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 Central processing unit (CPU) loading refers to the amount of processing 

power a CPU uses to execute a given set of commands or perform an exact 

task. Higher CPU load can lead to slower, sluggish performance, reduced 

lifespan, and reduced system stability. Using the CPU Load trace results, the 

performance bottlenecks can be identified and suitable methods can be 

adopted to reduce the load on the CPU. For an ideal embedded system, the 

CPU should be in idle state for around 70% of CPU usage time. In this 

paper, three types of optimization techniques are implemented, which 

include application code optimization, memory management, and 

implementing interrupt-driven data transfer. Application code can be 

optimized by getting rid of redundant code, duplicate functions and function 

inlining, function cloning which reduces the size of the code with increase in 

reusability. By moving the data, variables to data tightly coupled memory 

(DTCM) and instructions, functions to instruction tightly coupled memory 

(ITCM), the speed of the CPU increases which reduces the load on CPU. 

The conventional polling method which increases the CPU load can be 

reduced by implementing the same in interrupt-driven data transfer. The load 

on the CPU has reduced from 89.53% to 29.58%. 
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1. INTRODUCTION 

The central processing unit (CPU) is the major component of a computer system conscientious for 

executing instructions and doing calculations. The fetched instructions of CPU from memory, decodes it, and 

executes it to perform the tasks required by the software running on the system. The CPU is typically made 

up of two main components: the control unit (CU) and the arithmetic logic unit (ALU). The CU associates 

the flow of data between the CPU and other components, while the ALU performs mathematical and logical 

operations. Modern CPUs can have several cores, permiting them to invoke multiple instructions 

concurrently, and may include characteristics such as cache memory, virtualization support, and hardware 

acceleration for specific tasks. In embedded systems, the CPU is the primary component responsible for 

executing instructions and controlling the behavior of the system. Embedded CPUs are typically designed to 

meet specific requirements such as low power consumption, small size, and high performance. Embedded 

CPUs come in a variety of architectures and instruction sets. They are often integrated with other system 

components such as memory, input/output interfaces, and sensors to form a complete system. Embedded 

systems often have strict performance and power requirements, so optimizing the CPU’s usage is critical to 

ensure the system runs efficiently. 

https://creativecommons.org/licenses/by-sa/4.0/
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Application code in embedded systems refers to the software program that runs on an embedded 

system, which is a computer system that is designed for a specific task or application. The application code is 

written for a feeder protective relay which specifies the functionality of the relay. A feeder protective relay is 

a type of protective relay used to protect electrical power systems against faults and other abnormal 

conditions in electrical feeders. Feeder protective relays monitor the electrical parameters of the feeder, such 

as voltage, current, frequency, and power, and detect any abnormal changes in these parameters. The primary 

function of a feeder protective relay is to detect faults in the feeder and isolate the faulty section to prevent 

further damage to the system. When a fault occurs, the protective relay quickly sends a signal to the breaker 

to trip, thereby disconnecting the faulty section from the rest of the system. 

CPU profiling is a form of dynamic program analysis that measures, for example, the space 

(memory) or time complexity of a program, the usage of particular instructions, or the frequency and duration 

of function calls. Profiling is a technique that identifies sections of code that consume large proportions of the 

total execution time [1]-[3]. It is usually more productive to focus optimization efforts on code segments that 

are executed very frequently, or that take a significant proportion of total execution time than to optimize 

rarely used functions or code that takes only a small proportion of total execution time. CPU Profiler shows 

what functions consume what percent of CPU time [4]-[6]. This data provides better information on how the 

utilization is executed, and how exactly assets are allocated. Once the analysis is finished, the profiler 

visualizes the output data in the reports [7], [8]. The primary objective of CPU profiling is to identify 

performance congestion in an application’s code that are causing the application to use more CPU resources 

than necessary [9]. CPU profiling can be used to achieve a variety of specific objectives, such as:  

i) identifying the functions or methods that are consuming the most CPU time, ii) detecting CPU-intensive 

loops or algorithms, iii) finding functions or methods that are called too frequently, iv) analysing CPU usage 

across different threads or processes, and v) comparing the performance of different versions of an 

application or different hardware platforms. 

