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 Scene segmentation is an essential step in a wide range of video processing 

applications, for instance, object recognition and tracking. The Gaussian 

mixture model (GMM) for background subtraction (BS) has gained 

widespread usage in scene segmentation, despite its known computational 

intensity. To tackle this challenge, we propose a practical solution to 

accelerate processing through a parallel implementation on an embedded 

multicore platform. In this paper, we present an improved automated parallel 

implementation of the GMM algorithm using the Orphan directive provided 

by open multiprocessing (OpenMP). Experimental assessments conducted 

on the eight cores of the C6678 digital signal processor (DSP) demonstrate 

significant advancements in parallel efficiency, particularly when handling 

high-resolution frames, including high-definition (HD) and full-HD 

resolutions. The achieved parallel efficiency surpasses the results obtained 

with classical OpenMP scheduling modes, encompassing dynamic, static, 

and guided approaches. Specifically, the parallel efficiency reaches 

approximately 82% for full-HD resolution frames and, 99.3% for low-

resolution frames, respectively. 
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1. INTRODUCTION 

At the core of the moving object detection process, background subtraction (BS) is considered as 

critical step responsible for extracting moving objects [1]. Over the past two decades, this field has 

experienced significant algorithmic advancements, with researchers proposing various techniques that differ 

in their approach to updating and generating the background model. Comprehensive literature reviews of 

these techniques are presented by Garcia-Garcia et al. [2]. According to [2], BS algorithms can be classified 

into four distinct categories, based on the characteristics of the background pattern: i) mathematical concepts: 

fuzzy models [3], statistical models [4] and Dempster–Schafer models [5]; ii) machine learning techniques: 

support vector machines [6] and neural networks [7]; iii) signal processing techniques: Wiener filter [8] and 

Kalman filter [9]; and iv) classifications models: clustering algorithms [10]. 

https://creativecommons.org/licenses/by-sa/4.0/
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While recent BS methods provide satisfactory accuracy, the use of complex models is 

computationally demanding. An efficient algorithm should balance accuracy with a low computational load. 

According to [11], Gaussian mixture model (GMM) is a promising candidate for addressing these constraints, 

as it represents an optimal compromise between accuracy and performance. Consequently, researchers have 

proposed statistical methods to manage and overcome challenges in background scenes, such as illumination 

and noise. For real-world applications, researchers have employed basic techniques like GMM [4], codebook 

[10] and visual background extractor (ViBe) [12]. This choice is driven mainly by memory and time 

requirements required by new BS methods [2]. 

In the literature, GMM is acknowledged as one of the predominant statistical methods [4], [13], 

[14]. Stauffer and Grimson [4] presented an adaptive model for real-time tracking, where each pixel is 

characterized by a mixture of Gaussians. This representation is dynamically updated in real-time through the 

incorporation of new input frames. Zivkovic [15] enhanced the GMM algorithm by proposing dynamic 

updates of K Gaussians for each pixel. As a result, K is adjusted dynamically to the multimodality of every 

pixel in accordance with scene evolution. 

The fields of image and video processing have experienced a significant surge in challenges and 

complexity to meet the demands of real-time applications. This is explained by the market demand for 

images with high resolution (i.e.: full-high-definition (full-HD) 1920×1080 and HD 1280×720), in various 

application areas, including the detection of traffic violations, surveillance of national borders, and 

monitoring critical government infrastructure. Consequently, video processing has become both bandwidth 

and computationally intensive. To address this challenge and limitation, parallel processing techniques are 

essential to achieve high computational performance and fulfill real-time requirements. In this paper, the 

computational platform chosen is the multicore C6678 digital signal processor (DSP) from Texas instruments 

(TI), selected for its advantageous features, including high computing performance and low power 

consumption [16]. 

Over the years, several studies have examined automated parallel implementations based on open 

multiprocessing (OpenMP) for the GMM BS algorithm, with the aim of enhancing its computational 

performance and parallel efficiency. Szwoch et al. [17] suggested a parallel implementation of the GMM BS 

using a supercomputer comprising 192 nodes connected with an InfiniBand network. Each computing node 

consisted of two six-core CPUs in the Xeon EM64T architecture. OpenMP was used, and both static and 

dynamic scheduling techniques were evaluated. The achieved speedup value could not exceed 3.75 for 

medium frame resolution and 2.7 for HD resolution frames when twelve threads were utilized.  

