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 The fourth industrial revolution is realized through the many developments 

in cyber-physical systems (CPS) made possible by the widespread use of the 

internet of things (IoT). CPS sensor networks must enable mobile and 

wireless CPSs with their specific flexibility and heterogeneity needs without 

compromising quality of service (QoS). The research article focuses on 

reconfigurable data communication hardware for numerous IoT-supporting 

infrastructures and performance estimation using delay, power, throughput, 

and packet delivery ratio (PDR) for different IoT node configurations. Tree 

topology-based network configuration from cloud data to sensor fog 

organizers, sensor network directors, and IoT-embedded sensors is 

supported. Functional simulation is performed in iFoGSim, Xilinx ISE, and 

Modelsim 10.0 with a maximum of 64 variable nodes programmed for data 

communication and interplay verification with a minimum delay of 9.1 ns, 

maximum frequency of 319 MHz, power of 7.5 mW, throughput of 0.280, 

and maximum PDR=1. The simulation is applicable for fog computing and 

CPS processed from different alters in specific topologies. 
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1. INTRODUCTION 

Industry 4.0 is a new data-obsessed paradigm [1] that is centered on the generation of industrialized 

information using real-time persistent networks and effective data streams. The fundamental enabling 

technology for Industry 4.0 is industrial cyber-physical systems (CPS). These CPS make it possible for 

objects and developments that are in the physical world, such as manufacturing facilities, to be firmly 

attached and assessed by advanced extrapolative analytics-based machine learning (ML) and simulation 

models that are in the digital world. The internet of things (IoT) [2] is a major emerging network paradigm 

that holds the promise of bridging the gap between the physical and digital worlds [3]. It consists of internet-

empowered gateways and devices that can sense, gather, receive, and send data. In the context of production, 

this may entail exchanges with high-definition cameras, radio-frequency identification (RFID) tags, global 

positioning systems (GPS), and/or controllers and actuators. Naturally, the continuous and pervasive nature 

of these interactions results in the production of huge data repositories as big data that characterize the 

operations of the factory. After a sufficient amount of high-quality data has been acquired, these enormous 

datasets can be analyzed using ML to produce accurate predictions after enough data has been collected. 

The most recent advancements in information and communication technology have steered a growth 

in the number of smart devices that are becoming commonplace in people's everyday lives. These devices 
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aim to improve people's overall quality of life. Medical cyber-physical systems (MCPSs) [4], are becoming 

increasingly popular in the healthcare industry because they allow for interaction that is both smooth and 

intelligent computing devices and medical equipment. To help with MCPSs, cloud assets are typically 

investigated to handle the sensing records from health check devices. However, the high quality of service 

(QoS) offered by MCPS poses a challenge to the unstable and time-consuming networks that connect the 

cloud data facility and medical equipment. To tackle this problem, mobile edge cloud computing, also known 

as fog computing, is developing as a promising potential solution. This type of computing moves the 

computation sources onto the network edge, such as cellular base stations. 

Fog computing, also called edge computing [5], is a reasonably new addition to the field of 

computing models, intending to provide cloud-oriented services at the edge computing network to support a 

high number of IoT devices. Fog computing uses a dispersed network of heterogeneous devices, or ‘fog 

nodes’ to process IoT data near its point of origin, such as Cisco IoT interacting hardware, microprocessor-

based datacenters, nanocomputing servers, smartphones, Cloudlets, and desktop computers. Therefore, fog 

computing is crucial for the reduction in service delivery delay of numerous IoT-enabled systems and 

dismissing the network of its heavy data load. Fog nodes are not resource-rich like cloud datacenters. 

Therefore, fog and cloud computing paradigms typically work together to address the resource and QoS 

needs of large-scale IoT-enabled systems.  

An increasing number of powerful end users and devices [6] are being made these days. Some 

examples are servers and smart access devices, which include smartphones, tablets, smart home appliances, 

smart traffic route polls on the side of the road, cellular base stations, associated smart vehicles, smart 

controllers, sensors in smart power grids, smart buildings, and industrial applications-oriented control 

systems. When operational expertise and information technology work together, many more devices come 

together at companies that specialize. Most of the use cases come about because of the growth of an industry. 

For example, temperature-controlled sensors based on the chemical vat and sensors that work at oil rig 

stations are examples of such data processing and edge computing devices. IoT comes from several different 

technologies, such as RFID, sensors, and machine-to-machine contact. Massive amounts of data are produced 

by new applications, and IoT devices are utilized to store, process, collect, and exchange this information [7]. 

