output ports implementation, superseding the tool’s default actions and

configurations. To attain optimal performance from the hardware generated, the HLS tool needs to identify

and utilize parallelism inherent in sequential code, enhancing overall performance. SpMV pseudo code

implemented using HLS is shown in Figure 3 [8].

Figure 3. SpMV kernel pseudo code in HLS environment

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 375-387

378

In high level language programs, the arrays are essential for storing and managing data. When

translating this to hardware, arrays are realized as either memory or registers during synthesis. Memory can

be either local or global, with global memory often corresponding to double data rate (DDR) or high-

bandwidth memory (HBM) memory banks. Accessing global memory incurs higher latency and multiple

cycles, whereas local memory access is faster and typically completed within a few cycles. Efficient memory

access is essential to minimize the overhead associated with accessing global memory. One strategy for

optimization involves consolidating access, maximising consecutive accesses to enable bursting. Burst access

effectively masks memory access latency and enhances memory bandwidth. While the process of blocks of

data, several loops or nested loops are needed. With the combination of micro-level HLS pragmas, it can

perform unroll, pipeline operations for a loop or nested loops [13].

HLS tools apply various optimizations to improve the performance, area, and power characteristics

of the generated hardware. HLS tools often provide simulation and verification capabilities, it helps to

simulate the behaviour of the generated hardware before the actual synthesis. The output of HLS can be

targeted for implementation on FPGAs for rapid prototyping providing flexibility in the choice of hardware

platform.

2.3. Related work

The concept of sparse matrices and related operations like SpMV can be traced back to the early

days of numerical computing and finite element analysis. Various algorithms and storage formats were

developed to accelerate SpMV, finding unique characteristics of sparse matrices in [14], [15]. In various

studies they have investigated the optimization of SpMV on FPGAs [16], [17]. The majority of these research

endeavors concentrate on leveraging high-end FPGAs and implementing approaches geared towards

processing big data efficiently in [18]. Du et al. [19] investigate a sparse matrix format specifically designed

for HBM. Another comparable effort, ReDESK [20] has examined SpMV optimizations in the context of

heterogeneous computing, it is designed to enable streaming process on the FPGA side and data prefetching

on the CPU side.

Design of bandwidth efficient SpMV on FPGA is the main theme in [5], [21]. Fowers et al. [22]

proposed an architecture for SpMV based on FPGA, along with a technique for sparse matrix decoding to

leverage parallelism across matrix rows. The design assumes the presence of two distinct DRAM modules in

the system, a feature that may not be commonly found in many existing embedded systems.

Hosseinabady and Nunez-Yanez [8] investigated on how parallelization and pipelining can be

effectively applied using HLS to increase the performance of SpMV on FPGA platforms. This includes

strategies for optimizing data movement and memory accesses. Garibotti et al. [10] suggested employing

commercial HLS tools along with dynamic analysis to produce higher quality designs. Creating an effective

floating-point accumulator, which encompasses both multiplier and adder components, to improve the

performance of SpMV is the objective in [23], [24]. Recently, a work [25] compares the SpMV calculation,

showcasing the performance and energy computation on GPU and FPGA. Furthermore, current optimizations

primarily target half precision floating point data types, overlooking support for reduced precision fixed point

arithmetic [26]. However, recent studies have investigated strategies for blending single and double precision

floating-point arithmetic [27].

Finally, in contrast to other works, this paper proposed a novel approximation model SpMV to

reduce the power and execution time, using which can significantly transform the FPGA accelerator. We

have compared the power consumption and execution time of same matrices with the implementation in [8]

in the results. Experimental work on HLS pragmas and approximate algorithms are discussed in detail in

further sections.

3. METHOD AND EXPERIMENTAL SETUP

In this section, the details of the design model used for SpMV implementation on FPGA are

provided. Initially, we find out the trade-off between execution time and the resource utilization using the

HLS optimization techniques. Then we select the efficient technique based on hardware emulation and

implementation. After that we applied the approximation model algorithm to the sparse matrix and did the

analysis. We have compared the results obtained in our target hardware Zybo Z7-20 board with Xilinx

ZCU102 evaluation board used in [8].

