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 Detecting objects within complex environments, such as urban settings, 

holds significant importance across various applications, including driver 

assistance systems, traffic monitoring, and obstacle detection systems. 

Particularly crucial for these applications is the accurate differentiation 

between cars and roads. This study introduces a novel approach that 

leverages traditional feature descriptors and classifiers for real-time object 

detection. It conducts an exhaustive comparative analysis of feature 

descriptors and classifiers to identify the most effective model for real-time 

object detection. Handcrafted features of images are extracted using 

algorithms such as scale invariant feature transform (SIFT), oriented fast and 

brief (ORB), fast retina key-point (FREAK), and local binary pattern (LBP). 

Seven classifiers are employed, including support vector machine (SVM), 

K-nearest neighbors (KNN), random forest (RF), decision tree (DT), logistic 

regression (LR), Naive Bayes, and extreme gradient boosting (XGBoost). 

The performance of the 28 generated combinations of feature descriptors and 

classifiers is evaluated based on the parameters of accuracy, precision, F1 

score, and recall. The model utilizing LBP and XGBoost achieves the 

highest accuracy, reaching 83.59%. The system architecture comprises a 

camera, a high-speed computing unit, a display, and an audio subsystem, 

with the algorithm implemented on a Raspberry Pi 4B (8 GB). 
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1. INTRODUCTION  

The task of object detection holds pivotal significance within the field of computer vision, finding 

extensive utility across diverse sectors. As per the findings of the U.S. National Highway Traffic Safety 

Administration, a substantial majority, exceeding 88% of traffic incidents arise due to errors in judgment or 

delayed reactions on the part of drivers [1]. As a solution, an intelligent driver assistance system for road 

safety must be developed which would alert drivers in dangerous situations [2]. Technological advancements 

in embedded systems and vehicle electronics are being driven by the goal of enhancing vehicle safety and 

energy efficiency [3]. The emergence of real time technologies like driver assistance systems and obstacle 

avoidance systems has highlighted the need for precise and instantaneous object detection methodologies. 

Notably, in these application domains, vehicles and roadways emerge as central entities, having profound 

influence over transportation networks and safety frameworks. 

https://creativecommons.org/licenses/by-sa/4.0/
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This study is dedicated to devising an object detection framework ported on an embedded system for 

instantaneous segmentation of cars and roads. The method employs hand crafted features extracted from 

traditional feature descriptors and statistical machine learning models. These models are assessed based on 

the parameters of accuracy, precision, F1 score, and recall. Through combination of traditional feature 

descriptors with classifiers, our objective is to enhance the effectiveness of object detection in real-time 

environments while maintaining the rapid response times and low computational power both critical for real-

time applications. 

 

 

2. LITERATURE SURVEY 

In recent years, deep learning algorithms like region-based convolutional neural networks (R-CNN), 

you only look once (YOLO), and single shot multibox detector (SSD) have gained widespread adoption 

across various domains for object detection tasks [4]. Convolutional neural networks (CNNs) are widely 

recognized as one of the most representative and influential models in the domain of deep learning [5]. A 

method enhancing faster R-CNN for obstacle detection and recognition using U-V disparity maps and an 

improved network structure involving context aware modules trained on datasets from KITTI and CCD 

cameras is proposed in [6]. Dairi et al. [7] introduced a stereo vision method for obstacle detection in urban 

environments. They utilized a deep stacked auto-encoders (DSA) model and an unsupervised K-nearest 

neighbors (KNN) algorithm to detect obstacles reliably. A YOLO-v5-based object detection model capable 

of detecting objects of various sizes, including large, small, and tiny objects utilizing a multi-scale 

mechanism to adaptively determine the optimal scales for vehicle detection within a scene was proposed by 

Carrasco et al. [8]. Zhou et al. [9] proposed a road detection and tracking algorithm that accurately delineates 

the road region using a graph-cut-based approach. It employs a fast homography-based tracking technique, 

utilizing features from scale invariant feature transform (SIFT) and speeded up robust features (SURF) 

algorithms alongside the fast feature detector. A system designed to identify drivable and non-drivable roads, 

with the goal of mitigating traffic accidents was introduced which employed a combination of SIFT and 

binary robust invariant scalable key-points (BRISK) algorithms to extract features. These extracted features 

were subsequently input into classifiers. The system attained a 70.9% accuracy rate when utilizing the 

support vector machine (SVM) with a radial basis function (RBF) kernel in [10]. An algorithm utilizing 

principal component analysis-SIFT (PCA-SIFT), exploiting scale-invariant key points to ensure rotation and 

scale invariance was introduced where the PCA method, based on variable covariance matrices, efficiently 

handles, compresses, and extracts feature vectors was proposed in [11].  

