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ABSTRACT

Fully homomorphic encryption (FHE) is a promising solution for privacy-
preserving computations, as it enables operations on encrypted data. Despite
its potential, FHE is associated with high computational costs. As the theoreti-
cal foundations of FHE mature, mounting interest is focused towards hardware
acceleration of established FHE schemes. In this work, we present a hardware
implementation of the fast Fourier transform (FFT) tailored for polynomial mul-
tiplication and aimed at accelerating gate bootstrapping in Torus fully homomor-
phic encryption (TFHE) schemes. Our study includes an extensive design-space
exploration at various implementation levels, leveraging parallel streaming data
to reduce computational latency. We introduce a new algorithm to expedite mod-
ular polynomial multiplication using negative wrapped convolution. Our imple-
mentation, conducted on reconfigurable hardware, adheres to the default TFHE
parameters with 1024-degree polynomials. The results demonstrate a signifi-
cant performance enhancement, with improvements of up to 30-fold, depending
on the FFT design parameters. Our work contributes to the ongoing efforts to
optimize FHE, paving the way for more efficient and secure computations.
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1. INTRODUCTION
With the rise of cloud computing, concerns regarding the privacy of sensitive data processed by third-

party services have been mounting. This has driven the development of various privacy-preserving techniques
(PETs), including differential privacy (DP) [1], secure multi-party computation (SMPC) [2], trusted execution
environments (TEEs) [3], and fully homomorphic encryption (FHE) [4].

Among these, FHE offers a promising advantage by enabling computation on encrypted data without
decryption, guaranteeing privacy even from the cloud provider, as shown in Figure 1. FHE supports arithmetic
operations like addition and multiplication on encrypted data, allowing for computations through untrusted
third-party services without compromising the underlying information. This makes FHE particularly suitable
for scenarios where sensitive data analysis is required while maintaining stringent privacy guarantees. In a
typical FHE workflow, the user encrypts a private input vector before sending it to an untrusted server that
performs computations homomorphically. The resulting encrypted output is then returned to the user for de-
cryption, revealing the computed result in plaintext.

Existing FHE schemes typically produce and operate on noisy ciphertexts. The noise magnitude in-
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creases as homomorphic operations are performed on the ciphertexts, with homomorphic multiplication result-
ing in relatively higher noise growth compared to homomorphic addition. The noise cannot grow indefinitely, or
decryption will fail to recover the message. To enable arbitrary computations, the ciphertexts must be refreshed
to reduce their noise content. This noise control mechanism, known as bootstrapping [4], distinguishes FHE
schemes from partial ones. However, bootstrapping is computationally expensive, especially in word-based
FHE schemes, and is considered the main performance bottleneck of these schemes [5].
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Figure 1. Overview of homomorphic computation in FHE

Torus fully homomorphic encryption (TFHE), which is an improved version of the FHEW scheme [6],
stands out as a prominent FHE scheme recognized for its efficient bootstrapping procedure. Notably, it enables
homomorphic computation of binary operations in a mere 13 milliseconds on a single core processor, utilizing a
16 MB bootstrapping key within the TFHE library [7]. While surpassing the performance of previous schemes,
TFHE can be computationally expensive for arbitrary applications. This stems from its approach of encoding
input data as individual bits or small-bit integers (typically limited to 8 bits) and representing functions as
circuits of binary gates. However, its small parameter size and ability to compute a wide range of functions
make it a promising candidate for future FHE applications.

We analyzed TFHE and identified FFT-based polynomial multiplication as the bottleneck operation
during bootstrapping. This finding aligns with previous profiling of HE schemes [8], where it was reported
that 75% of estimated cycles are spent in FFT convolutions used for polynomial multiplication. For TFHE,
we calculated that the number of FFT operations required for a comparison function of two 16-bit numbers is
approximately 3 × 106. This highlights the significant computational cost associated with FFT-based polyno-
mial multiplication in TFHE and emphasizes the need for further research into more efficient approaches for
bootstrapping in homomorphic encryption schemes.

Hardware implementations on field-programmable gate arrays (FPGAs) have demonstrated potential
for significant performance gains in computationally intensive algorithms. This is particularly relevant to the
field of homomorphic encryption, where applications like TFHE rely heavily on operations like the FFT. Recent
work by Gener et al. [9] reinforces this notion by presenting an FPGA-based polynomial multiplication imple-
mented as a vector-matrix product, achieving substantial acceleration compared to software implementations.
Our work aims to leverage the inherent parallelism and configurability of FPGAs by exploring a hardware im-
plementation of the FFT algorithm specifically tailored for TFHE-based applications. This approach has the
potential to further enhance the efficiency and practicality of this family of homomorphic encryption schemes.

In this work, we present an optimized polynomial multiplication algorithm for TFHE schemes based
on an extended variant of the negative-wrapped convolution (NWC) method. This well-established technique
offers significant efficiency improvements for polynomial multiplication, a fundamental operation in FHE. Our
proposed approach builds upon the NWC method by incorporating additional optimizations, aiming to further
reduce the computational complexity and memory footprint associated with polynomial multiplication in FHE
schemes.

We implemented and evaluated our polynomial multiplier utilizing the comprehensive suite of tools
provided by Xilinx Vivado, specifically targeting the Virtex-7 xc7vx1140 FPGA. This included simulation,
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synthesis, and hardware implementation. Our design achieves a significant performance gain, nearly 30 times
faster compared to CPU software implementation, when using an FFT design of streaming width of 128 and
radix-4 configuration. This configuration exhibits the optimal performance among the tested radix values.