3.1. High level synthesis optimization techniques

Utilization of HLS tools is to harness the productivity benefits of translating C/C++ code into RTL

for hardware, or objective is to accelerate a subset of a C/C++ algorithm by running it on a specialized

hardware built with programming logic. Functions implemented in C/C++ and transformed into custom

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An approximate model SpMV on FPGA assisting HLS optimizations for low power … (Alden C. Shaji)

379

hardware using programmable logic can operate at notable higher speeds compared to what is attainable on

typical GPU/CPU setups, resulting in higher throughput and performance. The proposed SpMV

implementation have 3 primary tasks involved: Task A: reading of data into the FPGA memory, Task B:

initiating the stream computation engine, and Task C: transferring output of FPGA to main memory. The

following optimization techniques are used to implement the SpMV computation.

3.1.1. Loop pipelining

Loops are crucial constructs within an SpMV. Since loop body is executed repeatedly, this

characteristic can be effectively leveraged to enhance parallelism and optimize performance. To enhance

throughput and make more efficient use of computational resources, a valuable approach is to introduce

pipelining in operators, loops and functions. Figure 4 shows the example flow of 3 tasks (each took 10 units

to complete) before and after pipelining. To finish the first workload it took 30 units, is called the iteration

latency. After the completion of first workload, next two workloads only take 10 units each, called the

initiation interval (II). The overall completion of all the workloads is called the total latency, which is 50

here. The general formula for finding total latency for N no. of workloads is given in (2).

𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 + 𝐼𝐼 × (𝑁 − 1) (2)

In a pipelined function or loop, new inputs can be processed every specified II clock cycles. II=1

implies processing a new input every clock cycle. The maximum throughput that a pipelined loop can reach

without unrolling is attained at this point. Sometimes this not possible, due to resource constraints and loop

carried dependencies. The pipelined loop will automatically unwind any nesting loops. A common issue in

pipelined loop is memory conflict. There are four loops in the kernel code in which we applied pipeline on

every loop with II=1, considered both the cases of with and without pipelining the loops.

Figure 4. Pipelining flow for three tasks

Pipelining reduces the latency of the computation by allowing the creation of new loop iterations

before the completion of previous ones. This is crucial in SpMV where the data dependencies are often

sparse, and overlapping computations can significantly improve overall performance. It can contribute to

achieving higher clock frequencies by breaking down the computation into smaller, more manageable stages.

3.1.2. AXI burst transfer

Bursting is an optimization strategy aimed at smartly consolidating memory accesses to DDR in

order to reduce latency and increase throughput bandwidth. The AXI4 protocol's burst functionality boosts

the load-store function’s throughput by enabling them to read or write a large group of data to or from the

global memory in a single request. The throughput increases with the size of the data being transferred.

Optimising different HLS interface metrics, such as port width, burst access, latency, numerous ports, and the

number of unfinished reads and writes, is necessary to develop effective load-store functions. Utilizing local

buffers to store segments of the matrix or vector during computation proves beneficial by mitigating memory

access latency and enhancing data reuse. This strategy involves temporarily holding subsets of the data

within the fast on-chip memory, allowing the processor to access and manipulate the information more

efficiently. By minimizing the need for frequent off-chip memory accesses, local buffers contribute to

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 375-387

380

optimizing overall computation performance. In the hardware we have four 64-bit AXI high-performance

memory ports to transfer data from programming logic to DDR memory.

3.1.3. Loop unrolling

Aims to improve performance by reducing loop overhead and increasing parallelism. In loop

unrolling multiple iterations of the same loop are performed within a single iteration. Unrolling factor is the

no. of iterations to execute in each unrolled iteration. The loop can be partially or completely unrolled with

the UNROLL pragma. Fully unrolling makes a duplicate of the loop body for each iteration, enabling

concurrent operation of the whole loop. On the other hand, partial unrolling entails setting a factor N to make

N copies of the loop body and decrease the loop iterations appropriately. The limits of a loop must be known

at compile time in order to fully unroll it. Loop unrolling needs more computation and storage resources

hence it is a trade-off between performance and resources. In our experiments we implemented the kernel

code with unroll factor of 2 and 4.

The most effective unroll factor for loop unrolling in SpMV using Vitis HLS depends on the unique

characteristics of the targeted FPGA architecture and the specific attributes of the SpMV problem being

addressed. Conducting experiments with various unroll factors and leveraging performance profiling through

Vitis HLS reports is crucial for identifying the optimal configuration that maximizes computational

efficiency. This iterative process enables fine-tuning and customization, ensuring the SpMV kernel is tailored

for optimal performance on the specific FPGA platform and problem domain.