Retraining a YOLOv3 model for vehicle detection using a dataset of 400 unmanned aerial vehicle 

(UAV) images on a graphics processing unit (GPU), while demonstrating the computational demands of deep 

learning algorithms like YOLO, the model exhibited occasional failure to detect objects and generated false 

positives in some instances [12]. This article presents a comparative study of three detectors histogram of 

oriented gradient (HOGs), local binary pattern (LBP), and Haar features, for the detection of animals. These 

features were individually trained on a dataset using the AdaBoost algorithm. LBP-AdaBoost/HOG-SVM 

demonstrated effective performance under daytime conditions. However, limitations were observed during 

the nighttime operation [13]. An ensemble learning-based decision model for predicting vehicle lane-

changing behavior employing random forest (RF), demonstrated higher precision in its predictions [14]. An 

embedded system for traffic surveillance that utilizes the NVIDIA Jetson TX1, integrating a deep detector 

named MF faster R-CNN which can identify various classes of traffic objects, including pedestrians, cars, 

buses, and motorbikes, concurrently was proposed in [15]. Zhang [16] proposed that employing the Canny 

edge detection algorithm can yield high accuracy as it identifies and removes unstable edge points. A 

solution to integrate multiple low-cost sensors, including infrared and ultrasonic technologies, offering 

improved reliability and reduced mathematical complexity was introduced in [17]. A lossy compression 

framework for input images was proposed to reduce memory traffic and power consumption, balancing 

accuracy and compression performance [18]. Conversion of image-based depth maps to light detection and 

ranging (pseudo-LiDAR) representations for object detection was suggested. This approach achieved a 74% 

detection accuracy within a 30 m range [19]. A method exploiting K means and PCA for large-scale data sets 

was presented that leads to both computational time and memory benefits. It utilized randomized 

preconditioning transformations to achieve accurate data sparsification, reducing variance in estimates [20]. 

A system utilizing ATMega328p microcontroller, ultrasonic sensor for object detection, MQ3 sensor for 

alcohol detection and Image processing to detect driver’s drowsiness is proposed in [21]. A configuration 

including Raspberry Pi board-based control system, a monocular camera and an earphone for recognizing the 

position of an object was exploited in [22]-[24]. SIFT feature descriptor for feature extraction and classifiers 

such as KNN and RF are leveraged in [25]. A security system integrating facial features from FaceNet and 

Mediapipe for face detection was observed to achieve an accuracy of 80.5% [26]. 
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3. METHOD  

This research paper presents a real time system designed for the classification and detection of 

vehicles on roadways, comprising a camera and a fast-computing processor-based system, as illustrated in 

Figure 1. The system captures the data from its environment, which is then provided as an input to the  

fast-computing processor. A specialized obstacle detection algorithm, implemented on a Raspberry Pi 4B  

(8 GB) board, is designed to understand and interpret road surroundings. This algorithm segments vehicles 

and roadways, deduces priority information, and provides details about the drivable road. The system 

translates vehicle presence into textual and auditory feedback, which is then relayed to the driver through a 

compact audiovisual system integrated into the car's dashboard, ensuring efficient communication. 

  

 

 
 

Figure 1. System for detection of cars and roads 

 

 

3.1.  Details of the dataset and pre-processing 

The dataset utilized in this study comprises a total of 5,400 images, encompassing 2,700 positive 

images depicting cars on roads and an equal number of negative images depicting empty roadways. The 

images in the dataset were curated by the authors. The authors employed a 50-megapixel camera on an 

android mobile phone to capture vehicle photographs in landscape orientation. The composition of images in 

the dataset is presented in Table 1. Each image within the dataset underwent a standard resizing process, 

resulting in dimensions of 280×430 pixels, and was subsequently converted to grayscale. The edge detection 

algorithms of Prewitt and Canny were applied uniformly across the entire dataset. These techniques were 

employed to identify and extract edges from the images while minimizing noise and extraneous elements, 

thereby enhancing the overall visual quality of the images. 