In embedded systems, CPU loading refers to the amount of processing being performed by the CPU 

at a given time, just like in any other computing system [10]. However, in embedded systems, CPU loading is 

critical because of the limited processing power and resources available. High CPU loading in embedded 

systems can cause performance issues, such as slower response times, system instability, and increased 

power consumption. In some cases, it can even lead to system failure or crashes. Managing CPU loading in 

embedded systems is essential to ensure optimal system performance and stability [11]–[13]. This can be 

done by designing the system to have a sufficient processing power to handle the required tasks [14], 

optimizing the software to minimize CPU usage [15], [16], and implementing real time operating system 

(RTOS) that can efficiently manage CPU resources. RTOS provides scheduling and prioritization 

mechanisms [17] that ensure that the most critical tasks are executed first and that the CPU resources are 

efficiently used. This helps to avoid overloading the CPU and ensures that the system can handle its intended 

workload. In addition to RTOS, other strategies for managing CPU loading in embedded systems include 

using hardware accelerators and offloading processing to other devices or systems, such as cloud-based 

servers or edge devices. These approaches can help to reduce the processing workload on the CPU and 

improve system performance and efficiency. 

 

 

2. METHOD 

The methodology is as shown in Figure 1. CPU loading procedure is performed to obtain the load on 

the CPU. The CPU loading procedure consists of many activities that need to be carried out simultaneously, 

which ensures maximum load is applied. The load results are analysed using a tool called Tracealyzer. The 

performance bottlenecks or tasks and functions which are utilising the processing power of the CPU is noted 

and suitable measures to reduce the load are taken. 

The load on the CPU will be maximum when different tasks are being executed simultaneously. 

Before releasing the relay to the market, the load on the CPU should be monitored in order to ensure longer 

lifespan, reliability and better performance of the device. To ensure the device can perform as per 

expectations even in extreme working conditions, CPU loading procedure is carried out where all the 

protection functions, measurement functions and other tasks are being executed properly. In order to reduce 

the CPU load, memory should be utilized efficiently. Instead of storing all the instructions, data and variables 

in one single memory component, they can be allocated different memory segments such as instruction 

tightly coupled memory (ITCM), data tightly coupled memory (DTCM) and on chip random access memory 

(OCRAM). As tightly coupled memory (TCM) is placed near the core, the execution time is reduced as well 

as the latency, which reduces the load on the CPU. Application code can be optimized by removing the 

redundant code, unused code, duplicate functions and one-line functions. Some lines of code which are used 
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only for testing purpose are also removed. Some lines of code are used for simulation purpose, which are also 

retracted. This has no effect on the actual application functionality. 

 

 

 
 

Figure 1. CPU loading methodology 

 

 

This increases the readability, reusability and efficiency of the code. The size of the application code 

reduces which also reduces the load on the CPU. The final method which is used is implementation of 

Interrupt based data transfer, which plays a major role in CPU load reduction. The conventional polling 

method is replaced by the interrupt-based data transfer. A significant amount of CPU load can be reduced by 

incorporating this method. After the optimization measures are taken, the CPU loading procedure is 

performed once again and the results are compared with the results taken in the beginning. The CPU loading 

procedure can be performed after each optimization method to compare the results and also check if the 

method implemented has had any effect on the CPU load. 

 

 

3. DESIGN AND IMPLEMENTATION 

The application code is written for a feeder protective relay. The relay has a number of protection 

functions, measurement functions, and supervision function. It also has keypad, liquid crystal display (LCD) 

display, light emitting diode (LEDs) in the local human machine interface. In order to apply maximum load, 

all the tasks and functions of the relay should be active and during this period, the CPU loading procedure 

should be conducted. 

 

3.1.  Central processing unit loading procedure 

Application code in embedded systems refers to the software program that runs on an embedded 

system, which is a computer system that is designed for a specific task or application. The application code is 

written for a feeder protective relay which specifies the functionality of the relay. A feeder protective relay is 

a type of protective relay used to protect electrical power systems against faults and other abnormal 

conditions in electrical feeders. Feeder protective relays monitor the electrical parameters of the feeder, such 

as voltage, current, frequency, and power, and detect any abnormal changes in these parameters. The primary 

function of a feeder protective relay is to detect faults in the feeder and isolate the faulty section to prevent 

further damage to the system. When a fault occurs, the protective relay quickly sends a signal to the breaker 
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to trip, thereby disconnecting the faulty section from the rest of the system. This helps to prevent damage to 

the equipment and reduces the risk of injury or death to personnel. The CPU load is observed for a period of 

5 seconds. 