3.1.4. Array partitioning

It involves breaking down a single array into smaller, independent parts or subsets such that each

part can be implemented as a BRAM, so that can access them at the same time. Aggregate types can be

divided into smaller memories or into their component parts, which increases the memory bandwidth and

increases the number of memory accesses on each cycle. Block, cyclic, and complete array partitioning are

the three types available. The options like type and dim for the memory partition pragma specify the partition

type and dimension, respectively. Large array size will be synthesized into BRAMs in FPGA. Here we

declared the variables with array partition in cyclic factor with dim=1.

Using #pragma HLS ARRAY_PARTITION variable=x complete dim=1 partitions the input matrix

x along its rows (specified by dim=1). Complete partitioning is employed, indicating that each partition

comprises an entire set of rows from the matrix. This optimization aims to boost parallelism by enabling

concurrent processing of multiple rows within the matrix. Within the computation loop, partial sums are

calculated for each row by leveraging the partitioned matrix and the input vector. This approach enhances

parallel execution, thereby optimizing memory access patterns and improving the overall performance of

SpMV kernels on FPGA platforms.

3.1.5. Bind storage

It links a code variable to a certain memory type in the RTL. The memory type associated with the

array influences the number and kind of ports required in the RTL, making this element important for the

arrays on the top-level function interface. These variables must use the storage_type and storage_impl

options of the BIND_STORAGE pragma to specify the memory type and implementation. The latency

option for BRAMs on the interface enables the memory to be implemented using more pipelined stages.

Timing issues that arise during RTL synthesis can be effectively resolved by adding extra pipeline stages.

3.2. Sparse matrix-vector multiplication-kernel

A kernel typically refers to a computational routine or algorithm that is specialized for a particular

operation. SpMV kernel is a specific implementation or routine designed to efficiently perform the

multiplication of a sparse matrix with a dense vector. Minimize dynamic memory allocations and

deallocations during the computation to avoid unnecessary overhead. Access patterns should be designed to

minimize cache misses during the multiplication and accumulation steps.

The source code for the SpMV kernel is given in Figure 5 which is referenced from [8]. The pseudo

code contains four for loops, in which data fetching from the sparse matrix is happened first, then it will

uncompress the CSR format matrix by fetching each data value from each row of the matrix. After getting all

the nnz’s then multiplication with the corresponding element in the dense vector and accumulate the result

from the multiplication step into the corresponding entry of the output vector. Repeat the multiplication and

accumulation steps for all non-zero elements in the sparse matrix. The last loop is for the transfer of the

output data containing the result of the SpMV operation to the output terminal.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An approximate model SpMV on FPGA assisting HLS optimizations for low power … (Alden C. Shaji)

381

Figure 5. SpMV kernel pseudo code with pipelining

3.3. Approximate sparse matrix-vector multiplication algorithm

As far as we are aware, there is currently no existing research that focuses on optimizing the

computation of approximate model SpMV on FPGA. Despite previous studies addressing optimizing

techniques on FPGA for dense matrix multiplications and deep learning, there appears to be a gap in the

literature regarding the specific optimization of approximate model SpMV on these hardware platforms. The

computational performance of CPUs in this task is inherently limited by their restricted memory bandwidth

and the difficulty of efficiently executing frequent random accesses. This limitation arises from the fact that

there are no assurances that the required values have not been taken from the cache, impeding the ability to

access data quickly and reliably.

The motivation behind approximate SpMV algorithms is to accelerate the computation of matrix-

vector multiplication in scenarios where an exact solution is not strictly necessary. This is common in

machine learning, signal processing, and other applications where an approximate result is acceptable. The

key trade-off in approximate SpMV algorithms is between computational speed and solution accuracy.

Approximate SpMV models can be designed to scale better with increasing matrix sizes. This is especially

beneficial when dealing with large datasets in scientific simulations or machine learning applications.

In this section, we suggested a unique approximate model approach for SpMV, to shorten the

execution time. Efficiency in SpMV is often achieved through algorithms and data structures that lessen the

number of arithmetic operations and memory access by taking advantage of the matrix's sparsity. We have

taken the sparse matrix So as the input and obtain the approximate CSR format matrices St and Sv as outputs.