 

 

Table 1. Details of the dataset 
Image type Train images Test images 

Positive images 2160 540 

Negative images 2160 540 

Total images 4320 1080 

 

 

3.2.  Feature extraction 

The traditional feature descriptors SIFT, ORB, FREAK, and LBP were employed to extract key-

points and hand-crafted features for each image 𝑥𝑖 in the dataset (where i ranges from 0 to 𝑁-1 where, N 

represents the total number of images, i.e., 5400). SIFT was opted for due to its well-established robustness 

and resilience to affine transformations and noise change factors [27]. ORB was selected for its combination 

of the FAST detector's speed with the BRIEF descriptor's durability, offering rotation invariance and real-

time performance [28]. Fast retina key-point (FREAK) was selected owing to its accelerated performance 

compared to SIFT and SURF, leveraging insights from human visual subregion structure to obtain 

information [29]. Notably, SIFT key-points were provided to the FREAK descriptor in this study. LBP was 

preferred due to its computational efficiency, ease of implementation, and generation of a concise feature 

vector. Additionally, LBP finds widespread application in texture analysis and facial recognition tasks [30]. 𝐹 

represents the set of feature descriptors {SIFT, ORB, FREAK, and LBP} where the application of a feature 

descriptor 𝐹𝑗 on 𝑥𝑖 image generates a feature vector 𝐹𝑗(𝑥𝑖) representing the image's characteristics. The 

feature extraction process is denoted by (1): 
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𝑉𝑙 =  ⋃  𝐹𝑗(𝑥𝑖) 𝑁−1
𝑖=0  (1) 

 

where 𝑉𝑙 denotes the feature vector obtained by appending the feature vectors of 𝑥𝑖 images. The feature 

vectors generated by different feature descriptors (𝐹𝑗) are as follows: SIFT produces a vector with dimensions 

(3,419,678 rows×128 columns), ORB generates one with (3,314,807 rows×32 columns), FREAK results in 

(2,731,168 rows×64 columns), and LBP creates a vector of (5,400 rows×26 columns). 

  

3.3.  Feature transformation 

The resulting feature vectors obtained from each descriptor tend to be high-dimensional, presenting 

challenges such as heightened computational complexity and vulnerability to overfitting. To mitigate these 

challenges, a two-step novel approach for feature transformation, encompassing K-means clustering followed 

by PCA was adopted. K-means clustering was employed, which is an unsupervised machine learning 

technique, to group similar data points into a predetermined number of clusters (K), determined using the 

elbow method [31], resulting in K=14. Following the application of the K-means clustering algorithm, the 

initial high dimensional feature vectors obtained from feature descriptors were transformed into a reduced 

dimensionality of (5,400×14). PCA is further utilized to acquire uncorrelated features and reduce the 

dimensionality of the feature vector while maintaining the essential structure and variability of the original 

data. Two scenarios are investigated: one focused on preserving 90% of the information and the other 

targeting 95% within the transformed feature vectors. The determination of the retained information 

percentage is performed by analyzing the cumulative explained variance ratio and subsequently transforming 

the feature vector through the selection of principal components (𝑝). The overall process of dimension 

reduction is shown in Figure 2. 

 

 

 
 

Figure 2. Workflow for feature transformation process 

 

 

This dimension reduction can be denoted by (2): 
 

𝛹(𝑉𝑙 ) =  (𝑉𝑙 ∗  𝐶[: , 0: 𝑝]) (2) 
 

where, 𝛹(𝑉𝑙 ) represents the final dimensionally reduced feature vector and 𝐶 denotes the principal 

components matrix. After obtaining the final feature vector, labels are appended to the last column to prepare 

the data for subsequent training and testing of classifiers. Specifically, a label of 0 represents the class "Car 

on Road," while a label of 1 signifies “Not Car on Road”. The final feature vector obtained after the 

application of K-Means and PCA is presented in Table 2. 
  
