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 This study focuses on the development of electrical power forecasting based 

on electricity usage in Wuzhou, China. To develop a forecasting model, the 

important features need to be identified. Therefore, this study investigates 

the performance of the feature selection method, focusing on the mutual 

information as a filter and random forest as a wrapper-based feature 

selection. From the experiment, six features have been chosen, whereby both 

feature selection methods chose almost identical features. Later, the selected 

features are trained and tested with common machine learning models, 

namely random forest regressor, support vector regression (SVR), k-nearest 

neighbor (KNN) regressor, and extreme gradient boosting (XGBoost) 

regressor. The performances of the feature selections tested on each of the 

models are measured in terms of mean absolute error (MAE), root mean 

square error (RMSE) and coefficient of determination (R²). Findings from 

the experiment revealed that XGBoost outperform the other machine 

learning models with RMSE 0.9566 and R² indicated with 0.2561. However, 

SVR outperformed XGBoost and other model by obtaining MAE 0.6028. It 

can be concluded that the performance of filter-based outperformed the 

embedded feature selection. 
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1. INTRODUCTION 

Artificial intelligent (AI) and internet of thing (IoT) are revolutionizing the management and 

operation of power grids. Power grids have been improved by enhancing their efficiency, reliability, and 

adaptability. Modern electrical grid has their capabilities by interconnect IoT technology. IoT sensors placed 

throughout the power grid continuously collect data on various parameters such as voltage, current, 

temperature, and equipment status. This data is crucial for real-time monitoring of the grid's health and 

performance. Power grids are complex networks that transport electricity from power plants to consumers. 

As industry and households grow, the demand for electrical energy is expected to gradually increase. As a 

result, power distribution companies need to efficiently plan the allocation of their resources to anticipate the 

demand period, plan for contingencies and efficiently manage network congestion. This will not only assist 

to cut maintenance costs and enhance equipment utilization but will also allow the organization to better 

respond to future power industry development trends, providing clients with more reliable and efficient 
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power services [1]. Returning to the basics, the system development as indicated in Figure 1 involves 

connecting the electrical grid to a sensor, converting the reading from the sensor by a controller, sending the 

output to the gateway, and then proceeding with the advanced application. In advance applications, a graphic 

user interface can be created based on data collected from the IoT system to display all results across several 

platforms. Online data transmitted can be saved on a computer or in the cloud, which is critical for 

identifying failures or monitoring. More advanced applications, analytics, prediction, and forecasting can be 

used to determine the faults, performance, and prospective of the electrical grid. This publication elaborates 

on an advanced application in which IoT data will be tested using machine learning algorithms. Figure 2 

shows the infrastructure that was constructed based on IoTs. The message queuing telemetry transport 

(MQTT) protocol was used to transfer data from the electrical facilities to the broker. Broker HiveMQ has 

been used based on the topic and network configuration. The data was sent via MQTT into Node-RED, and 

the flow design was created through a Raspberry Pi 4. The data logger was developed using the Raspberry Pi 

4 and saved data for 5 seconds for each value. 

 

 

 

 

 

 

 

Figure 1. Basic block diagram of IoTs toward advance application 

 

 

 
 

Figure 2. Infrastructure of IoTs 

 

 

For the past few years, there have been a lot of research activities that try to forecast the electricity 

power consumption [2], [3]. The research involved not only the study of feature selection techniques, but also 

machine learning algorithms. Additionally, methods to select the features can be divided into three main 

categories, including filter, wrapper, and embedded [4]. Filter based feature selection ranks the features by 

calculating a score for each feature independently without depending on the learning algorithms [5]. Mutual 

information, Chi Square, is one of the examples of filter feature selection [6]. Wrapper method considers 

subsets of the set of all features. For each of the subsets, a supervised learning model is fitted. The subsets are 

evaluated by a performance measure calculated on the resulting model [7], such as swarm optimisation 

algorithms [8]. Meanwhile, the embedded technique combines the quality of both wrapper and filtering 

techniques, for example random forest, ridge regression, and lasso [9]. It includes the feature selection in the 

model fitting process [5]. 