The relay comes with a number of tasks and functions. To ensure maximum load on the CPU, all 

these tasks and functions should be enabled at the same time. The various tasks and functions are discussed 

below: 

− Local human machine interface (LHMI): the LHMI is used for setting, monitoring and controlling. The 

LHMI of the relay contains following elements: i) LED indicators/signals, ii) LCD display/demonstrate, 

and iii) navigation buttons. These navigation keys are used to navigate the LHMI menu, selecting 

characters and for configuration purposes. During the testing phase the navigation buttons/keys should be 

used randomly to ensure maximum load is exerted on the CPU, the LEDs should operate properly, the 

key press speed may be less than one second, ensure LCD is working properly and there is no delay. 

− Supervision: the intelligent electronic device (IED) is provided with an extensive self-supervision system 

which continuously supervises the software and the hardware. It handles the runtime fault simulations and 

informs the user about a fault through the LHMI. At the time of testing, supervision should be running at 

all times. 

− Fault record: the relay keeps track of analog points for the last 20 trip events in non-volatile memory. The 

trip signal triggers the fault recording of a protection function. Every fault record provides the root mean 

square (RMS) current values of basic components for all three phases and the neutral current at 20 

different times along the trip event. During testing, for every fault, a trip event should occur which can be 

validated by reading the fault records using the front port. 

− Events: these events include trip circuit supervision, protection start, protection trip, reset, breaker open, 

breaker close, remote trip, internal relay fault (IRF), blocking, and memory read fail. To store 100 such 

events, the relay incorporates a non-volatile memory. The event log includes the event along with time 

and date of occurrence. These event logs are stored sequentially, the most recent being the first and so on.  

− Modbus RS485: during the testing phase, both the front port and the rear port should be used 

simultaneously, the polling rate should be set to 100 ms, i.e., the polling should occur at every 100 ms. 

The data, which is communicated in the form of packets, should not be lost in the process. Modbus 

RS485 can be used to read measurement data, read and write configuration, read, and write settings. 

− Application function logic (AFL): the relay has around 27 AFLs including measurement functions. Some 

of these include protection functions such as undercurrent protection, overcurrent protection, thermal 

overload protection, phase discontinuity, inrush current detection, reclosing and measurement functions. 

During the testing phase, maximum number of these AFLs should be active. Current injection and 

communication to and from the relay should be conducted during the testing phase. 

− Power failure: preconfigured functionality facilitates easy and fast commissioning of the relay. The relay 

has a universal power supply 24-265 V AC/DC. The relay has configurable binary inputs/outputs which 

can be configured using local HMI or communication interface. During the testing phase, power failure 

should be detected, during the event of power failure, no data should be lost. 

 

3.2.  Optimization techniques 

Optimization of the load on the CPU is the main goal. There are many optimization techniques 

available. Techniques such as task scheduling, code optimization, and power management can be used to 

minimize CPU usage and extend battery life. Additionally, hardware acceleration and specialized 

coprocessors can be used to offload specific tasks from the CPU and improve overall system performance. 

The optimization techniques used are discussed below. 

 

3.2.1. Memory optimization 

Memory optimization plays a critical role in reducing CPU load by reducing the amount of time the 

CPU spends accessing memory. When memory access is slow, the CPU must wait for the memory to provide 

data, which can result in wasted processing cycles and increased CPU load. One way to optimize memory 

access is by reducing the number of memory read and write operations. This can be achieved by optimizing 

algorithms and data structures to use memory more efficiently, reducing the number of times data is copied 

between different parts of the system. Another way to optimize memory access is by using cache memory. 

