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 In the challenging realm of earthquake prediction, the reliability of 

forecasting systems has remained a persistent obstacle. This study focuses 

on earthquake magnitude prediction in Indonesia, leveraging supervised 

machine learning techniques and cloud radon data. We present an analysis of 

the tele-monitoring system, data collection methods, and the application of 

regression-based machine learning algorithms. Utilizing a comprehensive 

dataset spanning 30 training instances and 105 test instances, the study 

evaluates multiple metrics to ascertain the efficacy of the prediction models. 

Our findings reveal that the linear regression approach yields the best 

earthquake magnitude prediction method, with the lowest values across 

multiple evaluation metrics: standard deviation 0.40, mean absolute error 

(MAE) 0.30, mean absolute percentage error (MAPE) 6%, root mean square 

error (RMSE) 0.52, mean squared error (MSE) 0.28, symmetric mean 

absolute percentage error (SMAPE) 0.06, and conformal normalized mean 

absolute percentage error (cnSMAPE) 0.97. Additionally, we discuss the 

implications of the research results and the potential applications in 

enhancing existing earthquake prediction methodologies. 
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1. INTRODUCTION 

Earthquake prediction has long been a formidable challenge, marked by the absence of a dependable 

forecasting system [1]. Various studies have attempted to anticipate seismic events through the analysis of 

diverse precursory indicators, including observations of animal behaviour, fluctuations in temperature, 

changes in radon gas emissions, and alterations in seismicity patterns [2], [3]. However, due to the 

inconsistent manifestation of these indicators preceding earthquakes, the standardization and generalization 

of these prediction methods have proven to be intricate [4]. Among these indicators, radon gas has garnered 

significant attention as a potential precursor to seismic activity [5]. Moreover, it underscores the replicable 

patterns associated with radon changes linked to seismic activity, particularly those identified in the lead-up 

to recent earthquakes [6]. While several studies have explored the use of radon gas concentration data in 

earthquake prediction, establishing an accurate forecasting system incorporating specific event details such as 

date, time, magnitude, and location has remained elusive [7]–[14]. 

The potential occurrence of an earthquake highlights the importance of precise prediction, which can 

potentially save lives and prevent damage to infrastructure. However, due to the inherent probabilistic nature 
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of earthquakes and the difficulty in establishing an effective and reliable prediction model, attempts to 

forecast earthquakes have produced inconsistent outcomes [15]. Recent advancements in technology have led 

to the application of machine learning techniques in earthquake prediction, utilizing data related to animal 

behaviour, meteorological parameters, groundwater levels, chemical dynamics, seismic patterns, and 

historical earthquake data [14], [16]–[22]. Within the broader realm of machine learning, predictive 

modelling achieves enhanced accuracy by minimizing errors within the model [23]. Despite these efforts, 

accurate short-term earthquake predictions have remained elusive, specifically concerning the magnitude and 

location of seismic events on the Eurasian and Indo-Australian Plates [24]. 

Research by Zhang et al. [25], for instance, has focused on constructing four models using the 

extreme gradient boosting method to examine the mechanisms of radon variation under both natural and 

seismic conditions. The analysis highlighted the significant impact of various factors such as spring 

discharge, water temperature, precipitation, barometric pressure, and antecedent radon on radon anomalies, 

elucidating that these anomalies are likely induced by the earthquake-driven formation of microfractures in 

rock. Notably, the presence of ten megathrust subduction zones between the Eurasian and Indo-Australian 

Plates underscores the necessity for a robust earthquake magnitude prediction algorithm based on the 

fluctuation of radon gas concentration within one to four days before seismic events of magnitude above 

M4.5 [16]. 