The huge amount of data that is created needs to be handled while working with time-sensitive apps that have 

strict needs to know where they are, processing data quickly, and using little power. But most IoT devices 

don't have the power or tools to do all of these things on their own, so they ask servers and data centers that 

work with cloud computing for help. 

Cloud-based and edge-of-network computer nodes work together [8] in the fog to run IoT 

applications. Most fog computing solutions accomplish this by sending IoT data from its origin to numerous 

destinations in the cloud and on the network's periphery. If the data can be processed locally at each node 

along this route, those nodes will accept it. In any other case, the information will be sent to the next node in 

the chain. The significance of this issue cannot be overstated that the communication latency increases by the 

time it transfers for the data to be passed rather than accepted to the next node. Instead, it is recommended to 

adhere to the routing system, which is responsible for maintaining a list of all the nodes that have previously 

collected data in each environment. The system uses this historical context to send the data to the closest 

node that regularly accepts data in the same setting. Since fewer nodes along the path need to forward data, 

the communication delay may be reduced. The utilization of a geographical routing technique [9] has 

recently attracted a considerable amount of focus in recent times. 

The cloud and the fog each rely on resources such as computation, storage, and networks as their 

primary building blocks [10]. The significance of fog computing, on the other hand, can be determined by 

several different criteria. Reduced network bandwidth, low latency, mobility, heterogeneity, energy 

consumption, geographical distribution, privacy, and security are the primary characteristics of fog 

computing. Different investigators and experts are working in the field of fog computing facing the challenge 

of coping with the complexity of the system, which is caused by the enormous number of participating 

devices and the interactions between those objects, as well as the myriad of technologies and applications 

that are involved. To circumvent these challenges, they often apply models and simulation techniques to get a 

close approximation of the real fog system. The depiction of the real or proposed system or part of it, in the 

form of an idealized model, is known as a model. It is used to gain an understanding of the system that is 

being studied, to understand the many phenomena and the connections among the components, to develop 

estimations about the performance of the complete system or some of its subsystems, and eventually to 

entertain them. In situations in which the use of mathematical modeling techniques would be challenging or 

impossible due to the complexity, scale, or assortment of a fog computing simulation and system frameworks 

that offer the best solutions in the form of a set of tools that may be used to simulate the system. 
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2. RELATED WORK 

Modeling and simulating CPS behavior [11] requires considering both physical and control factors. 

Events, states, and responses form the backbone of CPS control. While sophisticated numerical models can 

now be used to study a system's physics, control is still often handled in a haphazard and limited fashion. 

Simulations are significant in the domain of CPS. However, it is worth noting that there is now no singular 

simulator that can adequately mimic the various dependencies of cyber infrastructure. Hybrid modeling 

methods are seen as a significant rising but immature area of research [12], and the discipline of hybrid 

modeling itself is expanding within the ML community as well as the scientific community. In recent years, 

several works have made attempts to combine model-based and ML models to fully take advantage of the 

potential that the two together offer. 

Data provides a direct basis for the overarching paradigm used to uncover CPS [13]. Physical 

system detection and transition-logic inference are key to this framework's design. It has been successfully 

implemented in a variety of practical scenarios. The innovative framework's goal is to decipher how CPS 

work and to use that knowledge to anticipate their future states. Such data is crucial for evaluating the 

efficiency of CPS, as it can aid in fixing bugs discovered during the deployment phase and directing the 

redesign necessary to attain the desired efficiency. The most significant shifts are occurring in contexts where 

CPS [14] are driving disruptive inventions. Because of this development, significant multidisciplinary 

relationships between enterprises working in information technology and manufacturing are required. These 

partnerships will improve the links between current ecosystems. Because of digital networks, businesses, 

consumers, and goods will be enormously interconnected. This will result in a rise in the effects of network 

possessions and a shared value generation in ecosystems. Manufacturing organizations need to cultivate ties 

with specialists who are knowledgeable in the areas of sensor technology and networking. 

In addition, software businesses can assist in making optimal use of the capabilities offered by CPS. 

The use of CPS-based technologies like fusion and virtual-real mapping [15], digital twins, technological 

innovations in virtualization, edge-to-cloud service delivery, and big data in the industrial system create a 

new paradigm known as the smart factory. Smart factories centered on CPS are defined, characterized, and 

architecture, with examples of their use in the past provided. The digital twin is a metamodel that combines 

physical system modeling with cyberspace simulation to generate simulation analysis capability for 

intelligent solutions. In the pre-production phase of a smart factory, this delivers a wide range of digital 

designs of production quality, processes, efficiency, cost, and environmental effect studies, all of which can 

be examined with big data and lead to authoritative answers for the physical space itself. 