On the other hand, many well known forecasting regression models were chosen, namely support 

vector machines (SVMs), random forest regressor, k-nearest neighbour regression (KNN), and extreme 

gradient boosting regression (XGBoost). SVMs have been studied a lot in the last ten years in the fields of 

data mining and machine learning and can be used for classification, regression, or ranking [10]. In addition, 
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random forest is a very popular machine learning method [11]. Random forest regression is a technique that 

combines numerous decision trees to do regression problems [12]. Each decision tree is an inadequate 

learner, but when numerous decision trees are combined, random forests may create a more robust model. 

Random forest enhances the model's performance and generalization by constructing many decision trees and 

then averaging or voting on their predictions. Randomly selected subsets and random subsets of features are 

used to train each decision tree [12]. The KNN algorithm finds the k closest points based on the distances 

between the test data and the training points. It finds an average goal value in regression issues by tuning the 

neighbors and using weighted similarity measurements [13], [14]. XGBoost is a versatile machine learning 

model that lets multiple computers work together to speed up estimation and efficiently manage large 

datasets [14], [15]. 

Meanwhile, Sun et al. [16] laid out the essential research methods and compared the algorithms to 

see which algorithms were best for consumption forecasting. In addition, Junior et al. [17] implemented the 

XGBoost to forecast short-term load forecasting. The result showed that XGBoost yielded the best results. A 

study in [18] discusses the absence of current demand response models that consider flexible end users in 

relation to substation feeders. In order to dynamically analyze electric power consumption forecasts for the 

short term, XGBoost can be used to generate the most precise predictions of electric power consumption for 

distribution substations. In contrast, authors in [19] utilized an XGBoost model to forecast the daily 

electricity demand. Unfortunately, the study figured out that the XGBoost models had the worst prediction 

accuracy. In an article [20], authors discovered that the support vector regression (SVR) model provides 

superior reliability and accuracy in predicting short-term load compared to seven other standard forecasting 

methods. 

Hence, based on the literature above, it is important to determine the important features that can lead 

towards a good performance of the forecasting models. This is because it is critical for the power distribution 

companies to forecast the projection of distribution system power consumptions for a proper operation and 

maintenance planning. As developing reliable prediction models for power consumption allows the 

organization to better react to changes in market demand and respond [21], failures to precisely estimate 

electricity use, will lead towards the overloaded transformers, influencing customer electricity consumption, 

and the entire power grid may fail. Therefore, this research would like to investigate the impacts of different 

feature selections on different machine learning models. 

 

 

2. METHOD 

This section will be about the process of implementing the feature selection models in selecting the 

most important features for predictions of the regression model. Meanwhile, Figure 3 displays the process of 

performing embedded and filter types of feature selections. The explanation for each of the phases will be 

explained on the next page. 

 

 

 
 

Figure 3. A framework of implementing feature selections in regression models 

 

 

2.1.  Dataset 

The dataset used in this experiment is a private dataset consists of 500 samples with 12 features, 

including communities and industrial zones. The dataset was obtained from Wuzhou City, China, where the 
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electrical grid covers an area of 12,572 square kilometers and has a population of 1.6302 million people. 

Descriptions for each of the features are provided on Table 1.  

 

 

Table 1. Dataset description 
No Variables Data type Description 

1 Distribution transformer name Categorical Name and region of distribution 

2 Power supply zone Categorical Division of an area into sections for electricity distribution 
3 Power grid type Categorical Type of power grid to which distribution belongs 

4 Rated capacity (kVA) Numerical Rated power of distribution transformer 

5 Distribution transformer type Categorical Type of distribution transformer used 
6 Dry type/oil-immersed type Categorical Whether the distribution transformer used is dry type or oil-immersed 

7 Distribution transformer model Categorical Model of distribution transformer 

8 Load properties Categorical Distribution the main load object of the transformer 
9 Reactive power compensation 

capacity (kVar) 

Numerical The capacity used to compensate for reactive power in the power 

system 

10 Number of access users (household) Numerical The number of homes or units connected to the electricity service 
11 Power supply radius (m) Numerical The area a power source can cover 

12 Power supply (kWh) Numerical The total electrical energy provided to users in a year 

 

 

2.2.  Pre-processing 

The dataset consists of mixed data types, including categorical and numerical values. Datatypes with 

categorical values must be converted to numerical values. This conversion is necessary so that they can be 

fitted into the machine learning models.  