By using cache memory, the CPU can access frequently used data more quickly, reducing the number of 

memory read and write operations and improving system performance. Memory fragmentation can also 

increase CPU load by forcing the CPU to spend more time searching for available memory. To reduce 

memory fragmentation, developers can use memory allocation algorithms that reduce the number of small 

gaps in memory and improve memory utilization. The memory optimization implemented in this work 
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utilizes TCM, ITCM, and DTCM. By using ITCM, DTCM, and OCRAM, system performance can be 

improved [18], and CPU load can be reduced by reducing the number of memory accesses required. By 

partitioning the data and code by storing different components in different memory components, the load on 

the CPU can be reduced thereby increasing the speed. 

TCM facilitates low-latency memory approach that the core can utilize with the predictability of 

access time which is a feature of caches [19]. While making use of external cacheable memory, an appealed 

instruction or piece of data might be in the cache, giving a fast access, or might not be in the cache, requiring 

a delayed access to external memory. When using TCM, the access time is accordant [20]. The TCM is used 

to take action on time-critical routines, such as interrupt handling routines or real-time tasks where the 

uncertainty of a cache is objectionable. Usually, TCM accesses are set up to collect or send data in a single 

cycle [21]. The processor can access time-critical procedures, such as exception handlers, immediately by 

storing them in the TCM instead of waiting for an initial code retrieve from external memory. 

DTCM is a type of memory architecture used in microcontrollers and processors. DTCM is a fast, 

low-latency memory that is tightly integrated with the processor or microcontroller, allowing it to execute 

instructions and access data quickly and efficiently [22]–[25]. DTCM is typically used for storing frequently 

accessed data, such as variables and stack data, that are critical for the performance of the processor. DTCM 

is usually implemented as a small amount of on-chip memory that is physically located close to the processor 

or microcontroller. 

ITCM is a type of memory that is closely integrated with a processor or microcontroller, allowing 

the processor to execute instructions at a higher speed [26] and with lower latency than if the instructions 

were stored in external memory. ITCM is typically used in embedded systems, where speed and performance 

are critical factors. By storing frequently used instructions in ITCM, the processor can quickly access them, 

reducing the overall execution time of the program. 

 

3.2.2. Application code optimization 

Application code can be optimized using a number of techniques which include elimination of 

redundant code [27], one-line functions, duplicate functions [28]. Function cloning and reduction of function 

call chain can also be implemented to reduce the load on the CPU. Very often, different functions may be 

declared which perform the same task. Identifying and eliminating such functions can reduce the CPU  

load [29], make the code reusable and reliable. Inline functions are those function whose definitions are small 

and be substituted at the place where its function call is happened [30]. Function substitution is totally 

compiler choice. Another technique used is dynamic memory management which is a process that allocates 

memory for variables and data structures at runtime when the program requests it [31]. This provides chance 

for adaptability and capacity, as the magnitude and position of memory blocks can be varied as per the logic 

of program and size of a data. It also enables the creation and manipulation of complex and dynamic data 

structures, such as linked lists, trees, graphs, and hash tables. Furthermore, dynamic memory allocation 

allows the program to adapt to different environments and user inputs, as the memory usage can be adjusted 

at runtime. This can save memory space and the readability and reusability of code increases. 

 

3.2.3. Interrupt driven data transfer 

An interrupt is something that alerts the CPU to take immediate action. To put it a different way, we 

can say that this device alerts the CPU to an issue that exists. The CPU typically suspends its current job and 

begins running the relevant interrupt handler when an interrupt occurs. When this task is finished, the 

previously halted task is resumed. The device notifies the CPU that it requires attention when there is an 

interrupt. It is not a protocol, but a hardware mechanism. The Interrupt handler makes the system get 

functioned. Functionality works any time. In case of an interrupt, if the device is in need of assistance, then 

that is indicated by the interrupt-request line. 

The steps involved in the interrupt driven data transfer scheme are as follows: 

− Transferring data efficiently utilizes the processor time. 

− In this scheme, the processor starts off the I/O device for transfer of data. 

− After the device is initiated, the processor will continue to execute the instructions in the program. 

− At the nth step of an instruction, the processor checks for a right interrupt signal. 

− If there is no interrupt signal, then the processor continues to execute the instructions. 

− If the I/O device is ready, it interrupts the processor. 

− The processor completes the execution of the current instruction and saves the processor status in the 

stack. 