These technologies, which will be the foundation for future smart services, will strengthen our vital 

infrastructure and may have a major effect on our daily lives. However, with more CPS adoption comes an 

increase in vulnerabilities [16] that could have far-reaching effects on users. Designing secure and efficient 

CPS is a hot topic because of the widespread nature of the security issues in this space. While there is nothing 

new about the need to secure sensitive information, new vulnerabilities have emerged because of 

technological advancements. The necessity for novel approaches to CPS security arises from the persistence 

of both exploitable hazards and cyber-attacks. Any intelligent control system absolutely must have sensors as 

one of its main components. Information technologies include wireless sensor networks that are developing 

at one of the fastest rates currently available and hold the potential to have a variety of uses in advanced 

networks. The Markov model has been offered as a method for conducting reliability studies of sensor nodes 

in wireless sensor networks. Data has proven that the sensor node reliability depends on the observing 

strategy and is unimodally related to testing time. 

Network on-chip (NoC) is the technology used for CPS, IoT communication, edge computing, and 

reconfigurable system communication [17]. The NoC communication happens based on 2D and 3D network 

routers and communication [18]. Wireless sensor network (WSN) research is advancing rapidly in 

agriculture, industrial, smart grid communication, metering, and monitoring. Zigbee, an IEEE 802.15.4 

wireless network protocol, provides minimum cost, optimal power, and low-delay data transfer via personal 

area network (PAN). Several WSN geographical domain sensor nodes communicate. Through the 

coordinator node, embedded sensor nodes conduct specialized applications by delivering information into the 

network. The coordinator collects, stores, processes, and routes data to the target node. Zigbee supports star, 

peer-to-peer, mesh, and cluster tree topologies. The research study proposes a hardware chip architecture for 

mesh, star, and cluster Zigbee topologies with 64 nodes communicating [19]. Virtex-5 FPGA pre-

synthesizes, and Xilinx ISE 14.7 software simulates 64-bit data transfer as internode communication. The 

chip's performance is compared using field-programmable gate arrays (FPGA) and timing parameters. The 

design consideration of recognized hardware design parameters such as memory consumption, and timing 

parameters such as maximum and lowest period, and frequency support. during the planning stages of a NoC 

chip design. ML uses decision tree regression, multiple linear regression, and random forest regression to 

evaluate the accuracy and efficacy of the design. A massively scalable solution to SoC's communication 

issues, NoC has been proposed. The space, latency, throughput, and power requirements of a NoC all affect 
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its performance. This research investigates the Virtex-5 FPGA's capability of running 2D and 3D mesh NoCs 

[20]. The Xilinx ISE 14.7 software is utilized for design, and the XY and XYZ routing behaviour models are 

used for the design of 2D, and 3D mesh NoC, respectively. Modelsim 10.0 is used for the functional 

simulation. To accurately predict the hardware resource consumption on FPGA, the on-chip communication 

is tested for both 2D and 3D mesh NoCs of varying cluster sizes. To address the challenges of significant 

structure in NoC synthesis on FPGA when many processing components [21], routers, and cache controllers 

are combined with SoC, the technique gives a significant platform to the NoC designers. 

WSN and CPS each have their unique routing. Traffic avoidance and congestion control schemes for 

WSNs include things like optimizing throughput with improved end-to-end data concurrency and parallelism 

in high-speed WSNs and obtaining node-connected window optimization in distributed fuzzy computing with 

high-speed transmission control protocol (TCP) in WSNs [22]. Routing protocols are essential in a WSN 

because they provide efficient and reliable data transfer between the network's two ends, the source, and the 

destination nodes. The multicast ad hoc on-demand distance vector (AODV) routing has been synthesized for 

multiple nodes and intercommunication data transfer [23]. The design successfully simulates the hardware 

device for the suggested routing protocol on a Virtex-5 FPGA using Xilinx ISE 14.7 and the code language 

very high-speed integrated circuit (VHDL). 