  

Table 2. Final feature vector obtained after applying K-Means and PCA 

Sr No. 
Case 1: (90% of information retained) Case 2: (95% of information retained) 

Feature descriptor Feature vector Feature descriptor Feature vector 

1. SIFT 5,400×5 SIFT 5,400×9 

2. ORB 5,400×9 ORB 5,400×12 

3. FREAK 5,400×6 FREAK 5,400×10 

4. LBP 5,400×19 LBP 5,400×23 
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3.4.  Object detection and classification 

The feature vector obtained post PCA was divided into training and testing the data with a ratio of 

80:20. The training set, comprising 80% of the data, was utilized to train the classifiers, while the remaining 

20% served as the testing set for evaluation. The classifiers employed in this study include: i) decision tree 

(DT) with a maximum depth set to 13; ii) RF with the number of estimators set to 100; iii) RBF kernel-SVM; 

iv) KNN with a parameter for the number of neighbors set to 20; v) logistic regression (LR); vi) extreme 

gradient boosting (XGBoost); and vii) Gaussian Naive Bayes (GNB). These classifiers were aimed at 

detecting obstacles categorized into two classes: "Car on Road" (label 0) and "Not Car on Road" (label 1). G 

represents the set of classifiers where G={DT, RF, RBF-SVM, KNN, LR, XGBoost, and GNB}. The 

classification process can be represented by (3): 

 

 𝑐𝑖𝑘  =  𝐺𝑘 (𝐹𝑗(𝑥𝑖)))  (3) 

 

where  𝑐𝑖𝑘 denotes the predicted class label for the i-th image by the k-th classifier from the set G 

and 𝐺𝑘 (𝐹𝑗(𝑥𝑖)) represents the model of the j-th feature descriptor from F and the k-th classifier from the set 

G. Considering feature descriptors (SIFT, ORB, FREAK, and LBP) and classifiers (SVM, DT, RF, LR, 

KNN, XGBoost, and GNB), the total number of models (|𝑀|) generated can be expressed using (4): 

  

 | 𝑀| = ( |𝐹|𝐶𝑓  ∗ 𝐶 𝑔 
|𝐺|  )  (4) 

 

| 𝑀| =  
|𝐹|!

𝑓 ! ∗ (|𝐹|−𝑓)! 
 ∗  

|𝐺|!

𝑔 ! ∗ (|𝐺|−𝑔)! 
  (5) 

 

where, |𝐹| and |𝐺| denote the total number of feature descriptors and classifiers in sets F and G, respectively. 

Conversely, 𝑓 and 𝑔 denote the number of feature descriptors and classifiers selected from sets F and G. The 

values of, 𝑓 and 𝑔 always remains one as the total number of models (|𝑀|) produced are evaluated on a set of 

parameters (𝑃𝑀), which include accuracy, precision, F1, and recall scores. Figure 3 showcases how the |𝑀| 

i.e., 28 combinations of feature descriptors and classifiers are generated. In (5) provides a detailed 

mathematical foundation for (4), explaining how the total number of models ∣M∣ is computed by considering 

all possible combinations of feature descriptors and classifiers from sets F and G. 

 

 

 
 

Figure 3. Illustrates the generation of 28 combinations of feature descriptors and classifiers 

 

. 

The performance of classifiers such as KNN, RF, and DT was found to exhibit minimal 

improvements when their respective hyperparameters were optimized to enhance accuracy. This 

hyperparameter tuning process encompassed experimenting with diverse parameter settings, including 

modifying K-neighbor values for KNN, optimizing the number and depths of trees for RF, and fine-tuning 

the maximum depths of DT. However, the resultant changes in accuracy were surprisingly slight, generally 

fluctuating within a narrow range of 1% to 1.4%. The hyperparameter values which provided the optimal 

results were utilized in the respective models. 
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3.5.  Comparative analysis 

To determine the most reliable model for real-time object detection, each of the | 𝑀| combinations, 

undergoes meticulous evaluation, which relies on an exhaustive examination of every combination's 

performance across critical parameters of accuracy, F1 score, recall score, and precision. Through this 

comparative analysis, insights into the effectiveness and robustness of each model are obtained, allowing for 

the identification of the optimal feature descriptor-classifier combination suited for real-time object detection. 