Our contributions: the main contributions of our work are summarized as follows:
− We developed an efficient hardware architecture for the TFHE scheme on FPGAs, specifically targeting the

time-consuming bootstrapping operation.
− We introduce a novel architecture for fast Fourier transform (FFT)-based polynomial multiplication. This

innovative design significantly enhances the efficiency of polynomial multiplication, a critical component
in TFHE bootstrapping.

− We have successfully leveraged our polynomial multiplier to accelerate the bootstrapping process in TFHE.
− We conducted a comprehensive performance evaluation of basic homomorphic binary gates using our ac-

celerator achieving speedups close to 30× compared with CPU implementation.
Organization: the remainder of this paper is organized as follows. Section 2 introduces the methods,

notations, and background concepts used throughout the paper. Section 3 then presents an analysis of the
bottlenecks in the bootstrapping operation, along with our design space decisions, and concludes with a proof-
of-concept implementation and evaluation of our register-transfer level (RTL) design. Section 4 discusses the
results, while section 5 reviews related work on hardware acceleration. Finally, section 6 concludes the paper
and highlights the key takeaways and future directions.

2. METHODS
This section details the methodologies employed throughout the paper. We begin by introducing the

notation and symbols used, followed by a comprehensive description of the TFHE scheme, highlighting its core
building blocks. Subsequently, we delve into the intricacies of the NWC approach, and finally, we introduce
the SGen tool, a platform for automated design generation at the RTL.

2.1. Notations
Capital and lowercase letters distinguish sets from their elements. We denote the sets of binary, integer,

real, and complex numbers by B, Z, R, and C, respectively. Matrices and vectors are represented by boldface
capital and lowercase letters, respectively. The dot product between two vectors u and v is denoted by ⟨u · u⟩.
We use the symbols ⌊·⌋, ⌈·⌉, and ⌊·⌉ to denote the floor, ceiling, and nearest integer functions, respectively.
For an integer a, aq denotes the remainder of a when divided by q. If a is a polynomial, the reduction is
performed on each coefficient. ZN [X] refers to the ring of polynomials Z/(XN + 1). The symbol a ←− S
denotes sampling an element a from the set S.

2.2. Torus fully homomorphic encryption
This section revisits the TFHE scheme, as introduced by Chillotti et al. [7]. Built upon the learning

with errors (LWE) hardness problem [10], TFHE utilizes the Ring variant of LWE (RingLWE) [11]. Originally
proposed as an optimized version of FHEW [6], the scheme facilitates homomorphic evaluation of binary
operations. It also supports performing homomorphic arithmetic in Zp with p being a low-width (typically ¡
8-bit) integer modulus.

TFHE differentiates itself from earlier FHE generations by performing bootstrapping after each gate
operation, a technique known as gate bootstrapping. This approach enables computations on commodity hard-
ware, achieving speeds of less than 1 second for FHEW and around 0.13 seconds for TFHE. Subsequently,
TFHE introduced the concept of circuit bootstrapping, where ciphertexts are refreshed after a series of gate
evaluations. The key distinction between the two methods lies in the parameters size and execution of the
bootstrapping procedure. For a detailed comparison, we refer the reader to [12].

2.2.1. Torus fully homomorphic encryption samples
TFHE operates with two distinct types of samples: Torus LWE (TLWE) and Torus GSW (TGSW).

These samples play a crucial role in the TFHE scheme, each serving a distinct purpose in the encryption and
homomorphic computation procedures. TLWE samples are primarily used for the encryption of individual bits,
while TGSW samples are utilized for more complex operations such as bootstrapping and homomorphic com-
putations. The interplay between these two types of samples is fundamental to the functionality and efficiency
of the TFHE scheme. In the following paragraphs, we introduce these two mathematical notions.

Hardware design for fast gate bootstrapping in fully homomorphic encryption over the Torus (Saru Vig)
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The torus, denoted by T, is defined as the quotient group R/Z, representing the real numbers modulo
1 under the standard addition operation. We further generalize this concept to Tq = (1/q)R/Z, where q is
a positive integer modulus. The construction of TN,q[X] extends this definition to the space of polynomials
whose coefficients reside in Tq , with operations performed modulo (XN + 1) and modulo q. Additionally,
BN [X] is defined as a subset of polynomials in ZN [X] where coefficients belong to a specific ring B.

The scheme utilizes different types of samples, categorized as either TLWE and TGSW samples which
are used within internal bootstrapping procedures, which we describe below:

TLWE Let n,N ∈ N denote the dimension and degree, respectively. Let P = T be the plaintext
space, the key space S = {s1, . . . , sn} ∈ Bn, and the ciphertext space C = Tn+1

q . For a message m ∈ P
(which can be a bit, modular integer, or real number in an interval), the encryption of m gives ciphertext sample
c which takes the form c = ((a0, a1, . . . , an−1), b), where (1).

b =

n−1∑
i=0

aisi + e+∆m. (1)

Here, a ← Tn
q is sampled uniformly, s is the secret key, and e is the noise factor sampled from the

underlying Gaussian distribution of TFHE. Decryption is performed as (2).

b− a · s = ∆m− e
Round−−−→ m. (2)

Building upon the descriptions above, TRLWE ciphertext samples can also be generated from polynomials. In
this context, the plaintext space is denoted by TN,q[X], the secret key vector by S = {s1, ..., sk} ∈ BN [X]k,
and the ciphertext by C ∈ TN,q[X]n+1. Notably, TLWE is a specific instance of TRLWE with N = 1.
TRLWE samples enable homomorphic addition and constant multiplication. The utilization of two distinct
cipher schemes, namely TRLWE and TLWE, is primarily motivated by facilitating the internal bootstrapping
process.