CPS use sensors and actuators to connect communication, information, and intelligence to the 

physical world [24]. A CPS can be made up of several fixed or moving sensor and actuation networks that 

work with an intelligent decision system. Each WSN has the same issues: network construction, power/ 

network/mobility management, and security. CPS has cross-domain sensor cooperation, flow of different 

kinds of information, and smart decision-making and action. Intelligence and knowledge accumulated 

through many methods of data mining and learning technologies: The data in CPS may contain a high degree 

of dynamic unpredictability. Technologies like ML and data mining will be essential for retrieving relevant 

information [25]. Knowing how these sensory data are related throughout time and space is crucial. 

 

 

3. METHOD AND SYSTEM 

Fog computer is a computer paradigm that addresses the issue of high traveling latency, also known 

as propagation latency, by enhancing the intelligence and resourcefulness of gateways. It is postulated that 

the gateways possess restricted storage and processing capabilities, which can be employed to handle the data 

of crucial applications near the terminal devices. This phenomenon contributes to the mitigation of trip 

latency for the data about important applications [26]. Due to their advanced capabilities, intelligent gateways 

possess the ability to make informed decisions regarding the processing or forwarding of incoming data. 

These decisions are based on factors such as the availability of resources inside the gateways and the latency 

limitations associated with the application data. The fog computing paradigm includes QoS profile, fog 

infrastructure, IoT application, and appropriate deployment strategies. The model relies on the utilization of 

the simulator, created in Java, which enables developers to alter the fog infrastructure by defining latency and 

bandwidth parameters following QoS laws and specifying application requirements. A cost model is 

available for iFoGSim although it does not provide some features. iFoGSim is a modified version that 

enables the precise allocation of IoT applications on fog computing platforms. The QoS determination for 

communication channels is facilitated by the iFoGSim framework, which also encompasses the hardware, 

software, and QoS configurations of the system. The Monte Carlo method is employed to emulate the 

characteristics of communication channels, as well as to generate probability distributions for sampling 

purposes. iFoGSim provides a set of measures that may be used to quantify and compare resource utilization 

and QoS accuracy. 

The components of the fog layer module exhibit a similar conceptual structure to those of the open 

fog architecture. However, the behavior of edge devices inside this framework differs. Fog computing 

enables the preparation of data before its transmission to the cloud, hence minimizing communication latency 

and lowering the necessity for extensive data storage through the application of filtering techniques [27]. In 

the perspective of IoT, employing this method is generally deemed appropriate for various applications and 

services. The methodology is focused on the intricacies of fog computing architecture. The edge devices 

operate autonomously, meaning that each fog node (FN) in the fog layer, consisting of edge servers and edge 

devices, is responsible for handling a collection of computing tasks. The design includes the following 

responsibilities: i) collecting data from IoT devices and preparing it for analysis, if necessary and 

ii) offloading tasks to other edge servers on-premises or in the cloud when the given edge server's resources 

are insufficient. Due to the critical nature of task completion, task allocation and offloading play crucial roles 

in data analysis. The methodology of the design is shown in Figure 1. 

The fog computing in the CPS system [28] and level processing are shown in Figure 1. The flow of the 

model is based on the centralized data processing, storage, and analysis that is available in the cloud. The 
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second layer is the fog layer which has the sensor fog organizers [29]. The third layer is the physical layer which 

consists of the edge node [30] that works with the network directors. In the last level of processing multiple 

sensors are placed in a sensory environment which can be IoT sensors [31] or some embedded devices.  

 

 

 
 

Figure 1. Fog computing in CPS system and level processing 

 

 

4. RESULTS AND DISCUSSION 

The results are obtained based on the simulation environment of the CPS for multiple IoT sensors in 

the iFoGSim simulator and evaluated with the necessary performance metrics of the model. The sensors, 

actuators, and other devices that are based on the IoT make up the physical layer. The information that has 

been gathered from the various end devices will be sent to the fog layer so that it may be processed and 

analyzed. To do the data analysis without sacrificing the latency problem is the key purpose of this project. 

The use of fog computing is the most effective way to meet the requirements of data analytics in an IoT-

based environment. Figure 2 shows the iFoGSim simulation environment for 16 sensors. Figure 3 presents 

the register transfer level (RTL) simulation in Xilinx simulation environment software tool which helps 

analyze the inputs and outputs pins of the reconfigurable hardware. In the diagram main pins are  

Cloud_data <95:0> presents the 96-bit cloud data which is processed through the main sensor 

environment. Sensor_identification <3:0> presents the 4-bit sensor identification address from sensor-1 to 

sensor-16 based on their addresses. The Clk is used to provide the clock signal with 50% duty cycle to 

specify design timing and synchronization in a testbench. A clocking block is a series of clock-synchronized 

signals. Reset is used asynchronous resets are made by adding them to the sensitivity list to be active on the 

leading edge of the reset signal. 