The novelty of this system lies in its utilization of a comparative analysis method aimed at identifying the 

model (𝑀(𝐹𝑗  , 𝐺𝑘)) of the j-th feature descriptor and k-th classifier from the sets F and G, with the paramount 

gradings across all parameters. If the scores for the selected model decline, this comparative analysis is 

performed again, which returns the model with superior scores than the previous model. This iterative 

process can be described by (6): 

 

𝑀𝑚𝑎𝑥(𝐹𝑗  , 𝐺𝑘) = arg max ( ∑ 𝑤𝑃𝑀  𝑃(𝐹𝑗  , 𝐺𝑘  , 𝑃𝑀))  (6) 

 

where, 𝑃𝑀 = {𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝐹1, 𝑎𝑛𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 𝑠𝑐𝑜𝑟𝑒𝑠 } and 𝑃(𝐹𝑗 , 𝐺𝑘 , 𝑃𝑀) defines the performance 

scores of the combination of feature descriptor 𝐹𝑗 and classifier 𝐺𝑘 with respect to the parameters in the set 

𝑃𝑀. Additionally, 𝑤𝑃𝑀 denotes the weight assigned to each parameter in the set 𝑃𝑀. The gradings of model 

𝑀𝑚𝑎𝑥  across all parameters are observed and if there is a decline in these scores, (5) is utilized again for 

ascertaining the model 𝑀𝑚𝑎𝑥  which has superior results across all metrics mentioned in set 𝑃𝑀. The 

functioning of this framework ported on an embedded system is executed as shown in Algorithm 1. 

 

Algorithm 1. Feature extraction and feature transformation 
Input: Image dataset of N Images 

Output: Classification of Car and Road 

1. Data 𝐹𝑗
=[ ]; // data frame for features extracted by feature descriptors |𝐹|  

2. For image in dataset do 

3. Preprocessing 

4. Extract SIFT, ORB, FREAK, and LBP features of 𝑥𝑖  images 

5. 𝐷𝑎𝑡𝑎𝐹𝑗
=append features //for 𝐹𝑗 𝑡ℎ feature descriptor 

6. 𝑉𝑙=Data 𝐹𝑗
. Append (𝐹𝑗(𝑥𝑖)) 

7. End For  

8.  For each image feature 𝐹𝑗(𝑥𝑖) in 𝑉𝑙 : 

9.  𝐾(𝑉𝑙)=Pre-trained K-Means [K=14] ( 𝑉𝑙) 

10.  //Dimension of 𝑉𝑙 is (5400 x 14) 

11. Nm(𝑉𝑙)  =Normalize (𝑉𝑙 ); 

12. Data 𝐹𝑗
.append(N) 

13. End For  

14. 𝛹(𝑉𝑙) = 𝑃𝐶𝐴(𝑉𝑙) [ with principal components (𝑝)] 

15. //Dimension of 𝛹(𝑉𝑙) is (N x 𝑝 ) 

16. Train classifiers from 𝐺 on 0.8N images 

17.  𝑐𝑖𝑘  =  𝐺𝑘 (𝐹𝑗(𝑥𝑖))) //𝑐𝑖𝑘 represents the prediction 

18. (𝐹𝑗  , 𝐺𝑘) = arg max ( ∑ 𝑤𝑃𝑀  𝑃(𝐹𝑗  , 𝐺𝑘 , 𝑃𝑀))  

19. For each parameter in 𝑃𝑀: 

20. if 𝑃𝑀𝑚𝑎𝑥  
(𝐹𝑗  , 𝐺𝑘 , 𝑃𝑀) < 𝑃𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

(𝐹𝑗  , 𝐺𝑘 , 𝑃𝑀)  

21. Set 𝑀𝑚𝑎𝑥 = 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

22. Return 𝑀𝑚𝑎𝑥 

23. End For  

 

 

4. RESULTS AND DISCUSSION 

The results of the proposed methodology are extensively discussed herein. The implementation was 

conducted using Jupyter Notebook, optimized for GPU utilization to enhance computational efficiency. The 

entire model was then ported on a Raspberry Pi 4B (8 GB) board. Following the training of classifiers on 