However, despite these advancements, the correlation between earthquakes and radon anomalies has 

not been definitively established, leading to questions about the efficacy of proposed models [26]. Notably, 

the implementation of the belief rule-based expert system (BRBES) considering data about animal behaviour, 

environmental dynamics, and chemical changes has shown promising results in predicting earthquake 

occurrences within a 12-hour timeframe [17]. Similarly, research on the seismic cycle based on historical 

data, utilising an expert system, has exhibited accurate detection of impending earthquakes within 12 hours, 

with varying magnitudes (M3.6 to M9.1) and the location is separated into one-quarter of the earth [18]. 

Research by Tehseen et al. [24], the accuracy proposed expert system for making earthquake predictions 

using an independent test set has accuracy below 70% with magnitude range from M0.1–M5.9. 

Moreover, the contemporary shift towards the integration of machine learning and deep learning 

methodologies in earthquake prediction has led to substantial advancements in the field approaches [24]. 

However, challenges persist, particularly concerning the accurate prediction of rare high-magnitude 

earthquakes and the inherent unpredictability of their timing and location [14]. This study aims to address 

these challenges by analysing an earthquake magnitude prediction algorithm that focuses on the fluctuation 

of radon gas concentration in the days leading up to seismic events of magnitude above M4.5 between the 

Eurasian and Indo-Australian Plates. Through the implementation of a supervised machine learning 

approach, this research endeavours to contribute to the existing body of knowledge on earthquake prediction 

methodologies. 

 

 

2. METHOD 

The radon gas concentration real-time telemonitoring system is measured close to an active fault in 

Yogyakarta, Indonesia, so it is vulnerable to seismic activity. The radon gas transducer is placed above 

ground level in the chamber room with a maximum distance of 4.142 cm to measure radon gas emissions 

effectively. Radon gas measurements change every 10 minutes to negate radiation emissions from Actinium 

and Thoron [27]. Figure 1 shows the earthquake prediction system design. Data from the transducer is then 

connected to the microprocessor and sent to the cloud server for real-time measurement data monitoring as 

long as you have internet access. Radon gas concentration measurement data is stored in a data storage server 

and displayed on a web server, while earthquake data comes from the Geofon Postdam and the Indonesian 

agency for meteorology, climatology, and geophysics. 

Radon cloud data and earthquake data are then used to determine the earthquake magnitude 

prediction algorithm based on the supervised machine learning method. The results of this model are then 

evaluated based on mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square 

error (RMSE), mean squared error (MSE), symmetric mean absolute percentage error (SMAPE), and 

conformal normalized mean absolute percentage error (cnSMAPE). The model with the best value can then 

be used in data processing on the cloud server to be processed into an earthquake prediction notification. 

Table 1 shows the radon data set composition based on the method by Pratama [16]. Data on radon gas 

concentrations and earthquake events were then tabulated in Table 2. The data used as training data and test 

data in machine learning are radon gas concentration data when there is an earthquake day prediction which 

comes from the method used by Pratama [16], and earthquake events 1-4 days after there is an earthquake 

day prediction with magnitude above M4.5 between Eurasia and Indo-Australia Plates. The beginning of data 
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training was collected from the start from 15/9/2019 to 22/03/2020 (30 data), and then the data test started 

from 6/4/2020 until 31/12/2022 (105 data). 

 

 

 
 

Figure 1. Earthquake prediction system design 

 

 

Table 1. Data set composition [16] 
Variable Description 

n The day when the algorithm prediction was completed based on the method of Pratama [16] 

Rn Radon average day n 

R(n-1) Radon average day n-1 
R(n-2) Radon average day n-2 

. . 

. . 

R(n-6) Radon average day n-6 

R(n-7) Radon average day n-7 

. . 

. . 