Mabrouk et al. [18] proposed a parallel implementation of the GMM BS on a multicore platform, which 

included two Intel Xeon(R) CPU E5-2670 8-core processors. The distribution of processing across the 

multicore platform was accomplished through the application of OpenMP, resulting in a speedup of 11.6 for 

the HD resolution frame when sixteen cores were enabled. In our previous work [19], we evaluated OpenMP 

classical scheduling (OCS) modes (e.g., dynamic, static, and guided), and found that only dynamic 

scheduling provided a high speedup compared to other scheduling modes, such as guided and static. The 

maximum speedup achieved with eight enabled cores was 3.6 for HD resolution frames. 

The main contribution of this paper is the parallel efficiency improvement of GMM BS algorithm 

on multicore DSP platform. This is achieved by selecting a suitable OpenMP directive: OpenMP orphan 

directive (OOD). Indeed, the OOD approach proves particularly advantageous, simplifying the task of 

implementing coarse-grain parallel algorithms [20], in which very large program regions are parallelized. 

The overall results demonstrate a significant improvement in speedup, even in the case of full-HD and HD 

resolution frames. The paper is structured as follows: section 2 introduces the GMM BS algorithm, describes 

the experimental setup, and outlines the proposed parallel implementation approach. Section 3 presents the 

experimental findings. Finally, a conclusion is provided in section 4. 

 

 

2. MATERIAL AND METHOD 

2.1.  Gaussian mixture model for background subtraction 

GMM has gained prominence in the field of BS. The pioneering work of Friedman and Russell [21] 

introduced a probabilistic model, wherein each pixel was characterized by a weighted sum of a limited 

number of Gaussian distributions. Subsequently, Stauffer and Grimson [4] made significant contributions by 

presenting an advanced GMM, accommodating K Gaussian models per pixel, typically K takes value within 

the range of 3 to 5 [4]. This advancement marked a significant stride in refining the GMM technique for BS. 

The formulation of the probability associated with the current pixel value, as illustrated in (1), underscores 

the inherent probabilistic foundation of this methodology: 

 

P(xt)= ∑ ωi,t*η(xt ,µi,t
,∑

i,t
)K

i=1  (1) 
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where: ∑𝑖,𝑡=denotes the covariance matrix; µ𝑖,𝑡=the mean value; 𝜔𝑖,𝑡=represents the weight of  𝑖𝑡ℎGaussian in 

the mixture at time t; 𝜂(𝑋𝑡 , µ𝑖,𝑡 , ∑𝑖,𝑡 )=specifies the Gaussian probability density function. 

Comparative is conducted between the incoming pixel and the GMM to identify the pixel in 

proximity to 2.5 standard deviations. Two distinct scenarios are encountered: scenario 1: a match is 

established, prompting the adjustment of both the mean and the variance for the corresponding Gaussian 

distribution; and scenario 2: if no match is identified, the new incoming pixel substitutes the least probable 

component within the mixture.  

In (2) outlines the process for updating the weights of the K distributions. 

 

ωk,t=(1-α)ωk,t-1+α(Mk,t) (2) 

 

Where: α is the learning rate and Mk,t equals 1 for the matched model, and 0 otherwise. 

The parameters update of the matched distribution is defined by (3) and (4). 

 

σ2
t=(1-ρ)σ2

t-1+ ρ(xt-μt
)

T
(xt-μt

) (3) 

 

μ
t
=(1-ρ)μ

t-1
+ρxt (4) 

 

Where: xt  represents new input frame pixel value; 𝜇𝑡−1 and 𝜎𝑡−1 represent the last mean and variance values 

of the matched Gaussian. The (5) represents the second learning rate, denoted as ρ. 

 

ρ=α*(xt|μk
,σk) (5) 

 

The last step encompasses the estimation of the background, involving the sorting of Gaussians 

based on the ω/σ ratio. The initial ranked distributions B, with a cumulative weight sum surpassing the 

specified threshold (Th), are identified as the background, as described by the (6). 

 

B= 𝑎𝑟𝑔𝑚𝑖𝑛𝑏 ( ∑ ωk>Thb
k=1 )  (6) 

 

Where: Th represents the minimum threshold of the background model. 