Implementation results are shown in section 5. This algorithm contains two types of approximation:

AX-1: here the approximation of SpMV is based on thresholding the row count of the matrix. Only

taking the data values which are higher than the threshold and stores it in St. Threshold is calculated as the

mean of max and min row count values of the sparse matrix. In Algorithm 1, step 4–11 corresponds to this

approximation.

AX-2: here the approximation is based on the accuracy of the data value. After sorting the input

sparse matrix based on data value, it is classified into positive matrix (Sp) and negative matrices (Sn). Then

taken only the high accuracy values of 70% of total NNZ’s. Both matrixes are joined together in Sv and again

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 375-387

382

do the sorting based on the row values. It is then converted into the CSR format. In Algorithm 1, step 12–19

corresponds to this approximation.

Algorithm 1. Approximate SpMV algorithm

Input:

The original sparse matrix, So;

Output:

The target approximate CSR format, St and Sv;

1: Obtain the matrix parameters from So;

2: Count the no. of NNZ’s in each row and store in row_count;

3: Initialize the matrix St, Sv with rows of specified NNZ’s, j=0;

4: Obtain the max and min row_count values;

5: Find the threshold by taking mean of values from 4;

6: while j < NNZ do

7: if row_count < threshold then

8: skip adding those row’s values to St;

9: else add those rows to St and increment the size;

10: add corresponding col and data value to St;

11: end while

12: sort So based on absolute data value;

13: Classify So into two matrices as Sp, Sn based on integer;

14: Count the no. of elements in Sp, Sn and store in p, n;

15: for i: p×0.3 to p

16: copy the corresponding values from Sp to Sv ;

17: for i: 1 to n×0.7

18: copy the corresponding values from Sn to Sv ;

19: sort Sv based on row value;

20: Convert matrix St and Sv into CSR format;

3.4. Experimental setup

To evaluate the proposed methods, we setup the host environment with processor Intel Core i5-7500

@ 3.4 GHz×4, Memory of 7.6 GiB. The target device as Zybo Z7-20 contains the FPGA Zynq-7000 platform

which consists of XC7Z020-1CLG400C chip and it also contains dual-core ARM Cortex-A9 processor. Our

design utilizes the four 64-bit high performance memory ports in the programmable logic. It supports data

transfer from processing system to DDR memory with memory bandwidth of 12.2 GB/s. It also contains an

on-chip memory of 256 KB which is useful in reducing the throughput while computing. We set the

frequency to 150 MHz on FPGA for the execution of SpMV accelerator. The tool used for implementation of

the design is Vitis HLS 2020.2.

Installed PetaLinux and Vitis HLS, two distinct tools provided by Xilinx that serve different

purposes. PetaLinux is primarily used for building and customizing Linux distributions for Xilinx devices,

while Vitis HLS is focused on HLS, converting C, C++, and OpenCL code into hardware implementations.

By running config, build and package for PetaLinux tool will generate the boot image that includes the first

stage boot loader (FSBL), bitstream, and other necessary components.

As input data for the experiment, we used a set of sparse matrices from the University of Florida's

sparse matrix collection [28]. The selected matrices dimension and NNZ’s are less than 106, respectively. The

features of the sparse matrices are given in Table 1, according to that all the matrices have sparsity above

98% and four matrixes in the selected are floating point type and remaining one is integer type value. The

optimization techniques used in the SpMV kernel are modelled into 8 types as shown in Table 2.

Combination of different optimization techniques are used with HLS pragmas in modelling and obtained the

performance results in Vitis HLS.

Table 1. Sparse matrix statistics
Matrix name Row size Col size NNZ Sparsity (%) Type

c-48.mtx 18354 18354 92217 99.97 FP value
cage8.mtx 1015 1015 11003 98.93 FP value

g7jac080.mtx 23670 23670 293976 99.95 FP value

mhd4800a.mtx 4800 4800 102252 99.56 FP value
TF16.mtx 19321 15437 216173 99.93 INT value

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An approximate model SpMV on FPGA assisting HLS optimizations for low power … (Alden C. Shaji)

383

Table 2. Optimization model
Model Optimization technique

A Pipeline OFF
B Pipeline OFF and unroll factor=2

C Pipeline OFF and unroll factor=4

D Pipeline OFF and array partition
E Pipeline ON

F Pipeline ON and unroll factor=2

G Pipeline ON and array partition
H Pipeline ON and bind storage

4. RESULTS AND DISCUSSION

This segment analyses the proposed SpMV approximate algorithm with optimization techniques.