TGSW the Gentry–Sahai–Waters (GSW) scheme, a variant of the LWE encryption scheme, is capable
of performing non-linear operations homomorphically. The TFHE scheme employs GSW for the homomorphic
multiplication of two ciphertexts. This is particularly useful in bootstrapping, where an external product, de-
noted as ⊡, is defined as TGSW × TLWE→ TLWE. The primary application of the external product in TFHE
is the controlled multiplexer, or CMUX. The operation of the CMUX is further defined later in the subsequent
sections.

A TGSW sample can be conceptualized as a matrix of TLWE elements. TFHE employs a ’gadget
decomposition’ scheme to construct these matrices. Given the notations described above for the TLWE sample,
the TGSW encryption scheme for a message m ∈ Zp[X] is defined as (3).

C = Z +m ·H (3)

Each row of Z is a homogeneous TLWE sample encrypted under key s. The gadget matrix, H ,
belongs to T(n+1)×(n+1)l

q . Reciprocally, C ∈ T(n+1)l×(n+1)
q is considered a valid TGSW sample if there exists

a message m ∈ Zp[X] such that each row of C−m ·H is a valid homogeneous TRLWE sample under the key.
Both TLWE and TGSW schemes, along with their operations, can be extended to polynomials represented as
TRLWE and TRGSW, respectively. The combination of these samples plays a crucial role in refreshing noisy
ciphertexts during bootstrapping.

2.2.2. Gate level bootstrapping
Bootstrapping is a widely used technique to manage noise growth in homomorphic encryption schemes.

It achieves this by homomorphically evaluating the decryption procedure on a ciphertext via an encryption of
the secret key.

Here, we consider the example of a specific homomorphic encryption scheme, namely TFHE, which
utilizes gate bootstrapping. This process takes a ciphertext of the form TLWEµ, where µ is the plaintext
message, as input. The output is another ciphertext, either encrypting 0 or µ, with a controlled amount of noise.

The gate bootstrapping procedure in TFHE consists of three key steps: i) BlindRotate, ii) SampleEx-
tract, and iii) KeySwitch, which are described as follows.
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− The BlindRotate operation takes a TLWE sample as input and multiplies it with a secret encrypted power
of X , effectively producing a rotation of the coefficients. This rotation is achieved by invoking the CMUX
gate in a loop for each coefficient of the cipher. A visual representation of BlindRotate can be found in
Figure 2.

Figure 2. Overview of the BLINDROTATE operation performed during BOOTSTRAPPING after each
gate-level operation

The procedure relies on polynomials, require shifting the input cipher sample from the TLWE(TN [X])
space to the TRLWE space. Here, c denotes a TRLWE sample of a polynomial message v ∈ TN [X] under
the key s = (s1, ..., sn) ∈ Bn, where the constant term is a rounded approximation of the original message
in the T space.
Matching bootstrapping keys s′ = (s′1, ..., s

′
n) ∈ Bn exist, with C ′

1, ..., C
′
n representing their corresponding

TGSW samples. The process begins by rounding up the input cipher and defining c̃(ã1, ..., ãn, b̃)← ⌊c2N⌉
mod 2N . The process is executed over two steps by defining an accumulator, ACC, as follows:
a. ACC← X−b̃ · c
b. Perform ACC← CMUX(C ′

i,X
ãi ·ACC, ACC) for 1 ≤ i ≤ n

The output is a TRLWE sample encryption of X−p · v, where p = b̃−
∑n

i=1 s
′
i · ãi mod 2N .

− The SampleExtract operation is the subsequent step following the conversion of plaintext v into the en-
cryption of the polynomial X−p · v. In this operation, the constant term is extracted from the cipher. This
extraction process results in the retrieval of the cipher of the original message, now encrypted under a new
key. This operation is a crucial component in the key switching process, enabling the transition of encrypted
data between different encryption keys.

− The KeySwitch operation is a fundamental component in homomorphic encryption schemes. This standard
key switching algorithm is designed to convert a ciphertext encrypted under one key into a ciphertext en-
crypted under a different key. The implementation of this operation necessitates the use of key-switching
keys. Specifically, these are the TLWE encryptions of the key bits of s̃, with respect to the original key s.

