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ABSTRACT

Field-programmable gate array (FPGA) is a prominent device in developing the
internet of things (IoT) application since it offers parallel computation, power
efficiency, and scalability. The identification and authentication of these FPGA-
based IoT applications are crucial to secure the user-sensitive data transmitted
over IoT networks. Physical unclonable function (PUF) technology provides a
great capability to be used as device identification and authentication for FPGA-
based IoT applications. Nevertheless, conventional PUF-based authentication
suffers a huge overhead in storing the challenge-response pairs (CRPs) in the
verifier’s database. Therefore, in this paper, the FPGA implementation of the
Arbiter-PUF model using an artificial neural network (ANN) is presented. The
PUF model can generate the CRPs on-the-fly upon the authentication request
(i.e., by a prover) to the verifier and eliminates huge storage of CRPs database
in the verifier. The architecture of ANN (i.e., Arbiter-PUF model) is designed
in Xilinx system generator and subsequently converted into intellectual property
(IP). Further, the IP is programmed in Xilinx Artix-7 FPGA with other peripher-
als for CRPs generation and validation. The findings show that the Arbiter-PUF
model implementation on FPGA using the ANN technique achieves approxi-
mately 98% accuracy. The model consumes 12,196 look-up tables (LUTs) and
67 mW power in FPGA.
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1. INTRODUCTION
Internet of things (IoT) enable the ubiquitous electronic devices in which these devices are connected

via an internet network, and it is possible to exchange data among them. IoT implementation often requires
specific and unique network requirements, which can be programmed or reprogrammed in the field of applica-
tion with a cost and time-efficient manner. Field-programmable gate array (FPGA) is a foundation for building
the next generation of IoT systems since it offers scalability, low latency, and low power [1]-[3]. FPGA can
be programmed or reprogrammed according to the requirements of IoT applications. Examples of IoT applica-
tions include secure access, smart surveillance cameras, smart homes, and smart meters. All these applications
require user-specific data to be processed. Hence, it is very crucial to enable device identification and authen-
tication in IoT applications [4].
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Physical unclonable function (PUF) is a technology that can be deployed in FPGA-based IoT ap-
plications for device identification and authentication. PUF provides root-of-trust from a hardware layer by
exploiting the integrated circuit (IC) manufacturing intrinsic process variations [5]. PUF maps an input known
as a challenge to generate a unique output known as a response. The mapping of the challenge and response
pairs (CRPs) is unique for a group of similar types of PUFs (i.e., device-specific response). Hence, PUF pro-
vides a great and promising capability to be used for device identification and authentication application. Figure
1 depicts the PUF-based identification and authentication process, which consists of two phases; enrollment
and authentication. During the enrollment phase, the CRPs of the prover are extracted and stored in the verifier
database, d, in a trusted environment. In the field of application, the prover sends its response (r̃) to the verifier
and compares it against the response (r) in the database. If both responses are matched, the prover is a genuine
or valid device, otherwise, the prover is identified as a fake device.

Verifier −→ Prover j

⟨cij , rij⟩ with cij ← TRNG() ←→ rij ← PUF (cij)
}

1x Enrollment
dj ← d

⟨c, r⟩ ← ⟨cij , rij⟩ with i← dj
dx Authentication

dj ← dj − 1
c−→ r̃← PUF (c)

Abort if HD(r̃,r) > ϵ
r̃←−

Figure 1. Identification and authentication process using PUF [6], [7]

PUF-based identification and authentication, as described above, has a major drawback of severe area
overhead in the verifier database. The CRPs are not allowed to be reused to avoid on-path attack or man-in-
the-middle attack [8]. Therefore, the verifier has to store an enormous amount of CRPs to authenticate the
PUFs. Storing the PUF computational model is an alternative solution to overcome the severe area overhead
in the verifier database [9]-[13]. Aghaie et al. [9] developed a technique to build the computational model
of delay-based PUFs by using an internal delay sensor known as a time-do-digital converter (TDC) in FPGA.
The sensor measures the delay of signals that pass through the switching components in delay-based PUF
architecture. Subsequently, the measured delay is used to build the PUF computational model. Although the
above method reduces the number of CRPs to build the PUF computational model, the sensors remain on-chip,
hence exposing the device to be easily modeled by the adversaries. In other studies [10]-[13], the machine
learning (ML) technique is used to model the PUF. Enormous CRPs are measured during the enrollment phase,
and subsequently the PUF model is built using ML technique based on the extracted CRPs.