Initially, a series of 5 sparse matrices chosen as benchmarks for the purpose of examining the effects of each

optimization technique described. Zybo Z7-20 taken as our target board, which contains Zynq 7000 FPGA

and with Vitis HLS tool we implemented software emulation, hardware emulation, and hardware build. The

execution time in Figure 6 is taken after passing the test while running software emulation. In hardware

emulation, it checks the functional correctness of the RTL code synthesized from the OpenCL kernel code. It

gives the resource utilization, estimated frequency and the number of cycles taken for the execution of the

task in the target device. In hardware build the tool will generate the FPGA bitstream for the corresponding

device after running several steps including logic placement, optimization, routing, timing optimization in

Vitis tool. The resource utilization for each model is given in Table 3, according to that we have calculated

the power consumption for each model using Xilinx power estimator.

Figure 6. Evaluation of deign performance in Vitis HLS

Table 3. Optimization model
Model DSP (220) BRAM_18K (280) FF (106400) LUT (53200)

A 12 100 4115 7645

B 6 100 4392 7879

C 6 100 5022 9805
D 12 100 4099 7783

E 12 100 4462 7751

F 6 100 5225 8008

G 12 100 4571 7951

H 12 100 4462 7717

3
0

.2
2

1
6

.8
3

3
7

.6
2

5
5

.3
9

8
.1

9

4
3

.1
2

5
.9

2

3
7

.9
7

3
2

.5 3
5

4
0

.2

3
2

.5

3
2

.6

3
2

.4

3
2

.6

3
2

.6

131.7 131.7 131.7 131.7

136.9 136.9 136.9 136.9

A B C D E F G H

129

130

131

132

133

134

135

136

137

138

0

10

20

30

40

50

60

A B C D E F G H

E
st

im
a

te
d

 F
r
e
q

 (
M

H
z)

Optimization Model

Exec. Time (s) Cycles/10 Est. Freq. (MHz)

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 375-387

384

From the results of software and hardware emulations, we conclude that model G which is using

Pipeline with array partition is giving better results for a common sparse matrix as shown in Figure 5. The

models which use pipeline is taking an estimated time of 7.3 ns for a target time of 6.7 ns with a slack of

-0.6 ns, and the models without pipelining is taking an estimated time of 7.6 ns with a slack of -0.9 ns. Thus,

pipelining is efficient for reducing the slack and improving the performance in HLS. Except B and C models,

remaining all models taking 326-324 cycles to complete the task.

Power consumption depends on various factors, including the hardware architecture, clock

frequency, resource utilization, and the nature of the operations performed by the models. Examine the

resource utilization reports from Vitis HLS to understand how much of the FPGA resources each model is

consuming. This includes details on look-up tables (LUTs), flip-flops (FFs), BRAMs, digital signal

processors (DSPs), and other resources. Higher clock frequencies generally lead to better performance but

can also increase power consumption. Dynamic power consumption is influenced by the activity and

switching of logic elements during operation whereas static power consumption is associated with the

leakage power of the FPGA. This component is independent of the activity and can be significant in

low-power applications.

Power utilization for each model is calculated by Xilinx power estimator with the resource

utilization got from the Vitis HLS tool. From the calculation model B is taking the lowest power

consumption. The power utilization comparison of our model with the streaming dataflow engine (SDE)

SpMV model from [8] is given in Figure 7. They have used ZCU102 evaluation board which contains Zynq

UltraScale+ MPSoC as their target device, which is higher end device as compared to Zynq-7000. From the

comparison chart for the SpMV model, our model is taking almost half of the power consumption taken by

SDE model.

Figure 7. Power utilization comparison chart

In optimization model G we calculated the execution time (milli seconds) is shown in Figure 8 for 5

selected sparse matrices mentioned in Table 1. The approximate algorithm applied to the matrices given to

the G model SpMV kernel and analyzed the execution time in the target FPGA. We find out that AX-1

approximation model is reaching 50% reduction in execution time for floating point value sparse matrix

compared to its original. But for integer type value sparse matrix AX-2 approximation model getting much

reduction than other. Also observed that the reduction is higher when the NNZ’s are larger. Execution time

taken for both approximate model AX-1 and AX-2 for the sparse matrices in comparison with SDE model in

[8] is shown in Figure 8. In [8] they have used target device as Zynq UltraScale+ MPSoC FPGA with a

frequency of 200 MHz, which reduces the execution time significantly.