2.3. Negative wrapped convolution
Within the context of FHE, one of the computationally most expensive operations is the modular

multiplication of polynomial elements. A prevalent approach to achieve this task efficiently leverages FFT-
based convolutions. The cyclic convolution for two length-D signals x, y is denoted by a signal z = x × y
having D elements as (4).

zm =
∑

i+j≡m(modD)

xiyj (4)

Whereas the negacyclic convolution of x,y adds a factor of (−1) with v = x× my and is denoted by [13]:

vm =
∑

i+j=m

xiyj −
∑

i+j=D+m

xiyj (5)

Hardware design for fast gate bootstrapping in fully homomorphic encryption over the Torus (Saru Vig)
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The acyclic convolution of the signal given by u = x× ay having 2D elements is given by:

um =
∑

i+j=m

xiyj (6)

for m ∈ {0, ..., 2D − 2}. Lastly, the half-convolution is a length-D signal given by x× hy consisting
of the first D elements of the cyclic convolution u. All the basic convolutions are closely related to one another.
As shown in [13], if the length D is even and xj , yj = 0 for j > D/2,

L(x)× aL(y) = x× y = x× my (7)

given the notion of the splitting of signals (of even length) into halves, the lower-indexed coefficients
of a are denoted as L(a). The above statement introduces us to the concept of ”zero-padding” which is to
append D zeros to signals of length D so that the signals’ acyclic convolution is identical to the cyclic (or
the negacyclic) convolution of the two padded sequences. While the classical cyclic convolution is applied to
accelerated polynomial multiplication modulo XN−1, negacyclic convolution is used to implement polynomial
multiplication modulo XN + 1.

Now, that we have established the use of negacyclic convolution to perform modular multiplication,
we explain the possible approach of zero-padding that has been implemented as part of the TFHE Library
which uses the standard cyclic convolution and FFT to perform negacyclic convolution. We note that:

X2N − 1 = (XN + 1)(XN − 1) (8)

The goal is to obtain the product of two N -point polynomials modulo (XN + 1). First, the product
modulo (X2N −1) via cyclic convolution is computed, i.e., using the standard Fourier transform definition. To
obtain the product modulo (XN +1), the result needs to be reduced to the intermediate result modulo XN +1.

The description of how this reduction works was presented in [14] and is used here for completeness.
Let us define a signal p ∈ Z[X] of degree N − 1. Its negacyclic extension p̄ (of length 2N ) is defined as (9):

p̄[X] = p[X]−XN × p[x] (9)

At each multiplication by X with the polynomial, the coefficients are circularly shifted one position
to the right and the entering coefficient is negated. The resulting signal is such that its Fourier image will
have zeros at all the even positions and the remaining coefficients will be mirrored and conjugated. Thus,
multiplication of two such signals p and q can be performed as (10):

p× q mod (XN + 1) =
1

2
F−1(F(p̄) · F(q̄))[0...N − 1] (10)

Note that after F−1, the coefficients are negacyclic, hence we can only take the first half of the vector.
This approach of negative wrapped convolution followed in the TFHE library is also described in Algorithm
1. Thus, the TFHE library uses a 2N length FFT architecture to perform multiplication. In our proposed
approach, we use length N FFT architecture to achieve the same result for modular polynomial multiplication.
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2.4. Automatic generation of register-transfer level level design
An important step in gate bootstrapping is the generation of RTL designs for the involved functions.

In this context, we explore the generalization of the hardware back-end of the SGen tool, presented in [15], to
automatically generate data-path designs for FFTs.

SGen is an open-source tool that generates hardware designs for various signal processing transforms.
It focuses on designs that operate on streaming data, where the input dataset is divided into smaller chunks
processed over multiple cycles, leading to reduced resource usage. The FFT data path comprises O(log2 N)
cascaded stages for a signal of length N , as shown in Figure 3. Each stage processes w elements (words) per
cycle, with a streaming width of w. Consequently, the number of cycles required to receive the entire input (or
output) is N

w . The hardware in each stage is reused for subsequent sets of elements, effectively performing a
”vertical folding” of the signal. SGen implements the Cooley-Tukey algorithm for streaming FFT and offers
an area-efficient alternative to the work presented in [16] for complex data type FFT problems. A detailed
comparison of these tools is presented later in this paper. Our work investigates the applicability of SGen as
a tool for generating FFT data paths in the case of TFHE with 128-bit security level. We will leverage the
data-path design generated by SGen and apply it to our proposed polynomial multiplication Algorithm 2.

Figure 3. Streaming FFT architecture

3. IMPLEMENTATION
This section describes the fundamental building blocks of the bootstrapping approach implemented

on the FPGA. Figure 4 provides a high-level overview of the entire architecture. Through complexity analysis,
we identified the time-critical functions and targeted them for hardware acceleration.

Hardware design for fast gate bootstrapping in fully homomorphic encryption over the Torus (Saru Vig)
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Figure 4. High-level system overview

The BLINDROTATE function is the core of the bootstrapping process, responsible for refreshing the
noise. It performs a coefficient rotation by multiplying an encrypted polynomial with an encrypted power of X .
This rotation is achieved using the CMUX gate, as illustrated in Figure 2. The CMUX gate takes two TLWE
samples, d0 and d1, as inputs, along with a control TGSW sample, C. Its output is a TLWE sample and is
computed as (11):

C ⊙ (d1 − d0) + d0, (11)

where ⊙ denotes the external product, homomorphic to the external R-modulo product between the
respective plaintexts. The external product is formally defined as (12):

TGSW × TLWE → TLWE. (12)

The external product operation in homomorphic encryption schemes is known to have two com-
putationally expensive functions: the FFT and add-multiply (AddMul). As illustrated in Figure 2, each
BLINDROTATE operation, performed with default security parameters, involves 630 CMUX operations,
one for each coefficient of the bootstrapping key polynomial. For each CMUX within the external product, the
forward FFT is executed six times, followed by the AddMul operation and the inverse FFT. Our experiments
indicate that, for a simple homomorphic comparison of two 16-bit numbers, the FFT is performed 309,846
times. Table 1 details the FFT counts for all basic operations in the example code. Following the bootstrapping
process, a key-switching function is applied. This operation also presents an opportunity for optimization,
which will be discussed later in this section.