Elsewhere, Idris et al. [14] developed a lightweight authentication protocol that is built using the
PUF model. The usage of the PUF model in the verifier database and its physical PUF in the prover device
without any protection mechanism is insecure, as an adversary can perform a modeling attack by collecting the
exposed CRPs. Hence, the protocol in [14] deploys secret pattern recognition to perform mutual authentication
between the verifier and prover. In another study, Yue et al. [15] proposed an authentication scheme involving
the sequence of dynamic random access memory (DRAM) power-up values and convolutional neural network
(CNN). Power-up values in memory are random and exhibit device-specific features. CNN is deployed to model
these unique features based on the DRAM power-up sequence that has been converted to a two-dimensional
(2D) image structure. The proposed authentication scheme requires only the DRAM-PUF model (i.e., unique
feature) in the database. Nevertheless, deploying deep learning architecture such as CNN in the proposed
authentication scheme requires a huge area as deep learning typically consists of a significant number of layers
and a complex computational matrix.

All of the above studies show that deploying the PUF model in the database of verifier is getting the
attention of the PUF research community. Nevertheless, the chosen ML technique must be able to build the PUF
model in a cost-efficient manner. Moreover, the previous studies only focusing on methodical approach (i.e.,
building protocol of using PUF model) and/or simulation-level analysis only. Therefore, this study focuses on a
PUF computational model development in Xilinx Artix-7 FPGA board using an artificial neural network (ANN)
to enable lightweight authentication protocol in FPGA-based IoT applications. The PUF model accuracy, area
and power consumption are evaluated and discussed.

FPGA implementation of artificial neural network for PUF modeling (Mohd Syafiq Mispan)



202 ❒ ISSN: 2089-4864

2. METHOD
k-bit Arbiter-PUF [16], [17] is used as a case study for building the computational model of PUF in

FPGA. Figure 2 illustrates the top-level architecture of k-bit Arbiter-PUF. Arbiter-PUF is chosen in our study as
it has a lightweight architecture [18] and k value is set to 32 to provide considerably enough process variations
for Arbiter-PUF implementation in FPGA [19]. There are three major design steps in the development of
PUF modeling in FPGA. First, the physical Arbiter-PUF is implemented on FPGA following the methods as
described in [20]. Subsequently, random and unique challenges were generated using 32-bit linear-feedback
shift register (LFSR) with a primitive polynomial of x32+x31+x30+x10+1 and applied to the physical Arbiter-
PUF to generate the 1-bit corresponding responses. In total, 20,200 CRPs are extracted from the physical
Arbiter-PUF for building the PUF model.
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Figure 2. k-bit Arbiter-PUF architecture

Based on the extracted CRPs, the next step is to build the PUF model in a MATLAB using the ANN
technique. A 3-layer of ANN architecture is used, which consists of one input layer, one hidden layer with
five neurons, and one output layer. The number of neurons has been determined based on the rule of thumb
described in [21]. Log-sigmoid function is used as an activation in the hidden layers, which is given as f(x) =

1
1+e−x . Following [22], a resilient backpropagation algorithm is used as the training algorithm as it provides
fast convergence time and optimum prediction accuracy. 20,000 CRPs are used as a training data set, and the
remaining 200 CRPs are used as a test data set. The weightage and bias values from the successful training of
PUF modeling in MATLAB are extracted for the subsequent design steps.

The third design step is to implement the above ANN architecture (i.e., with the extracted weight and
bias values) in Xilinx system generator. Xilinx system generator is a MATLAB Simulink add-on that enables
the development of architecture-level FPGA designs using graphical block programming [23]. The design of
the 32-bit Arbiter-PUF model in Xilinx system generator is subsequently converted into intellectual property
(IP) core. Finally, the IP core, MicroBlaze core processor, and other peripherals are programmed into Xilinx
Artix-7 FPGA using Xilinx Vivado Design Suite to validate the functionality of the Arbiter-PUF model as
compared to the physical Arbiter-PUF.

3. RESULTS AND DISCUSSION
3.1. Artificial neural network architecture

As described in section 2, 32-bit Arbiter-PUF can be modeled by using ANN in which the ANN
architecture consists of 3 layers which are input, hidden, and output layer. Figure 3 illustrates the top-level
architecture of ANN in the Xilinx system generator environment. The number of input at the input layer
is equivalent to k. The feature extraction is also implemented at the input layer to transform the inputs to
parity vectors [24]. The transformed inputs are fed to the hidden layer for the subsequent process. In the
hidden layer, it consists of five neurons. The extracted weightage and bias values from the ANN modeling
in MATLAB are applied in the Xilinx system generator environment for the computational of the neuron’s
output. The computational process in each neuron can be represented as x = Σk

i=1wici + θ where x is the
neuron’s output, c is the i-th transformed input, w is the weightage, and θ is the bias value. Figure 4 depicts the
partial computational block diagram to compute the neuron’s output in the hidden layer. Block CMult is used
to compute multiplication of wc and block AddSub is used to compute Σ.
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Figure 3. Top-level of ANN architecture for modeling the 32-bit Arbiter-PUF