− The processor calls function named interrupt service routine. 

− The final procedure of ISR is the processor status gets retrieved from the stack and the main program gets 

executed. 
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4. RESULTS AND DISCUSSION 

The optimization techniques, including memory management, application code optimization, and 

incorporating interrupt-driven data transfer, are used to conduct the CPU loading procedure. The results are 

shown in Figure 2, where the y-axis represents the number of kernel service calls made by the actor and 

service referencing any object. The kernel call intensity graph, post optimization as shown in Figure 2, 

displays the number of kernel service calls (y-axis) over time (x-axis). It allows for the identification of hot 

spots with a high volume of kernel service calls made. 

Figure 3 shows the Scheduling intensity view which displays the amount of context switches (y-axis) 

over time (x-axis). By default, it shows the entire trace divided into 100 intervals. For each time interval, a 

bar is drawn for each actor beginning or resuming execution at least once in that interval. The height of the 

bars corresponds to the number of times that actor has begun or resumed execution in the given interval, i.e., 

the number of fragments of the actor. Time stamp of 5 seconds is provided on the x-axis of Figures 2 and 3. 

 

 

 
 

Figure 2. Kernel call intensity graph post optimization 

 

 

 
 

Figure 3. Scheduling intensity post optimization 
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Figure 4 shows the CPU load trace view after implementation of all the optimization techniques. 

The main component of this view is scheduling trace, showing fragments of actors displayed as color-coded 

rectangles. This is the trace view after implementing all the optimization techniques. It can be observed that 

display task is being executed at different time intervals. Self-supervision task is also consistent as it is one of 

the most important features of the relay. 

The CPU load graph taken after implementing all the discussed optimization techniques is depicted 

in Figure 5. All the functions or tasks can be seen which can be differentiated using the legend provided on 

the right side of the window. Time stamp of 5 seconds is provided on the x-axis and the CPU load (y-axis) at 

particular instants. It can be observed for each instant of time, what tasks are executed and what percentage 

of load is exerted on the CPU. Display task is implemented by continuously pressing random keys on the 

relay’s LHMI and the LCD should work accordingly. AFL task is executed at all instances as it is the main 

application. 

 

 

 
 

Figure 4. CPU load trace view post optimization 

 

 

 
 

Figure 5. CPU load graph post optimization 
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It can be observed from the Figure 6 that the CPU usage % for NULLTASK is 70.418%. This shows 

that the total load on the CPU when all the tasks and functions were active is around 29%. This is an 

acceptable load on the CPU for an ideal embedded system. The CPU load after implementing each and every 

optimization technique is presented in the Table 1. 

 

 

 
 

Figure 6. CPU lod statistic report after optimization 

 

 

Table 1. Analysis of CPU load results 
Method of optimization CPU load (%) 

Memory optimization 59.37 

Application code optimization 42.37 
Interrupt driven data transfer 29.58 

 

 

The application code is written for a feeder protection relay which is commonly used in substations 

and in the manufacturing and process industry. The relay comprises of both hardware and software. The 

software consists of the application code which describes the functionality of the relay and the various 

components of the relay. The load on the CPU before optimization was found to be around 78.9%. Ideal load 

on the CPU has to be around 30%. Optimization techniques discussed previously are implemented and load 

is brought down to around 29.58%. 

 

 

5. CONCLUSION 

CPU load refers to the amount of processing power being used by CPU at a particular time. The 

application programmed to the digital board is made to carry out all the tasks and functions, thereby applying 

full load on the CPU. For an ideal embedded system, the idle time or null task should occupy about 70% of 

CPU usage. The load on the CPU before any optimization was found to be around 90%. Firstly, memory 

optimization which translates to efficient usage of memory is carried out. After the implementation of this 

step, the load on the CPU reduced to around 60%. The next step is the application code optimization which 

comprises of removal of duplicate functions, nil functions and any other redundant code. After optimizing the 

application code, the load on the CPU reduced to 43%. The load on the CPU is found to be around 29% after 

the implementation of interrupt driven data transfer. The CPU load has decreased from 90% to almost 30%. 

This ensures higher lifespan, reliability, and better system performance and lower power consumption.  
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