DR(n-3) Radon average 3 days before R(n-2) = average R(n-3) until R(n-5) 
DR(n-7) Radon average 7 days before R(n-2) = average R(n-3) until R(n-9) 

DR(n-14) Radon average 14 days before R(n-2) = average R(n-3) until R(n-17) 

 

 

Table 2. Example of dataset 
Earthquake date 

prediction 
DR  

(n-14) 
DR 

(n-7) 
DR 

(n-3) 
R  

(n-7) 
R  

(n-6) 
R  

(n-5) 
R  

(n-4) 
R  

(n-3) 
R  

(n-2) 
R  

(n-1) 
Earthquake 

date 
Distance 

(km) 
Actual 

magnitude 

7-Nov-22 4.34 2.95 2.85 2.45 2.65 1.63 3.17 3.76 2.08 3.83 11-Nov-22 495.70 5.0 

13-Nov-22 3.14 3.38 3.70 3.83 2.88 3.14 3.59 4.36 2.78 5.09 14-Nov-22 216.30 5.4 
13-Nov-22 3.14 3.38 3.70 3.83 2.88 3.14 3.59 4.36 2.78 5.09 16-Nov-22 1124.37 5.6 

18-Nov-22 9.62 16.32 32.81 2.78 5.09 20.33 23.05 55.04 15.19 41.97 21-Nov-22 380.36 5.6 

29-Nov-22 18.29 2.93 3.35 2.59 1.16 1.20 5.36 3.50 3.11 1.83 3-Dec-22 311.97 6.1 

4-Dec-22 8.27 3.45 3.46 3.11 1.83 4.27 2.60 3.51 2.47 2.00 6-Dec-22 462.60 6.2 

5-Dec-22 6.12 3.04 2.86 1.83 4.27 2.60 3.51 2.47 2.00 3.40 8-Dec-22 378.19 5.8 

9-Dec-22 2.93 2.93 3.32 2.47 2.00 3.40 4.06 2.50 2.14 3.90 13-Dec-22 584.16 5.2 
13-Dec-22 4.35 5.88 9.68 2.50 2.14 3.90 15.78 9.37 3.85 2.44 17-Dec-22 611.76 5.1 

14-Dec-22 4.41 5.94 9.67 2.14 3.90 15.78 9.37 3.85 2.44 2.50 18-Dec-22 903.52 5.1 

16-Dec-22 4.32 5.71 2.93 15.78 9.37 3.85 2.44 2.50 2.30 2.40 19-Dec-22 706.85 5.3 
23-Dec-22 4.40 3.09 4.26 1.79 2.37 3.23 4.32 5.24 3.07 1.89 25-Dec-22 210.73 5.3 

 

 

The learning process in machine learning used in this study is supervised learning using a regression 

method shown in Figure 2. The goal is for the model to learn the underlying patterns or relationships in the 

data so that it can make precision earthquake magnitude predictions on new unseen data. Machine learning 

techniques used in this study to derive earthquake magnitude prediction algorithms are linear regression, tree, 

AdaBoost, Xtreme gradient boosting, and random forest [28]–[35]. The training data will be used to build the 

earthquake magnitude prediction model. Then the test data is used to test the earthquake magnitude 

prediction model that has been designed. 

In this study, the linear regression, tree, AdaBoost, Xtreme gradient boosting, and random forest 

methods were performed using Orange Data Mining Version 3.35.0 software. Machine learning evaluation 

Microprocessor 

system 
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methods used include MAE, MAPE, RMSE, MSE, SMAPE, and cnSMAPE. By combining the 

implementation of machine learning models with evaluations using various metrics mentioned, this study can 

provide a more comprehensive understanding of the model's performance in predicting or analyzing the 

utilized data. 

 
 

 
 

Figure 2. Scheme of a supervised machine learning model 

 

 

3. RESULTS AND DISCUSSION 

This study decided on earthquake magnitude prediction using a supervised machine learning 

method. Machine learning techniques used in this study to derive earthquake magnitude prediction 

algorithms are linear regression, tree, AdaBoost, Xtreme gradient boosting, and random forest. 30 training 

data were used in this supervised machine learning method and 105 test data. Setting features is done for 

each machine learning method to get the best results. The result obtained in this machine learning process is 

the prediction value of the magnitude of the earthquake that will occur based on the test data that has been 

entered. Earthquake predictions are valid for 1-4 days after the prediction based on the method used by 

Pratama et al. [7] which applies to locations between Aceh to East Nusa Tenggara, Indonesia. 