Table 1. FFT counts for 16-bit integer comparison
Operation Key generation 2-input gates Mux Comparison function
FFT counts 15120 3780 7554 309846

3.1. Fast Fourier transform
The forward and inverse FFTs share the same underlying architecture, with the sole distinction lying

in the applied multiplicative twiddle factors. In this paper, we only discuss the data-path a forward FFT. The
core back-end architecture, generated by SGen, utilizes the Cooley-Tukey algorithm iteratively to perform the
FFT operation. As illustrated in Figure 5, SGen implements a fully streaming FFT, thereby enhancing resource
utilization. A signal of length 2n is permuted over 2t cycles in chunks of size 2k elements, where n = k + t.
The generated RTL incorporates additional optimizations, including:
− Simplification of read-only memories (ROMs) containing periodic values by replacing them with constants.
− Replacement of single-value ROMs with constants.

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 3, November 2025: 659–675
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− Simplification of trivial arithmetic operations.
− Pairing of multiplexers and ROMs sharing identical values.
These optimizations further improve the area and resource efficiency of the generated hardware design.

Figure 5. Overview of FPGA implementation of FFT

3.1.1. Design decisions
Automatic RTL generator: SGen offers the flexibility to customize various parameters based on spe-

cific design requirements. To evaluate its performance, we compared the latency of SGen and SPIRAL [16] for
the FFT of a 64-point, 32-bit fixed-point signal. The results are presented in Table 2. As shown, SGen exhibits
superior latency performance compared to SPIRAL. Additionally, SGen provides greater flexibility in selecting
data size and type. While SPIRAL is limited to 32-bit fixed-point data, SGen is capable of generating RTL for
64-bit fixed-point data types.

Table 2. Comparison between SPIRAL and SGEN
Radix 2 4 8
Streaming width 2 4 8 32 64 4 32 64 8 32 64
SPIRAL 165 116 92 57 42 92 40 25 76 46 31
SGEN 131 90 67 34 22 83 26 14 66 30 18

Data type and size: as previously discussed, SGen allows selection from various data types (single,
double, and fixed-point). In the TFHE library, FFT operations are performed using the FFTW3 library [17]
with double-precision (64-bit) data. We experimented with the single-precision (32-bit) version of FFTW3
for the default TFHE use case, but switching to single-precision floats resulted in inaccurate post-decryption
results. Therefore, we opted for a 64-bit word length for the RTL design.

Having determined the word length, we aimed to select the data type (fixed-point or floating-point)
by performing simulations. We executed FFTs on the same signals using MATLAB R2020b and the FFTW3
library implementation in Eclipse. The resulting error margins are presented in Table 3. Our goal was to choose
precision with the minimal difference compared to the double-precision FFTW3 implementation. These exper-
iments used signals within the operational bounds of TFHE. Research indicated that the integer coefficients of
polynomials used for bootstrapping FFTs typically reside in the range [−64, 63]. With 64-bit fixed-point rep-
resentation, the maximum error margin reached e−5 (14 decimal points). As expected, increasing the decimal
point precision reduced the error margin, ranging from e−10 for 30 decimal points to e−5 for 14 decimal points.
Double-precision floating-point yielded the lowest error margin, reaching e−15. However, for a given transform
length, fixed-point implementations are generally faster than floating-point implementations (approximately 3
times faster). Consequently, we opted for 64-bit fixed-point data. It is noteworthy that in fixed-point designs,
the precision length for the fractional part does not affect the data path design.

Table 3. Output difference between FFT function on MATLAB and FFTW3 library for different data types
Precision Double fixed, 14 fixed, 18 fixed, 22 fixed, 26 fixed, 30
Error margin e−16 e−5 e−6 e−8 e−9 e−10

Hardware design for fast gate bootstrapping in fully homomorphic encryption over the Torus (Saru Vig)
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Radix size: the Cooley-Tukey algorithm implemented by SGen recursively expresses the FFT as a
composite size of N = N1N2. One of N1 or N2 acts as the radix, which controls the number of points
processed by the basic computational block of the FFT, often referred to as the butterfly due to its data-path
shape (see the magnified section of Figure 5 for a high-level view). The streaming width must be a multiple
of the radix; that is, log2(radix) should be divisible by log2(N). While a higher radix is computationally more
complex, it is also more efficient due to the reduced number of multiplications and additions required. To
achieve maximum efficiency, high I/O bandwidth between the CPU and FPGA is crucial to maintain a full
pipeline at all times.

Streaming width: SGen allows for varying the streaming width from 2 to 256 complex words per
cycle, depending on the chosen radix. A fully streaming architecture enables continuous data flow into and out
of the system. The Cooley-Tukey FFT data path comprises O(log2 N) cascaded stages for a signal of length
N . A streaming width of w words per cycle requires N

w cycles to receive the entire input (or output). The next
section presents an evaluation of performance (resource utilization and speed) as influenced by both streaming
width and radix.

3.1.2. Proposed convolution approach
We propose a new method for performing multiplication using FFT, as shown in Algorithm 2. This

method is applicable to signals of length N and utilizes an FFT data path of length N/2. We extend the concept
of NWC from finite fields to the field of complex numbers. A similar approach for real-valued numbers was
previously proposed in [18]. We assume that the twiddle factors are pre-computed. The inputs are real-valued
signals of length N , which are folded to create a complex signal of length N/2.