80% of the dataset images, testing was conducted on the remaining 20%. The evaluation of each model 

among the 28 combinations was performed based on key metrics such as accuracy, precision, F1 score, and 

recall. Noteworthy is the model utilizing the combination of LBP and XGBoost, which demonstrated the 

highest accuracy, achieving 81.48% when retaining 90% of information post PCA (case 1), and 83.5% when 

retaining 95% of information (case 2).  
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In case 1, with 90% data retention post-PCA, SIFT with RF achieved a testing accuracy of 73.8%, 

with class 0 (car) precision, F1, and recall at 75.03%, 74.0%, 72.05%, and class 1 (road) scores at 73.9%, 

76.1%, and 78.02%. ORB with RF attained a testing accuracy of 78.98%, with class 0 scores of 79.2%, 

78.6%, and 79.0%, and class 1 scores of 78.0%, 78.1%, and 78.6%. FREAK exploited with KNN achieved a 

testing accuracy of 75.09%, with class 0 scores at 76.4%, 75.0%, and 75.6%, and class 1 scores at 74.8%, 

76.1%, and 76.2%. LBP with XGBoost achieved the highest accuracy at 81.48%, with class 0 scores of 

82.1%, 81.1%, and 80.2%, and class 1 scores at 81.0%, 82.3%, and 82.5%. In case 2, with 95% data 

retention, scores across all parameters improved. Among 28 models, SIFT and FREAK with RF and SVM 

outperformed other SIFT-based models, while ORB with SVM and LR yielded higher scores compared to 

other ORB models. LBP, combined with RF and XGBoost, delivered the best overall results. Case 2 results 

are presented in Table 3. 

  

 

Table 3. Illustrates the results of the models when 95% of the information is retained (case 2) 
Feature descriptor+classifier Testing accuracy (%) Label Precision (%) F1 (%) Recall (%) 

SIFT+RF 78.05 0 79.2 77.4 76.3 

1 77.3 79.1 81.6 

SIFT+SVM 77.22 0 81.0 76.8 71.4 
1 74.0 79.3 84.2 

ORB+SVM 
80.46 0 82.0 79.1 76.4 

1 78.0 81.9 84.8 

ORB+LR 
79.53 0 79.4 79.7 80.0 

1 79.1 79.2 78.6 

FREAK+RF 
76.57 0 77.2 76.5 76.0 

1 76.8 77.8 77.0 

FREAK+SVM 
75.5  0 78.4 74.5 71.2 

1 73.6 77.0 80.0 
LBP+RF 82.77 0 81.0 83.7 86.3 

1 85.1 82.2 80.1 
LBP+XGBoost 83.5 0 82.1 83.5 85.0 

1 85.0 84.0 81.4 

 

 

In both case 1 and 2, it was observed that LBP features, in combination with ensemble classifiers, 

achieved superior scores for both class labels (0 and 1). Notably, LBP outperformed other classifiers by 

having the highest testing accuracy ranging from 76.14% to 83.57%, thus indicating its ability to capture 

essential feature values for real-time obstacle detection. In Case 1, a fusion of LBP and XGBoost resulted in 

an F1 score of 85% for car detection (class 0), demonstrating balance between precision and recall. SIFT 

performed well for class 1 (“Not Car on Road”), but it was less accurate in car detection (class 0) compared 

to LBP and ORB, suggesting that SIFT’s features may be less efficient at spotting cars in diverse 

backgrounds. Yet, SIFT performed well when categorizing roads, attesting to its capacity for capturing 

nuances in ‘Not Car on Road’ elements. ORB was also able to achieve an accuracy of 80.46% with SVM. 

On the other hand, FREAK underperformed across all these measures consistently implying that it fails to 

capture intricate patterns in the dataset. Notable shifts were observed among the most accurate models of 

each feature descriptor when there was a change in amount of information retained post PCA. Specifically, 

concerning SIFT, there was a notable decline in the results `when only 90% of the information was retained. 