Table 3 shows the recapitulation of prediction data using a supervised machine learning method 

based on a confusion matrix and standard deviation from the difference between actual magnitude and 

predicted magnitude. A true positive condition is stated when the actual magnitude is within the prediction 

range of magnitude ± Stdev error, while a false positive is when the actual magnitude is not within the 

prediction range of magnitude ± Stdev error. The precision value of the machine learning method is 

calculated by [32]: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (1) 

 

The precision of earthquake prediction using the linear regression method has the highest value of 

0.82, followed by AdaBoost with 0.80. The tree has the highest precision with a true positive conditions 

value of 86. The precision of Xtreme gradient boosting is 0.71 with the falsest positive, 30 conditions. 

 

 

Table 3. Machine learning data test result 
Parameter Linear regression Tree AdaBoost Xtreme gradient boosting Random forest 

Standard deviation 0.52 0.71 0.61 0.68 0.58 

True positive 86 79 84 75 76 

False positive 19 26 21 30 29 
Precision 0.82 0.75 0.80 0.71 0.72 

 

 

Some error evaluations of machine learning methods include relative error, MAE, MAPE, RMSE, 

MSE, SMAPE, and cnSMAPE. Table 4 shows the error evaluation of the earthquake magnitude prediction 

method using machine learning. The linear regression method has the lowest standard deviation (0.40), MAE 

(0.30), MAPE (6%), RMSE (0.52), MSE (0.28), SMAPE (0.06) and cnSMAPE (0.97) values compared to 

other machine learning methods. Lower values for these metrics indicate better performance of the algorithm. 

Therefore, since linear regression has the lowest values for all these metrics, it is considered the best method 

for predicting earthquake magnitude based on the steps used in this research. Based on the prediction results 

of the earthquake using the recapitulated data set, the Tree method has the lowest evaluation result value with 

the highest standard deviation (0.48), MAE (0.50), MAPE (10%), RMSE (0.71), MSE (0.50), SMAPE (0.09) 

and the lowest cnSMAPE (0.95). With these values and compared to other machine learning methods, the 

tree method is the worst method for predicting earthquakes based on the data set determined in this study. To 

show the error characteristics, Figure 3 shows the dispersion errors using boxplot representation for each 

method. The tree method has the highest error dispersion, followed by Xtreme gradient boosting, random 

forest, AdaBoost, and linear regression which has the lowest error dispersion so that it can be stated as the 

best method in predicting earthquake magnitude using the data set. 

 

 

Table 4. Earthquake magnitude prediction error evaluation 
Error index St dev of absolute error MAE (s) MAPE (%) RMSE MSE SMAPE cnSMAPE 

Linear regression 0.40 0.30 6% 0.52 0.28 0.06 0.97 

Tree 0.48 0.50 10% 0.71 0.50 0.09 0.95 

AdaBoost 0.46 0.40 7% 0.61 0.38 0.08 0.96 

Xtreme gradient boosting 0.46 0.50 9% 0.67 0.45 0.09 0.95 
Random forest 0.40 0.40 8% 0.58 0.34 0.08 0.96 

 

 

 
 

Figure 3. Boxplot produced by machine learning algorithms when predicting the 105 data test 
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To analyze in detail the sign of deviation produced by the methods in predicting earthquake 

magnitude, Figure 4 shows the histogram of errors for machine learning method Xtreme gradient boosting 

(Figure 4(a)), linear regression (Figure 4(b)), AdaBoost (Figure 4(c)), random forest (Figure 4(d)), and tree  

(Figure 4(e)). The Xtreme gradient boosting, linear regression and AdaBoost methods have the highest 

frequency of values at 0 M error, while the random forest and tree methods are at -0.5 M and -0.25 M 

respectively. Linear regression has the highest error frequency with a quantity of 33 at 0 M followed by -0.25 