Figure 4. Partial computational block diagram of each neuron in the hidden layer

The output of each neuron, x is input to the log-sigmoid activation function, which is given as
f(x) = 1

1+e−x . The log-sigmoid activation function bounds its output to the range of (0,1). According to Tisan
et al. [25], a piecewise second-order approximation is used in our study to reduce the computational complex-
ity. Figure 5 illustrates the implementation of the log-sigmoid activation function in Xilinx system generator.
Meanwhile, Figure 6 depicts the graph comparison of an ideal log-sigmoid versus piecewise second-order ap-
proximation. As can be seen, the approximation technique requires a bigger x value to bounds its output to the
range of (0,1).
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Figure 5. Computational block diagram of sigmoid activation function
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Figure 6. Comparison of an ideal and approximation log-sigmoid activation functions

Subsequently, the activated output is input to the third layer or output layer. Figure 7 illustrates
the computational block diagram of an output layer. The computational process in the output layer can be
represented as o = Σn

j=1wjyj + θ where o is the output, y is equivalent to f(x) (i.e., the activated output),
w is the weightage, θ is the bias value, and n is the total number of neurons. The output layer performs the
classification process to classify the response ‘0’ and ‘1’. In the output layer, an additional block called a
comparator is required to counteract the approximated computation of log-sigmoid functions. The design of
32-bit Arbiter-PUF model in Xilinx system generator which based on ANN architecture as discussed above
is converted into an IP core. Subsequently, the IP core, MicroBlaze core processor, and other peripherals are
programmed into Xilinx Artix-7 FPGA as illustrated in Figure 8 for CRPs collection.

Figure 7. Computational block diagram of an output layer
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Figure 8. CRPs extraction using microblaze core processor

3.2. Modeling accuracy and area consumption
20,000 CRPs are collected from the Arbiter-PUF model using the MicroBlaze core processor as con-

figured in Figure 8. These CRPs are compared against the measured CRPs of physical Arbiter-PUF. Figure 9
depicts the modeling accuracy of the Arbiter-PUF model. The number of CRPs is varied from 400 CRPs up
to 20,000 CRPs. The results show that the Arbiter-PUF model achieves very high accuracy, approximately on
average 98%. Table 1 lists the area and power consumption of the Arbiter-PUF model. The area and power con-
sumption of the PUF model is higher than the physical PUF because of the complexity of ANN architecture as
compared to Arbiter-PUF architecture (see Figure 2). Based on these findings, the Arbiter-PUF is suitable to be
used in resource-constrained provers as it consumes insignificant area overhead and power. The corresponding
PUF model can be configured in the verifier to perform the authentication process.

As discussed in section 1, storing the PUF model in the verifier significantly reduces the area overhead
as compared to storing CRPs for each PUF-based device. All the previously proposed techniques of using PUF
model [9]-[15] as discussed in section 1 are methodical approach (i.e., building protocol of using PUF model)
and/or simulation-level analysis. Therefore, no comparison of the area overhead and power consumption can
be made. The successful PUF model provides scalability in which an unlimited number of authentications can
be performed by a prover as it is no longer limited by the number of CRPs stored in the verifier’s database.
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Figure 9. Modeling accuracy of 32-bit Arbiter-PUF modelled using ANN technique

Table 1. Area overhead and power consumption
Unit block LUTs Power consumption (mW)

Physical arbiter-PUF 32 < 1
Arbiter-PUF model 12196 67
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4. CONCLUSION
In this study, the 32-bit Arbiter PUF has been modeled using the ANN technique in MATLAB and

subsequently, the model is implemented on FPGA using Xilinx system generator and Xilinx Vivado Design
Suite. The FPGA implementation consumes 12196 LUTs, 67 mW power, and ≈ 98% accuracy. A successful
implementation of the PUF model can replace the conventional CRPs database in the verifier. The verifier
consists of the ANN architecture and a database of weightage and biases of provers. PUF model provides
scalability in which an unlimited number of authentications can be performed by a prover. Future direction
may focus on security enhancement of the verifier database to avoid adversaries’ attacks on retrieving the
weightage/biases information.
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