For SIFT, KNN relatively demonstrated superior performance when a lesser amount of information was 

retained. As for ORB, RF exhibited better performance compared to RBF-SVM in case 1. Interestingly, 

ORB exhibited resilience to changes in the retained information by producing slightly lower scores across 

the metrics. Contrarily, for FREAK, KNN, and LR emerged as FREAK’s most accurate models, replacing its 

combination with RF and SVM in case 2. On the other hand, LBP maintained its effectiveness with 

ensemble-based classifiers such as XGBoost and RF by delivering comparatively superior results across all 

the parameters. It was observed that the performance of different models of feature descriptors and 

classifiers was influenced by the percentage of information retained post PCA in dimensionality reduction. 

Notably, all models encountered relatively more challenges in predicting cars (class 0) compared to road 

(class 1), perhaps owing to the complexity involved in distinguishing cars from various distinct and diverse 

environmental factors.  

Balancing computational efficiency and accuracy is crucial for selecting models suitable for real-

time applications. By assessing the time complexities of feature descriptors and classifiers, including their 

training and prediction phases, we can estimate the model's overall time complexity. SIFT emerges as the 

most computationally intensive, while ORB and FREAK are observed to be significantly more efficient [32]. 

LBP stands out for its computational efficiency and strong performance in human detection tasks [33]. After 

analyzing the time complexity across the 28 models incorporating feature descriptors and classifiers, it was 
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observed that combinations implicating LBP achieved lower time complexities than other feature 

descriptors. The pairing of LBP with the GNB classifier resulted in the least time complexity of [O(n*d)], 

where 'n' signifies the samples in the training dataset and 'd' denotes the dimensionality or the number of 

features in each sample. However, despite this efficiency, the achieved accuracy stood at 76.8%, which was 

relatively lower compared to other LBP-based models. Furthermore, the KNN model exhibited a time 

complexity of [O(n*d)], similar to GNB but with negligible training time complexity. However, it exhibited 

a lower accuracy rate of 76.1%, positioning it as one of the least accurate among the LBP-based models. The 

model exhibiting the worst-case time complexity ranging from [O(d*n^2) to O(d*n^3)] was observed when 

SIFT was coupled with the RBF-SVM classifier. Conversely, when LBP was combined with ensemble-

based classifiers, superior performance across all parameters was observed. However, this came at the cost 

of increased time complexity. With RF, the time complexity reached [O(K*d*nlog(n))], and with XGBoost, 

the time complexity rose to [O(K*d*|x| log n)], where K is the number of trees, d is the height of the trees, n 

represents the total number of data points used to train the model, and |x| is the number of non-missing 

entries in the training data [34]. These complexities notably surpass those achieved with KNN, GNB, and 

LR. The LBP-based model demonstrated a worst-case time complexity of [O (d*n^2)], where n is the 

number of data points in the training set and d is the number of features in the data when coupled with the 

SVM classifier. Contrarily, models employing the GNB classifier achieved the lowest time complexity, 

albeit with inferior scores across all parameters. Despite KNN and LR classifiers performing well in certain 

scenarios, their overall performance was surpassed by ensemble-based classifiers and SVM. This 

observation indicated the trade-off between accuracy and time complexity delivered by the model in this 

particular case. The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) for 

the XGBoost classifier are illustrated in Figure 4. Notably, the AUC for both the "Car on Road" class with 

label 0 and the "Not Car on Road" class with label 1 was observed to be 91%. 

 

  

 
 

Figure 4. ROC curve 

 

  

5. CONCLUSION  

This study proposed a solution aimed at detecting and classifying cars and roads using handcrafted 

features extracted from traditional feature descriptors and employing seven classifiers. A total of 28 models 

were created and assessed based on accuracy, precision, F1, and recall scores, alongside considerations of 

time complexity. Among these models, the one leveraging LBP and XGBoost attained a testing accuracy of 

83.57% and outperformed others across all parameters. The adoption of classical machine learning 

techniques rendered the system computationally efficient. Furthermore, a novel dimension reduction 

technique integrating K Means and PCA was employed. The implemented solution was deployed on a 

Raspberry Pi 4B (8 GB) board, demonstrating satisfactory performance in real-world scenarios. While the 

system effectively detected cars and roads, it encountered misclassification under low illumination 
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conditions. To address this limitation, the authors intend to explore a deep learning-based approach capable 

of handling multiple images. 
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