63 61
68

63 64 64 65 64

106.5

0

20

40

60

80

100

120

0 2 4 6 8 10

P
o
w

er
 U

ti
li

za
ti

o
n

 (
m

W
)

Model

Our Work Ref. [8]

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An approximate model SpMV on FPGA assisting HLS optimizations for low power … (Alden C. Shaji)

385

Figure 8. Execution time comparison for each model

5. CONCLUSION

Efficient approximate SpMV implementations developed through HLS offer versatile applications

spanning scientific computing, machine learning, and signal processing domains. However, deploying these

solutions effectively demands seamless integration, robustness, and vigilant performance monitoring in

real-world scenarios. Approximation techniques can significantly accelerate SpMV computations by trading

off accuracy for speed. By approximating complex operations or reducing precision where acceptable, HLS

generated kernel can execute SpMV operations faster than conventional methods.

In this article, we introduce a novel approximate model in the HLS optimized SpMV kernel. These

sparse kernels have a CSR sparse matrix format, on the heterogeneous platform it can execute non-blocking

pipelined operations efficiently, optimizing bandwidth usage by assigning irregular memory access and

control patterns to appropriate processes. The approach relies on stream computing methodologies, where

computation and data transfer between main memory and the FPGA occur concurrently in a pipelined

manner. The experimental results point towards a power and delay efficient SpMV kernel on Zynq 7000

FPGA. It also figured out that pipeline and array partition have given higher throughput, low resource

utilization and execution time is reduced by more than 50% and also approximate model sparse matrices

achieved 2× performance. Overall, our research focused on bridging the gap between approximate computing

and hardware optimization, leveraging the unique capabilities of FPGAs to enhance the performance of

SpMV operations in reconfigurable and embedded systems while addressing key challenges related to power,

efficiency, and adaptability.

Edge computing is the future of HPC, so execution time and power consumption plays a significant

role. Investigating hybrid precision approaches that combine low-precision arithmetic with higher precision

where necessary could offer a balance between performance and accuracy. Developing dynamic adaptation

mechanisms that adjust approximation levels based on runtime conditions and application requirements could

enhance flexibility and adaptability. This could involve techniques such as runtime monitoring and feedback

mechanisms to dynamically tune approximation parameters.

REFERENCES
[1] W. Mao et al., “A Configurable Floating-Point Multiple-Precision Processing Element for HPC and AI Converged Computing,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 2, pp. 213-226, Jan. 2022, doi:

10.1109/TVLSI.2021.3128435.

[2] V. Sze, Yu-Hsin Chen, Tien-Ju Yang, and J. S. Emer, “Efficient processing of deep neural networks: A tutorial and survey,”
Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017, doi: 10.1109/JPROC.2017.2761740.

[3] S. Song and J. Zambreno, “A floating-point accumulator for fpga-based high performance computing applications,” in 2009

International Conference on Field-Programmable Technology, Sydney, NSW, Australia, 2009, pp. 493-499, doi:
10.1109/FPT.2009.5377624

[4] L. Yavits and R. Ginosar, “Accelerator for sparse machine learning,” IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 21–

24, Jan.-Jun. 2018, doi: 10.1109/LCA.2017.2714667.

0

5

10

15

20

6
.0
9
8

1
.4
6
9

1
6
.9
4
6

4
.8
2
9

1
2
.5
7
5

3
.4
5
3

1
.1
8
2

8
.2
2
4

4
.3
8
9

1
1
.9
9
9

5
.5
5
9

1
.3
6
7

1
2
.0
4
7

4
.7
9
7

9
.5
8

0
.3
0
2

0
.0
3
5

0
.4
4
1

0
.1
3
9

0
.3
3
4Ex

e
cu

ti
o

n
 T

im
e

 (
m

s)

Original AX-1 AX-2 SDE

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 2, July 2025: 375-387

386

[5] B. Liu and D. Liu, “Towards high-bandwidth-utilization SpMV on FPGAs via partial vector duplication,” in 2023 28th Asia and

South Pacific Design Automation Conference (ASP-DAC), Tokyo, Japan, 2023, pp. 33-38.
[6] Min Li, Y. Ao, and C. Yang, “Adaptive SpMV/SpMSpV on GPUs for input vectors of varied sparsity,” IEEE Transactions on

Parallel and Distributed Systems, vol. 32, no. 7, pp. 1842-1853, Jul. 2021, doi: 10.1109/TPDS.2020.3040150.