The performance assessment of the network depends on several factors such as delay, throughput, 

packet delivery ratio (PDR), and power consumption. The throughput of a system is defined as the number of 

data units that can be processed within a specific time frame. A wide variety of systems, from organizational 

structures to computer and network systems, make use of it. Complicating factors in CPS include the need for 

synchronization and coordination, problems with network dependability and latency, and limited resources 

for embedded systems. Then delay is an important aspect for the evaluation of the system performance. 

Numerous power-saving mechanisms take advantage of the reduction in energy consumption of the node 

peripherals. PDR is used to figure out how reliable a network is by looking at how many of the packets that 

were sent were delivered correctly. 

 

 

 
 

Figure 2. Simulation environment in iFoGSim [22] 

Embedded Devices/IoT Sensors
Sensor communication and routing IoT Sensor-1, Sensor-2..... Sensor-N

Physical Layer (Embedded modules and IoT Devices)
Device Embedded Processing Edge node-1, Edge node-2......Edge node-N

Fog Layer
Edge devices with Fog modules Fog node-1, Fog node-2.......Fog Node-N

Cloud Layer 
Cloud with Fog data modules Centralized data processing, storage and analysis 
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Figure 3. RTL simulation in Xilinx simulation environment 

 

 

IoT_sensor0<95:0> presents the 96-bit input/output for sensor-0 data communication and processing 

for sensor_identification<3:0> = “0000”. IoT_sensor1<95:0> presents the 96-bit input/output for sensor-1 

data communication and processing for sensor_identification<3:0> = “0001”. IoT_sensor2<95:0> presents 

the 96-bit input/output for sensor-2 data communication and processing for sensor_identification<3:0> = 

“0010”. IoT_sensor3<95:0> presents the 96-bit input/output for sensor-3 data communication and processing 

for sensor_identification<3:0> = “0011”. IoT_sensor4<95:0> presents the 96-bit input/output for sensor-4 

data communication and processing for sensor_identification<3:0> = “0100”. IoT_sensor5<95:0> presents 

the 96-bit input/output for sensor-5 data communication and processing for sensor_identification<3:0> = 

“0101”. IoT_sensor6<95:0> presents the 96-bit input/output for sensor-6 data communication and processing 

for sensor_identification<3:0> = “0110”. IoT_sensor7<95:0> presents the 96-bit input/output for sensor-7 

data communication and processing for sensor_identification<3:0> = “0111”. IoT_sensor8<95:0> presents 

the 96-bit input/output for sensor-8 data communication and processing for sensor_identification<3:0> = 

“1000”. IoT_sensor9<95:0> presents the 96-bit input/output for sensor-9 data communication and processing 

for sensor_identification<3:0> = “1001”. IoT_sensor10<95:0> presents the 96-bit input/output for sensor-10 

data communication and processing for sensor_identification<3:0> = “1010”. IoT_sensor11<95:0> presents 

the 96-bit input/output for sensor-11 data communication and processing for sensor_identification<3:0> = 

“1011”. IoT_sensor12<95:0> presents the 96-bit input/output for sensor-12 data communication and 

processing for sensor_identification<3:0> = “1100”. IoT_sensor13<95:0> presents the 96-bit input/output for 

sensor-13 data communication and processing for sensor_identification<3:0> = “1101”. IoT_sensor14<95:0> 

presents the 96-bit input/output for sensor-14 data communication and processing for 

sensor_identification<3:0> = “1110”. IoT_sensor15<95:0> presents the 96-bit input/output for sensor-15 data 

communication and processing for sensor_identification<3:0> = “1111”. 

Test simulation: Figure 4 presents the simulation for cloud data processing in binary. Figure 5 

presents the simulation for cloud data processing in ASCII and hexadecimal. Figure 6 presents the simulation 

for cloud data processing with different IoT nodes. The test input and outputs are cloud_data <95:0> = 

01010011 01010010 01001101 01001001 01010011 01010100 01000000 01010101 00101110 01010000 

00101110 01000000 (Binary) = 53524D49535440552E502E40 (hexadecimal) = SRMIST@U.P.@ (in 

ASCII). Sensor_fog_organizer_1 = ‘0’, Sensor_fog_organizer_1 = ‘1’, sensor_network_director1 = “00”, 
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sensor_network_director1 = “01”, sensor_network_director1 = “10”, and sensor_network_director1 = “11”. 