M and -0.5 M errors with a quantity of 26 and 19 states. This also indicates that the linear regression method 

is the best in predicting earthquake magnitude based on the test data in this study. 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

 
(e) 

 

Figure 4. Histograms of the errors produced by (a) Xtreme gradient boosting, (b) linear regression,  

(c) AdaBoost, (d) random forest, and (e) tree algorithms when predicting the 105 data test 
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In this study, the errors for the magnitude range were also analyzed, as can be seen in Table 5, which 

shows that the linear regression method has the lowest MAE for the M5.1-M5.3 earthquake magnitude range, 

with a value of 0.08, for M4.8-M5.1 and M5.3-M5.6 being 0.28 and 0.22, respectively. The absolute error 

standard deviation of the linear regression method also has low values for most magnitude ranges with the 

lowest value being 0.08 in the M5.1-M5.3 magnitude range. The Xtreme gradient boosting method has the 

lowest absolute error standard deviation value for the magnitude range M5.7-M5.9 and over M6.5 with 

values of 0.12 and 0.43, respectively. In the actual magnitude range M5.1-M5.3, the AdaBoost method has a 

MAE of 0.22 which is lower than the MAE of the random forest method with a value of 0.24. In this 

analysis, the AdaBoost method has a MAE for magnitudes M4.8-M5.1 and M5.3-M5.6 of 0.29. Earthquakes 

with magnitudes greater than M6.2 are rare, and earthquakes cannot be engineered by humans. More data 

will make the system learn more so that it can predict earthquake magnitudes more precisely and accurately. 

 

 

Table 5. Evaluation of the absolute errors based on the actual magnitude range produced by machine learning 

algorithms when predicting the 105 data test 

Actual 

magnitude 
range (m) 

Absolute error mean Absolute error standard deviation 

Xtreme 

gradient 
boosting 

Linear 

regress
ion 

AdaBoost 
Random 

forest 
Tree 

Xtreme 

gradient 
boosting 

Linear 

regress
ion 

AdaBoost 
Random 

forest 
Tree 

4.5-4.7 0.58 0.62 0.62 0.54 0.60 0.24 0.11 0.11 0.25 0.19 

4.8-5 0.38 0.28 0.29 0.37 0.32 0.42 0.11 0.40 0.31 0.46 
5.1-5.3 0.34 0.08 0.22 0.24 0.46 0.36 0.08 0.25 0.22 0.45 

5.4-5.6 0.40 0.22 0.29 0.32 0.41 0.29 0.13 0.18 0.20 0.27 

5.7-5.9 0.70 0.64 0.54 0.58 0.66 0.12 0.17 0.32 0.19 0.26 
6-6.2 0.88 0.90 0.96 0.82 0.98 0.88 0.10 0.18 0.28 0.19 

6.3-6.5 1.40 1.10 1.20 1.40 1.50 - - - - - 

>6.5 1.78 1.80 1.93 1.70 1.63 0.43 0.47 0.51 0.48 0.63 

 

 

4. CONCLUSION 

The results demonstrated the effectiveness of the linear regression method in predicting earthquake 

magnitudes, with the lowest values across multiple evaluation metrics: standard deviation (0.40), MAE 

(0.30), MAPE (6%), RMSE (0.52), MSE (0.28), SMAPE (0.06) and cnSMAPE (0.97). With these results, the 

linear regression method model will be implemented in the server cloud of the earthquake early warning 

system that has been created. These findings underscore the potential of our approach to improve real-world 

disaster preparedness and mitigation efforts. The challenges remain in predicting rare high-magnitude 

earthquakes, the study provides a significant advancement in the field. Future research directions may 

involve incorporating more data to improve the precision of earthquake magnitude predictions, further 

contributing to the body of knowledge on this critical area of research. 
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