 

2.3.  Training and testing 

Once the dataset has been numerically converted, it is divided into a training phase and a test phase. 

In this phase, 70% of the dataset is used for training, while the remaining 30% is used for testing. This 

process is important because the performance of the model on the unseen dataset has to be measured in order 

to understand how the selected models will generalize towards the unseen data.  

 

2.4.  Feature selection 

Then, feature selection will be performed to select the most important features. Two types of feature 

section methods have been chosen, which is mutual information that belongs to the filter category and 

random forest as an embedded type of feature selection. In order to compare the performance of the feature 

selection with the machine learning models later on, we decided to select the same number of features from 

both of the methods. Six best features were selected from both of the feature selection methods. The selected 

features are displayed on the result and discussion section. 

 

2.5.  Regression models 

After that, the selected features will become an input for the machine learning model. Four common 

types of regression based machine learning models were chosen as displayed in Table 2, namely random 

forest regressor, KNN, XGBoost, and SVR. Meanwhile, an optimisation has been performed by using a grid 

search on each of the hyper-parameters of the machine learning models. 

 

 

Table 2. Hyper-parameter settings after the hyper-parameter tuning process 
Machine learning models Hyper-parameters used 
Random forest regressor max_depth': None, 'min_samples_leaf': 2, 'min_samples_split': 10, 'n_estimators': 50 
KNN n_neighbors': 7, 'p': 2, 'weights': 'distance 
XGBoost colsample_bytree': 1.0, 'gamma': 0.2, 'learning_rate': 0.05, 'max_depth': 5, 

'n_estimators': 50, 'subsample': 0.8 
Support vector regressor 'C': 1, 'epsilon': 0.1, 'kernel': 'rbf' 

 

 

2.6.  Performances evaluation 

After the models have been trained and tested, their performances will be measured. Three metrics 

were chosen, which is the mean absolute error (MAE), root mean square error (RMSE), and coefficient of 

determination (R2) [22], [23]. The MAE calculates the average absolute difference between predicted and 

actual values. It is derived by averaging the absolute disparities between projected and actual values for each 

data point. MAE is represented using the same units as the target variable. It provides a concise 
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understanding of the model's average magnitude of mistakes. MAE is less sensitive to outliers than other 

error measurements, such as RMSE. The formula for MAE is based on (1). 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂|𝑁
𝑖=1  (1) 

 

The RMSE calculates the square root of the average squared difference between anticipated and 

actual data. The squaring procedure penalizes larger errors more severely than smaller errors. RMSE is 

derived by calculating the square root of the average of the squared discrepancies between anticipated and 

actual values. The RMSE is expressed in the same units as the target variable. It indicates the typical 

magnitude of inaccuracy produced by the model. Due to the squaring procedure, RMSE is more susceptible 

to outliers than MAE is. The formula for RMSE is based on (2). 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̂)2𝑁
𝑖=1  (2) 

 

The coefficient of determination, often known as 𝑅2, indicates the proportion of the variance in the 

dependent variable (target) that is explained by the model's independent variables (features). It goes from 0 to 

1, with 0 indicating that the model does not explain any variance in the target variable and 1 indicating that 

the model completely explains the variance. 𝑅2 is defined as the ratio of explained variation to total variance. 

Higher 𝑅2 values imply a better match between the model and the data. The formula for 𝑅2 is based on (3). 

 

𝑅2 = 1 −
∑(𝑦𝑖−𝑦̂)

2

∑(𝑦𝑖−𝑦̅)
2 (3) 

 

 

3. RESULTS AND DISCUSSION 

Figures 4 and 5 show the features that were chosen by each feature selection algorithm. The features 

chosen by the random forest algorithm and the mutual information are nearly identical, as seen in both 

figures. These features include the name of the distribution transformer, its model, its rated capacity (kVA), 

its reactive power compensation capacity (KVar), the number of access users (household), and its power 

supply radius (m). On the other hand, the distribution transformer type is the sole feature that differs among 

those chosen by mutual information. 