[7] W. Yang, K. Li, Z. Mo and K. Li, “Performance optimization using partitioned SpMV on GPUs and multicore CPUs,” IEEE
Transactions on Computers, vol. 64, no. 9, pp. 2623-2636, Sep. 2015, doi: 10.1109/TC.2014.2366731.

[8] M. Hosseinabady and J. L. Nunez-Yanez, “A streaming dataflow engine for sparse matrix-vector multiplication using high-level

synthesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 6, pp. 1272-1285, June
2020, doi: 10.1109/TCAD.2019.2912923.

[9] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis for loop pipelining in high-level synthesis”, in 2013 50th

ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2013, pp. 1-10, doi: 10.1145/2463209.2488796.
[10] R. Garibotti, B. Reagen, Y. S. Shao, G. Y. Wei, and D. Brooks, “Assisting high-level synthesis improve SpMV benchmark

through dynamic dependence analysis,” IEEE Transactions on Circuits and Systems II: Express Breifs, vol. 65, no. 10, pp. 1440-

1444, Oct. 2018, doi: 10.1109/TCSII.2018.2860122.
[11] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on throughput-oriented processors,” in Proceedings

of the Conference on High Performance Computing Networking, Storage and Analysis, Portland, OR, USA, 2009, pp. 1-11, doi:

10.1145/1654059.1654078.
[12] P. Guo and C. Zhang, “Sparse matrix selection for CSR-based SpMV using deep learning,” in 2019 IEEE 5th International

Conference on Computer and Communications (ICCC), Chengdu, China, 2019, pp. 2097-2101, doi:

10.1109/ICCC47050.2019.9064309.
[13] Vitis High-Level Synthesis User Guide, Xilinx Inc., San Jose, CA, USA, 2023, [Online]: Available:

https://docs.amd.com/r/2023.1-English/ug1399-vitis-hls.

[14] S. Kestur, J. D. Davis, and E. S. Chung, “Towards a universal FPGA matrix-vector multiplication architecture,” 2012 IEEE 20th
International Symposium on Field-Programmable Custom Computing Machines, Toronto, ON, Canada, 2012, pp. 9-16, doi:

10.1109/FCCM.2012.12.
[15] J. Naher, C. Gloster, S. S. Jadhav, and C. C. Doss, “Using machine learning to estimate utilization and throughput for OpenCL-

based SpMV implementation on an FPGA,” in 2020 SoutheastCon, Raleigh, NC, USA, 2020, pp. 1-8, doi:

10.1109/SoutheastCon44009.2020.9249711.
[16] E. S. Chung, J. C. Hoe, and K. Mai, “CoRAM: An in-fabric memory architecture for FPGA-based computing,” in FPGA '11:

Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 2011, pp. 97–106, doi:

10.1145/1950413.1950435.
[17] Y. Umuroglu and M. Jahre, “An energy efficient column-major backend for FPGA SPMV accelerators,” in 2014 IEEE 32nd

International Conference on Computer Design (ICCD), Seoul, Korea (South), 2014, pp. 432-439, doi:

10.1109/ICCD.2014.6974716.
[18] S. Li et al., “A data locality-aware design framework for reconfigurable sparse matrix-vector multiplication kernel,” 2016

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 2016, pp. 1-6, doi:

10.1145/2966986.2966987.
[19] Y. Du, Y. Hu, Z. Zhou, and Z. Zhang, “High-performance sparse linear Algebra on HBM-equipped FPGAs Using HLS: a case

study on SpMV,” in FPGA '22: Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, 2022, pp. 54-64, doi: 10.1145/3490422.3502368.
[20] K. Lu et al., “ReDESK: a reconfigurable dataflow engine for sparse kernels on heterogeneous platforms,” in 2019 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi:

10.1109/ICCAD45719.2019.8942089.
[21] M. M, N. S, and K. S, “Bandwidth-efficeint sparse matrix multiplier architechure for deep neural networks on FPGA,” in 2021

IEEE 34th International System-on-Chip Conference (SOCC), Las Vegas, NV, USA, 2021, pp. 7-12, doi:

10.1109/SOCC52499.2021.9739346.
[22] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A high memory bandwidth FPGA accelerator for sparse matrix-

vector multiplication,” in 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing

Machines, Boston, MA, USA, 2014, pp. 36-43, doi: 10.1109/FCCM.2014.23.
[23] Y. Zhang, Y. H. Shalabi, R. Jain, K. K. Nagar, and J. D. Bakos, “FPGA vs. GPU for sparse matrix vector multiply,” in 2009

International Conference on Field-Programmable Technology, Sydney, NSW, Australia, 2009, pp. 255-262, doi:

10.1109/FPT.2009.5377620.
[24] L. Zhuo, G. R. Morris, and V. K. Prasanna, “High-performance reduction circuits using deeply pipelined operators on FPGAs,”

IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 10, pp. 1377-1392, Oct. 2007, doi:

10.1109/TPDS.2007.1068.
[25] T. Laan and A. L. Varbanescu, “Heterogeneous GPU and FPGA computing: a VexCL case study,” 2022 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France, 2022, pp. 382-390, doi:

10.1109/IPDPSW55747.2022.00073.
[26] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing gpu tensor cores for fast fp16 arithmetic to speed up mixed-

precision iterative refinement solvers,” in SC18: International Conference for High Performance Computing, Networking,

Storage and Analysis, Dallas, TX, USA, 2018, pp. 603-613, doi: 10.1109/SC.2018.00050.
[27] K. Ahmad, H. Sundar, and M. Hall, “Data-driven mixed precision sparse matrix vector multiplication for gpus,” ACM

Transactions on Architecture and Code Optimization (TACO), vol. 16, no. 4, pp. 1–24, 2019, doi: 10.1145/3371275.

[28] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,” ACM Transactions on Mathematical Software, vol.
38, no. 1, pp. 1-25, 2011, doi: 10.1145/2049662.204966.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An approximate model SpMV on FPGA assisting HLS optimizations for low power … (Alden C. Shaji)

387

BIOGRAPHIES OF AUTHORS

Alden C. Shaji graduated in Electronics and Communication Engineering from

Rajiv Gandhi Institute of Technology, Kottayam, Kerala and completed the Master’s degree in

VLSI design and embedded systems at Maulana Azad National Institute of Technology,

Bhopal, Madhya Pradesh, in 2024. He is currently working in an MNC at Bangalore as

Physical Design Engineer. He also published 2 conference papers related to SpMV

optimization using HLS. His fields of interest are VLSI design with low power techniques,

interconnects at lower tech nodes. He can be contacted at email: aldencshaji@gmail.com.

Zainab Aizaz completed her Ph.D. from Maulana Azad National Institute of

Technology, Bhopal, MP in 2024 in Digital VLSI design. Her subjects of interest are digital

circuits, CPU design, and hardware accelerators for machine learning and artificial

intelligence. She is a research fellow in AI hardware at University of Sussex. She can be

contacted at email: aizazzainab@gmail.com.

Kavita Khare received her B.Tech. degree in Electronics and Communication

Engineering in 1989, and M.Tech. degree in Digital Communication Systems in 1993 and a

Ph.D. degree in VLSI design in 2004. She has 30 years of teaching experience with more than

200 publications in reputed journals and conferences of IEEE, Springer, and Elsevier. She has

guided 40 M.Tech. and 19 Ph.D. theses. She is a consistent reviewer in many tier 1 journals

and is the Editor/Chief Advisory Board Member of some reputed International Journals.

Currently, she is working as Professor, in the Department of Electronics and Communication

Engineering at MANIT, Bhopal, India. She had Served as Head of the Department of

Electronics and Communication Engineering for 3 consecutive years. She has two ongoing

govt of India projects. She has three books published. She got 4 best paper awards. Her fields

of interest are VLSI design of arithmetic circuits and ultra-low power VLSI. She can be

contacted at email: kavita_khare1@yahoo.co.in.

https://orcid.org/0009-0009-2358-3476
https://www.scopus.com/authid/detail.uri?authorId=59134361100
https://orcid.org/0000-0002-9702-1144
https://scholar.google.co.id/citations?hl=id&user=1w3eNl0AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57190583756
https://orcid.org/0000-0002-7704-7646
https://scholar.google.co.id/citations?hl=id&user=XHJHtD0AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=8409433600