To verify the correctness of our approach, we performed polynomial multiplication using the imple-
mentation provided by the TFHE library (described in Algorithm 1) and the proposed approach (described in
Algorithm 2) on five different input signals. We then calculated the average difference between the correspond-
ing coefficients of the final product signals. We fixed the range of the integer input coefficients to [-63, 64],
consistent with the TFHE gadget decomposition function. Our findings indicate that the proposed approach
achieves high accuracy even when using a half-size FFT data path. The total error margins were averaged at
7.81253× 10−9, with a median of 1.95309× 10−9.

3.2. AddMul
The AddMul function performs multiplication followed by successive addition within a loop, as de-

tailed in Algorithm 3. In the TFHE library, this operation is performed in the frequency domain on signals
after the FFT operation. The data type for this operation is double-precision floating-point. Based on our
experiments, the input values are bounded within the range [−20733.1, 20316.4]. We implemented the RTL
design using MATLAB Simulink R2020b. The implementation employed 64-bit fixed-point data points with
an input representation of (1, 64, 48) and an output representation of (1, 64, 33). This fixed-point implementa-
tion resulted in a minimal error margin between e−7 and e−8 on the output compared to the double-precision
representation. While increasing the streaming width can enable faster execution by performing operations in
parallel, this needs to be carefully balanced against the resulting increase in resource utilization.

3.3. Key switching
Key switching is a well-established procedure in the literature [6], [7], allowing the transition between

keys with different parameters. Our analysis of this function’s profiling revealed that the shift operation, as
presented in (3.3.), is the most time-consuming step. This operation, performed on 32-bit integer data in TFHE,
exhibits high frequency and low potential for hardware acceleration. Due to its conversion into a single-cycle
CPU instruction, the shift operation will not benefit significantly from an RTL implementation. Therefore, the
implementation of this function in RTL is omitted in this work.

aij = (aibar >> (32− (j + 1) ∗ basebit))&mask (13)
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4. RESULTS AND DISCUSSION
In this section, we present the simulation results for the described RTL implementation of the FFT and

AddMul operations generated by SGen. The implementation uses the default parameters for 128-bit security
employed in the TFHE library [7]. These results serve as a proof-of-concept for the RTL designs generated by
SGen.

We begin by evaluating the achievable performance of the post-synthesis and implemented FFT design
with a streaming width of 4. Subsequently, we analyze the impact of increasing the streaming width on resource
utilization, latency, and required I/O bandwidth. Finally, we assess the performance of the RTL design for the
AddMul operation.

All evaluations were conducted using the 128-bit default security parameters as defined in the TFHE
library [7]. The key-switching key ciphertext has a length of 630 bits and a standard deviation of 2−15. Sim-
ilarly, the bootstrapping key has a length of 1024 bits and a standard deviation of 2−25. Notably, the TFHE
library implementation utilizes 32-bit integers and binary keys.

4.1. Fast Fourier transform
This section provides the implementation results as a proof-of-concept of the FFT design. Simula-

tion, synthesis, and implementation have been done with integrated tools of Xilinx Vivado 2019.2 on Virtex-7
xc7vx1140 FPGA. The achieved running frequency after eliminating critical paths over several iterations is 132
MHz.

4.1.1. Performance evaluation
The design parameters chosen for the FFT in this section are: length n = 1024, streaming width w =

4, and radix butterfly input size r = 2. These parameters were selected after evaluating various configurations
through simulations, as shown in Table 4. Latency refers to the number of clock cycles after which the output
begins streaming.

Table 4. Latency comparison of FFT design module based on streaming width and radix post simulation on
Virtex-7 FPGA on Xilinx 2019.2

Streaming idth 4 8 16 32 64 128 256
Radix 2 4 2 4 2 4 2 4 32 2 4 32 2 4 32 2 4 32
Latency 716 752 401 410 242 236 161 146 170 114 100 116 87 72 86 70 56 68

The streaming width can be configured between 4 and 256, with corresponding available options for
radix size being 2, 4, or 32. Streaming width is a crucial factor during architecture design, as the fully parallel
RTL design can process w complex inputs per cycle. Table 5 presents the required I/O bandwidth for full
utilization of the pipelined architecture.

Table 5. IO bandwidth to fully utilize the architecture of 1024 length FFT module, for 64-bit complex input
type

Streaming width Input bandwidth (GB/s) Output bandwidth (GB/s)
4 8.4 8.4
8 16.8 16.8

16 33.16 33.16
32 67.32 67.32
64 13.64 13.64
128 27.128 27.128
256 54.256 54.256

For the utilized Virtex-7 FPGA, a streaming width of 4 and radix of 4 were chosen to optimize resource
utilization compared to radix 2. Higher bandwidth can be achieved by storing polynomials in on-chip SRAM
(potentially generated by other on-chip cores) or in high-bandwidth external memory such as DDR4 or HBM.
Table 6 shows the resource utilization for the FFT design post-implementation. The LUT, LUTRAM, FF, and
BRAM utilization is less than 5% of the available resources. The bulk of the utilization is DSP and IO with
28% and 93% respectively.
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Table 6. Resource utilization post-synthesis and implementation of FFT design module on Virtex-7 FPGA on
Xilinx Vivado 2019.2

Resource LUT LUTRAM FF BRAM DSP IO
Available 712000 283200 1424000 1880 3360 1100
Utilized 24687 2267 32661 80 960 1028

4.1.2. Estimation under influence of streaming width
In this section, we discuss the effect of scaling the streaming width and radix for a 1024-length signal

on the hardware cost and performance.
The hardware cost for the development of the FFT design is characterized by the number of digital

signal processors (DSPs) and block RAMs (BRAMs) utilized. A DSP refers specifically to a Xilinx 7 series
DSP48E1, while a BRAM refers to a 36 Kb Block RAM. The resource utilization estimate is based on the
corresponding Xilinx IP core generator, and it is important to note that this is a conservative estimate, as po-
tential optimizations specific to the implementation environment have not been applied. As observed in Figure
6, higher radix designs exhibit improved resource utilization due to the reduced number of multiplications and
additions required in their FFT implementation.