 

 

 
 

Figure 4. Features selected by embedded based feature selection 

 

 

 
 

Figure 5. Features selected by filter based feature selection 

 

 

Regardless of the model being utilized, the reason for various features being selected may be related 

to the mutual information capability, which allows features to be directly selected depending on their direct 

relationship with the target variable [24]. Furthermore, when handling complex and nonlinear interactions 

between features and the target variable, mutual information can function effectively. In the meantime, the 

algorithm's hyperparameters and the unique properties of the dataset may have an impact on random forest's 

feature selection. 

Figure 6 shows the MAE of various feature selection approaches combined with different regression 

algorithms. As seen in the picture, filter-based feature selection performed better with the SVR, with an MAE 

of 0.6028, surpassing the other three models. Following that, the random forest regressor achieved an MAE 

of 0.6534, the KNN regressor 0.6694, and the XGBoost regressor 0.6774. In contrast, when it comes to 
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embedding forms of feature selection, the SVR had the best results (MAE=0.6207), while the KNN had the 

worst results (MAE=0.6957). As can be seen from the filter-based and embedded-based feature selection, 

SVR is less prone to overfitting than random forest and KNN, especially with smaller dataset sizes. 

Furthermore, mutual information-based feature selection is capable of capturing the non-linear relationship 

between features and target variables, making it a suitable option for SVR because the important features 

offered by mutual information are aligned with the SVR learning mechanism as the SVR also can identify the 

non-linear relationship between input and output [25]. 

The filter-based feature selection with XGBoost, on the other hand, produced the best result with 

0.9566, outperforming the random forest (0.9584), SVR (0.9814), and KNN (1.0021), respectively, according 

to the performance of the RMSE in Figure 7. Conversely, while being tested on the XGBoost model, the 

features chosen by the embedded forms of feature selection obtained 0.9624. In the meantime, the KNN 

regressor's performance with the features chosen by the embedded feature selection types evaluated yielded 

the poorest result, at 1.0305. With its decision tree-based methodology, the XGBoost can capture intricate 

nonlinear correlations and interactions between features in this scenario. On the other hand, interactions are 

not explicitly modeled by KNN regressors. 

 

 

  
  

Figure 6. MAE of feature selection methods with 

different regression algorithms 

Figure 7. RMSE of feature selection methods with 

different regression algorithms 

 

 

In contrast, the features chosen through filtering and embedded feature selection demonstrated 

strong performance on XGBoost, with R² values of 0.2561 and 0.2470, respectively as shown in Figure 8. At 

the same time, the KNN regressor with 0.1836 and 0.1367 became the worst model evaluated using the 

identical features chosen by the filter and the embedded-based feature selection. This situation arises from the 

ability of XGBoost, an ensemble learning technique based on decision trees, to effectively capture complex 

nonlinear relationships and interactions between features. It consists of the max_depth, which is able to 

govern tree structure, learning rate (learning_rate), regularization (gamma), and subsample. On the other 

hand, the KNN regressor does not explicitly describe complicated linkages or interactions; instead, it depends 

on the similarity of data points in the feature space. 

 

 

 
 

Figure 8. Coefficient of determination (R²) of feature selection methods with different regression algorithms 
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4. CONCLUSION 

This paper investigated various feature selection strategies for machine learning regression models 

in forecasting energy power usage. As can be observed from the experiment, both feature selection strategies 

chose nearly identical variables. However, when tested against other machine learning regression methods, 

mutual information, which falls into the category of filter-based feature selection, defeated embedded-based 

selection. Despite being tested on various machine learning techniques, both strategies produced poor results 

as the MAE and RMSE numbers should be zero, whereas R² should be one. The factors influencing the poor 

performance of the models resulted from insufficient data sampling, so that the regression model was unable 

to efficiently capture the underlying patterns in the data. In addition, a small number of features inside the 

data set meant that the regression model struggled with generalization. With too few features, the model may 

not have enough information to accurately capture the underlying patterns in the data, resulting in poor 

predictive performance, making the models difficult to generalize when tested on the unseen data. To solve 

this problem, it is necessary to increase the number of features by creating new features using feature 

engineering techniques. 
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