 

2.2.  TMS320C6678 evaluation module overview 

The TMS320C6678 evaluation module was used as the experimental platform, featuring a single 

C6678 DSP chip and 512 MB of dynamic random-access memory (DRAM) memory. The C6678 chip 

comprises eight DSP cores, each operating at a clock frequency of 1 GHz and delivering a computing 

performance of sixteen giga floating-point operations per second (GFLOPS). Notably, the architecture of the 

C66x DSP cores is based on very long instruction word (VLIW) design [16], [22]. The memory structure of 

the C6678 DSP is hierarchically organized into various levels, with the on-chip memory (L1) representing 

level 1, ensuring expedited CPU access compared to the external memory. 

Detailed view of the TMS320C6678 DSP components is shown in Figure 1. A comprehensive 

functional block diagram of the C6678 board is depicted in Figure 1(a), while Figure 1(b) illustrates the 

C6678 evaluation module. These capabilities have inspired numerous research communities to develop real-

time applications using this hardware platform [23]–[26]. Throughout our implementation, we utilized 

version 8.3.7 of the C6000 TI compiler. 

 

2.3.  Parallelization method 

The OpenMP serves as an application programming interface (API) that facilitates parallel 

programming on multicore platforms characterized by homogeneous processors and shared memory 

architectures [27], [28]. It facilitates the handling of parallel implementations by offering directives that 

specify to the compiler the parallel regions within the code. Users are also required to select appropriate 

scheduling techniques to effectively distribute processing tasks among different cores. The choice of 

scheduling type significantly influences the overall performance outcomes. On the other hand, a deep 

understanding of the algorithm structure and the nature of the algorithm's workload loop is considered a key 

factor in identifying accurate OpenMP scheduling. Indeed, in the case of the GMM BS algorithm, the 

workload is considered irregular. This irregularity arises from the dynamic nature of the algorithm and its 

dependence on the complexity of the scene. The irregular workload can be attributed to several factors, 

including: i) varying background complexity: Different pixels in an image may have varying complexities in 

the background due to changes in lighting or object movements and ii) adaptive model updating: GMM 
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models need to be continuously updated based on the characteristics of the scene. Pixels with more dynamic 

backgrounds or variations would require more frequent updates, resulting in a heavier workload. 

 

 

  
(a) (b) 

 

Figure 1. Overview of the TMS320C6678 DSP (a) functional block diagram of the TMS320C6678 DSP and 

(b) EVM6678 development board 

 

 

Due to the irregular nature of the GMM algorithm, we chose the OOD approach, which offers 

significant advantages in simplifying the implementation of coarse-grain parallel algorithms [20]. Coarse-

grained parallelism proves to be a suitable strategy for irregular loop algorithms, where the workload per 

iteration exhibits substantial variations. This approach entails dividing the overall task into larger units of 

work, with each unit representing a significant portion of the total workload. Coarse-grained parallelism 

effectively accommodates the irregularities in workload, reducing synchronization overhead compared to 

fine-grained approaches. This makes it particularly effective for scenarios where the computational 

requirements of different iterations vary widely. Overall, the OOD empowers users with more nuanced 

control over parallelization, leading to enhanced performance and improved stability in parallel programs, 

especially in cases where nested parallel regions are involved. 

The Algorithm 1 shows the pseudocode of our proposed implementation using OOD approach. In 

this case, the “omp for” directive in Background_SubtractorGMM function is considered as an orphan 

directive. The utilization of an orphan directive in this context highlights a key aspect of our design strategy, 

emphasizing the parallelization of the BS process. Figure 2 shows CDnet 2012 highway sub-dataset.  

Figure 2(a) presents a visual representation of the input frame, providing a clear snapshot of the raw data 

processed from CDnet dataset [29]. Additionally, Figure 2(b) complements this by illustrating the generated 

mask, derived from our enhanced parallel implementation of the GMM algorithm. 