Latency the speedup in execution time compared to a CPU was measured against an Intel Xeon Plat-
inum 8170 CPU @ 2.1 GHz. The TFHE library was used with its connector to the FFTW3 library [17], a C
subroutine library for performing forward and inverse discrete FFT operations. Note that this evaluation fo-
cused on a single, low-level FFT operation performed on a signal of length 1024. In practice, such an operation
is rarely used in isolation but is rather a component of higher-level operations (e.g., BLINDROTATE) where
the speedup is expected to be more significant. Additionally, we anticipate that the performance gains would
be more pronounced on a more powerful FPGA. As shown in Figure 6, the hardware FFT achieves a speedup
of nearly 30x with a streaming width of 128, with radix-4 offering the best performance.

Figure 6. Influence of streaming width of FFT on DSP (left), BRAM (right), and speed-up of a single FFT
operation against CPU

4.2. AddMul performance
Complex double-precision number multiplication and addition were performed on the accumulator

function in the frequency domain, following the application of Fourier transforms. The function was imple-
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mented in RTL as a function of the streaming width to investigate the trade-off between hardware utilization,
measured in terms of DSP resources, and latency. The designs met the timing criterion after critical path anal-
ysis at a clock frequency of 250 MHz. Timing calculations were based on a signal length of 1024. Speed-up
compared to an Intel Xeon Platinum 8170 CPU @ 2.1 GHz was measured. As shown in Table 7, increasing the
streaming width has a balancing effect on both DSP utilization and speed-up.

Table 7. Resource utilization and latency post-synthesis of AddMul design module on Virtex-7 FPGA on
Xilinx Vivado 2019.2

Streaming width DSP Speed-Up
8 288 1.8x
16 576 2.8x
32 1152 3.8x
64 2304 4.5x

128 4608 5x

5. RELATED WORK
With the continued maturation and stabilization of the FHE theory, there has been a growing focus

on hardware acceleration to address its performance limitations. This section reviews related literature on
hardware acceleration of FHE, both in general and specifically for the TFHE scheme employed in this study.
This review provides context for our work within the existing landscape and highlights our key contributions.

5.1. Field-programmable gate array accelerators for Torus fully homomorphic encryption
A recent work by van Beirendonck et al. [19] proposes a TFHE accelerator that leverages fixed-point

representation for data within the TFHE library. They employ low-precision, ranging from 29 to 31 bits, to
represent TFHE data elements. This approach achieves up to 50% reduction in resource utilization compared to
their floating-point counterparts. However, it is worth noting that this work may encounter precision limitations
as TFHE evolves and incorporates a wider range of parameters.

A recent and highly relevant work by Gener et al. [9] presented a vector-based architecture on FPGAs
to accelerate TFHE. Their primary focus was accelerating the modular polynomial multiplication in power-of-
two cyclotomic rings, a frequent operation in Ring-LWE based FHE schemes. While implementing polynomial
multiplication as a vector operation requiring O(n2) operations, more efficient convolution methods achieve
O(n log n) complexity. They utilized the matrix processor (MXP) FPGA [20], programmable to implement
up to 16 application-specific instruction set extensions. The MXP was programmed with 10 custom vector
instructions specific to TFHE, including vector addition, subtraction, multiplication, and bit extraction. Despite
achieving low resource utilization and linear speedup with increasing vector size, their implementation did not
match the performance of state-of-the-art CPU or GPU implementations of TFHE. For instance, polynomial
multiplication on an ARM Cortex-A9 core was reported to be 2x faster than their MXP implementation. In
contrast, our work introduces an efficient polynomial multiplication algorithm based on a modified version of
the Fourier transform, as detailed later in this paper.

5.2. Hardware acceleration for non-Torus fully homomorphic encryption schemes
5.2.1. Field-programmable gate array accelerators

Acceleration with designing FPGA based co-processors that work in conjunction with CPU has been
widely studied in the literature. These co-processors accelerate one or more operations of homomorphic en-
cryption [21], [22]. The Amazon offers FPGA accelerated cloud for accelerating performance-critical appli-
cations [23]. The researchers [24], [25] have designed the encryption/decryption of the Gentry-Halevi (GH)
and Brakerski/Fan-Vercauteren (FV) homomorphic schemes respectively on hardware. SIPHER [26] has im-
plemented baseline Homomorphic Encryption prototypes directly in MATLAB using the fixed point toolbox
to perform the required integer arithmetic. The implementation being in a high-level language (MATLAB) is
easier to adapt and update with improvements [27] present a fast hardware/software co-design implementation
of an encryption procedure that leverages the Karatsuba algorithm.