Based on sensor_identification <3:0> = “0000” ……… “1111”. The IoT_sensor0<95:0> = 

IoT_sensor1<95:0> = IoT_sensor2<95:0>= IoT_sensor3<95:0> = IoT_sensor4<95:0> = IoT_sensor5<95:0> 

= IoT_sensor6<95:0> = IoT_sensor7<95:0> = IoT_sensor8<95:0>= IoT_sensor9<95:0> = 

IoT_sensor10<95:0> = IoT_sensor11<95:0>= IoT_sensor12<95:0>= IoT_sensor13<95:0> = 

IoT_sensor14<95:0> = IoT_sensor15<95:0>  = 01010011 01010010 01001101 01001001 01010011 

01010100 01000000 01010101 00101110 01010000 00101110 01000000 (Binary) = 

53524D49535440552E502E40 (hexadecimal) = SRMIST@U.P.@ (in ASCII).  

 

 

 
 

Figure 4. Simulation for cloud data processing in binary 

 

 

 
 

Figure 5. Simulation for cloud data processing in American standard code for information interchange 

(ASCII) and hexadecimal 
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Figure 6. Simulation for cloud data processing with different IoT nodes 

 

 

In the same way, the simulation is carried out for the 64 IoT sensor nodes. The cloud data may vary 

in size. In that case, node identification will be of 6-bit and sensor_identification <5:0> = “000000” ……… 

“111111” for sensor-0 to sensor-63. Table 1 lists the assessment parameters of the simulation work. The 

performance of the system is evaluated based on delay, power, throughput, and PDR. Figure 7 presents the 

graph for evaluation parameters for CPS. 

 

 

Table 1. Performance assessment parameters 
Nodes/parameters Dealy (ns) Power (mW) Throughput PDR 

2 1.002 0.592 0.192 0.995 
4 1.164 1.210 0.210 0.986 

8 2.195 1.592 0.168 0.952 

16 4.102 2.197 0.269 0.998 
32 6.590 4.168 0.237 0.951 

64 9.100 7.500 0.280 1.000 

 

 

 
 

Figure 7. Graph for evaluation parameters 

 

 

Figures 8 presents the utilization curve for delay on Figure 8(a), power (mW) on Figure 8(b), 

throughput on Figure 8(c), and PDR consumption on Figure 8(d). The latency (ns) of the CPS system varies 

depending on the node. The measurements for the latency of IoT nodes are: 1.002 ns, 1.164 ns, 2.195 ns, 
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4.102 ns, 6.590 ns, and 9.1 ns for 2, 4, 8, 16, 32, and 64 nodes respectively. The power consumption likewise 

increases proportionally with the size of the nodes, measuring 0.592 mW, 1.210 mW, 1.592 mW, 2.197 mW, 

4.168 mW, and 7.500 mW for 2, 4, 8, 16, 32, and 64 nodes accordingly. The throughput varies for each 

scenario and is measured as: 0.192, 0.210, 0.168, 0.269, 0.237, and 0.280 for 2, 4, 8, 16, 32, and 64 nodes 

accordingly. The PDR varies depending on the case and is determined by simulation. The values obtained are 

0.995, 0.986, 0.952, 0.998, 0.951, and 1.00 for node sizes ranging from 2 to 64 nodes, respectively. In 

contrast to references [24] and [25], the latency is reduced by 9%, the throughput is increased by 3%, and the 

PDR =1 for the same node clusters. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 8. Utilization for (a) delay (ns), (b) power (mW), (c) throughput, and (d) PDR 

 

 

5. CONCLUSION 

Recent developments in IoT technology and mobile device computing capacity have increased 

interest in doing computational jobs on IoT or mobile platforms, especially for edge computing solutions. 

Data transport between IoT nodes and servers must be reduced in edge computing. IoT nodes and mobile 

devices must compute more. Communication bottlenecks caused by data transfer bandwidth or latency are 

minimized. The simulation for the reconfigurable IoT communication and CPS was done successfully for 64 

sensors. The RTL simulation has shown the configured chip design in Xilinx and functionality is verified in 

Modelsim for 96-bit data transfer from cloud to sensor nodes. The delay is increasing with the number of 

nodes increasing from 2 to 64. The delay varies from 1.002 ns to 9.100 ns, power from 0.592 mW to 7.500 

mW, throughput from 0.192 to 0.280, and PDR from 0.995 to 1.00. The layer-layer communication is 

verified. 
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