 

Algorithm 1. Parallel implementation of GMM BS using OOD approach 
//Main function  

1. omp_set_num_threads (8); 

2. GmmModel defined by {Mean(mk), Weight(ωk) and variance(σk); 

3. Perform all GMM model initialization;    

4. Get current input frame;     

5. Begin 

6.    #pragma omp parallel 

7.    Call Background_SubtractorGMM (In InputFrame,  

                                                    inout GMMModel, 

                                                    Out MaskFrame); 

8. end function 

 
//Background_SubtractorGMM function  

1. #pragma omp for 
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2. For each (PixelIndex: = [0…SizeOfFrame [; PixelIndex++)  

3.    Begin 

4.      pixel= InputFrame[PixelIndex]; 

5.      For each k Gaussian 

6.         Begin 

7.           diff(k) = abs (mk -pixel); 

8.           if (diff[k] < Tmatch) then 

9.           Update GMMModel {Mean(mk), Weight(ωk) and variance(σk)}; 

10.           else 
11.           Update GMMModel {Weight(ωk)}; 
12.           end if 
13.      end for 
14.   Normalization of Weight (ωk). 
15.   For each k Gaussian 
16.      Begin 
17.      Rank and sort all Gaussians by the ratio ωk ⁄σk; 
18.   end for 
19.   Retain the first B componants whose weight is greater than threshold (Th); 
20.   if (pixel does not match background model) then  
21.       mark pixel in MaskFrame as foreground; 
22.    else 
23.       mark pixel in MaskFrame as background; 
24. end for 
25. end function 

 

 

  
(a) (b) 

 

Figure 2. CDnet 2012 highway sub-dataset of (a) input frame and (b) generate mask [29] 

 

 

3. RESULTS AND DISCUSSION 

The new parallel approach proposed in this paper, based on OOD, was applied to different frame 

resolutions to validate the effectiveness of this method. The results obtained for various resolution frames 

(Figures 3 and 4), as presented in Figure 3(a) for low-resolution frames, Figure 3(b) for medium-resolution 

frames, Figure 4(a) for HD frames, and Figure 4(b) for full-HD frames, demonstrate that our proposed 

method yields improved results compared to OCS modes presented in prior work [19]. The dynamic 

scheduling with a chunk size equal to 128 provides the best speedup results, as presented in [19]. However, 

in the current work, our new approach based on OOD outperforms the OCS methods. 

Linear speedup was achieved for the low-resolution frame, as shown in Figure 3(a). However, we 

observed a decrease in speedup for medium resolution frame, as illustrated in Figure 3(b), starting from the 

seventh core. For HD and full-HD frames, a speedup decrease was noticed when using more than six 

activated cores as illustrated Figure 4(a) and Figure 4(b), respectively. This reduction in speedup can be 

attributed to the limitation of the DRAM memory bandwidth. Access to the DRAM is restricted to a single 

core at a time, utilizing a 64-bit interface [16]. 

By strategically aligning the OOD with the specific demands of the GMM BS algorithm, we 

succeeded in optimizing the algorithm's parallelization. As shown in Figure 5, the OOD provides the best 

parallel efficiency performance compared to the conventional OpenMP scheduling methods presented in 

[19]. The adoption of the OOD, subsequent to code reallocation, represents a strategic move to bolster the 

parallel efficiency of the GMM BS algorithm. 
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(a) (b) 

 

Figure 3. Comparison of obtained speedup between OOD and OCS approaches in (a) 320×240 frame 

resolution and (b) 640×480 frame resolution 

 

 

  
(a) (b) 

 

Figure 4. Comparison of obtained speedup between OOD and OCS approaches in (a) 1280×720 frame 

resolution and (b) 1920×1080 frame resolution 

 

 

 
 

Figure 5. Parallel efficiency comparison between OOD and OCS approaches 
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4. CONCLUSION 

In this paper, we demonstrated the parallel implementation of the GMM BS algorithm on a 

multicore DSP platform using OpenMP. After conducting a comprehensive analysis of the GMM BS 

algorithm's workload and structural intricacies, we recognized the need for an adaptive approach due to the 

irregular workload per pixel processing. In this context, the integration of the orphan directive from the 

OpenMP API played a crucial role in achieving optimal performance, surpassing alternative scheduling 

modes such as dynamic, static, and guided. Indeed, we enhanced the GMM BS algorithm's processing 

capabilities, resulting in significant improvements in parallel efficiency. Specifically, we achieved 82% 

parallel efficiency for full-HD resolution frame and a linear speedup (i.e., 99.3% parallel efficiency) for low-

resolution frame when all eight DSP cores were enabled. Looking ahead, our future work aims to expand the 

parallel implementation of the GMM BS algorithm to 16 DSP cores, followed by the parallel implementation 

of vehicle tracking processing chain. 
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