Riazi et al. [28] present a hardware architecture for implementing the Cheon-Kim-Kim-Song (CKKS)
homomorphic encryption scheme on FPGAs to accelerate Microsoft SEAL. Their design employs number-
theoretic transform (NTT) for polynomial multiplication and utilizes several optimized core computation blocks
for efficient modular arithmetic. Additionally, they introduce a novel architecture for high-throughput NTT,
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achieving a reported speedup of 164-268x compared to the SEAL library [29] running on two Intel FPGAs
at 275 MHz and 300 MHz. However, their work has limitations. First, it is limited to small parameter sizes,
which restricts its applicability to real-world problems. Second, the CKKS scheme itself does not support
bootstrapping, limiting the number of allowed homomorphic multiplications to less than eight. Finally, their
multipliers are specifically designed for 27-bit DSP units or multiples thereof, reducing their flexibility for
broader use cases.

Another related work that does not employ bootstrapping and consequently results in a shallow circuit
depth is presented in [30]. The authors propose an architecture for the well-known FV scheme and implement
their design on a Xilinx Zynq UltraScale+ MPSoC ZCU102. They utilize a parallel processing NTT algorithm
on top of the single-thread memory-efficient NTT algorithm presented in [31].

Cathebras et al. [8] propose another relevant work. They utilize the automatic RTL generator SPI-
RAL [16] to design a hardware implementation of a fully pipelined residue polynomial multiplier (RPM) for
accelerating the full residue number system (RNS) variant of the FV scheme. An important contribution of
their work is the decoupling of twiddle factors from the architecture itself, which enhances its versatility and
enables it to handle various finite field parameters. The experimentation was performed on an Alpha-Data
board ADM-PCIE-7V3, equipped with a Xilinx Virtex-7 xc7vx690t at 200 MHz. For a depth-20 setting, they
achieved an estimated speedup for residue polynomial multiplications exceeding 76 during ciphertext mul-
tiplication and 16 during re-linearization. Table 8 summarizes the FPGA- and GPU-based implementations
of different FHE schemes discussed in this section, highlighting their environments, targeted schemes, and
implementation types.

Table 8. Summary of FHE implementations on FPGA/GPU
Implementations Environment FHE scheme Type of implementation
HEAX Stratix 10 GX 2800 CKKS RNS+NTT
HEAT Xilinx Zynq UltraScale+ MPSoC ZCU102 FV RNS+NTT
Kim Xilinx UltraScale FPGA HEAAN RNS+NTT
Cathebras Xilinx Virtex 7 xc7vx690t FV RNS
F1 Cycle Accurate Simulator BGV RNS
HEAWS Amazon AWS FPGA FV SHE RNS

5.2.2. Application-specific integrated circuit accelerators
Several research efforts have focused on designing application-specific integrated circuits (ASICs) to

accelerate homomorphic encryption (FHE) computations. These efforts stem from the DARPA data protection
in virtual environments (DPRIVE) program, which aims to develop hardware architectures that enable FHE
computations within a factor of ten of their unencrypted counterparts.

TREBUCHET [32], [33], F1 [34], CRATERLAKE [35], HERCULES [36], and BASALISC [37] rep-
resent notable examples of such hardware design efforts. These frameworks provide comprehensive toolchains
for designing FHE accelerator chips, encompassing aspects like architecture exploration, design space opti-
mization, and hardware implementation. While these frameworks share the common goal of accelerating FHE
computations, they differ in their underlying architectural choices, targeting different FHE schemes and appli-
cation domains.

5.2.3. Graphics processing unit accelerators
In addition to FPGA-and ASIC-based acceleration, there has been a significant body of research ex-

ploring GPU acceleration for HE. Wang et al. [38] investigated the feasibility of using GPUs to accelerate
the GH FHE scheme, the first practical instantiation of HE [39]. Their work demonstrated a roughly tenfold
performance improvement for critical operations using medium-sized FHE parameters. Similar findings were
reported in subsequent works by [40]–[45], who explored the acceleration of other HE scheme variants on
GPUs. The TFHE scheme was also targeted for GPU acceleration in cuFHE [46] and nuFHE [47], achieving
performance improvements of two orders of magnitude compared to CPU implementations. However, despite
the significant speedups offered by GPUs, FPGAs generally provide better performance per watt. This factor
was a primary motivator for our choice of FPGAs as the acceleration platform for TFHE.
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6. CONCLUSION
In this work, we present hardware implementations on FPGAs for the key building blocks of the boot-

strapping procedure in TFHE: the FFT and AddMul operations. We leverage the SGen and Simulink tools for
RTL generation and evaluate hardware resource utilization and latency for various configuration parameters.
Our evaluations demonstrate that the bootstrapping process can benefit from the efficiency of FPGAs in terms
of execution time. Furthermore, we propose a novel algorithm for polynomial multiplication using an exten-
sion of the negative convolution technique in the complex domain. This algorithm leverages a length-N data
path architecture to perform the FFT of length-2N signals, effectively reducing hardware resource require-
ments. Our experimental results demonstrate a speedup of up to 30 times for the FFT compared to its CPU
implementation.
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[24] Y. Doröz, E. Öztürk, and B. Sunar, ”Accelerating Fully Homomorphic Encryption in Hardware,” in IEEE Transactions on Comput-
ers, vol. 64, no. 6, pp. 1509-1521, Jun. 2015, doi: 10.1109/TC.2014.2345388.
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