
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 14, No. 1, March 2025, pp. 79~88

ISSN: 2089-4864, DOI: 10.11591/ijres.v14.i1.pp79-88  79

Journal homepage: http://ijres.iaescore.com

Central processing unit load reduction through application code

optimization and memory management

Sowmya Kandiga Bhadrayya, Vishwas Bangalore Ravishankar

Department of Electronics and Communications, R V College of Engineering, Bengaluru, India

Article Info ABSTRACT

Article history:

Received Jun 10, 2024

Revised Sep 22, 2024

Accepted Sep 28, 2024

 Central processing unit (CPU) loading refers to the amount of processing

power a CPU uses to execute a given set of commands or perform an exact

task. Higher CPU load can lead to slower, sluggish performance, reduced

lifespan, and reduced system stability. Using the CPU Load trace results, the

performance bottlenecks can be identified and suitable methods can be

adopted to reduce the load on the CPU. For an ideal embedded system, the

CPU should be in idle state for around 70% of CPU usage time. In this

paper, three types of optimization techniques are implemented, which

include application code optimization, memory management, and

implementing interrupt-driven data transfer. Application code can be

optimized by getting rid of redundant code, duplicate functions and function

inlining, function cloning which reduces the size of the code with increase in

reusability. By moving the data, variables to data tightly coupled memory

(DTCM) and instructions, functions to instruction tightly coupled memory

(ITCM), the speed of the CPU increases which reduces the load on CPU.

The conventional polling method which increases the CPU load can be

reduced by implementing the same in interrupt-driven data transfer. The load

on the CPU has reduced from 89.53% to 29.58%.

Keywords:

CPU profiling

Data tightly coupled memory

Embedded trace microcell

Instruction tightly coupled

memory

Tightly coupled memory

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sowmya Kandiga Bhadrayya

Department of Electronics and Communications, R V College of Engineering

Bengaluru, India

Email: sowmyakb@rvce.edu.in

1. INTRODUCTION

The central processing unit (CPU) is the major component of a computer system conscientious for

executing instructions and doing calculations. The fetched instructions of CPU from memory, decodes it, and

executes it to perform the tasks required by the software running on the system. The CPU is typically made

up of two main components: the control unit (CU) and the arithmetic logic unit (ALU). The CU associates

the flow of data between the CPU and other components, while the ALU performs mathematical and logical

operations. Modern CPUs can have several cores, permiting them to invoke multiple instructions

concurrently, and may include characteristics such as cache memory, virtualization support, and hardware

acceleration for specific tasks. In embedded systems, the CPU is the primary component responsible for

executing instructions and controlling the behavior of the system. Embedded CPUs are typically designed to

meet specific requirements such as low power consumption, small size, and high performance. Embedded

CPUs come in a variety of architectures and instruction sets. They are often integrated with other system

components such as memory, input/output interfaces, and sensors to form a complete system. Embedded

systems often have strict performance and power requirements, so optimizing the CPU’s usage is critical to

ensure the system runs efficiently.

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 79-88

80

Application code in embedded systems refers to the software program that runs on an embedded

system, which is a computer system that is designed for a specific task or application. The application code is

written for a feeder protective relay which specifies the functionality of the relay. A feeder protective relay is

a type of protective relay used to protect electrical power systems against faults and other abnormal

conditions in electrical feeders. Feeder protective relays monitor the electrical parameters of the feeder, such

as voltage, current, frequency, and power, and detect any abnormal changes in these parameters. The primary

function of a feeder protective relay is to detect faults in the feeder and isolate the faulty section to prevent

further damage to the system. When a fault occurs, the protective relay quickly sends a signal to the breaker

to trip, thereby disconnecting the faulty section from the rest of the system.

CPU profiling is a form of dynamic program analysis that measures, for example, the space

(memory) or time complexity of a program, the usage of particular instructions, or the frequency and duration

of function calls. Profiling is a technique that identifies sections of code that consume large proportions of the

total execution time [1]-[3]. It is usually more productive to focus optimization efforts on code segments that

are executed very frequently, or that take a significant proportion of total execution time than to optimize

rarely used functions or code that takes only a small proportion of total execution time. CPU Profiler shows

what functions consume what percent of CPU time [4]-[6]. This data provides better information on how the

utilization is executed, and how exactly assets are allocated. Once the analysis is finished, the profiler

visualizes the output data in the reports [7], [8]. The primary objective of CPU profiling is to identify

performance congestion in an application’s code that are causing the application to use more CPU resources

than necessary [9]. CPU profiling can be used to achieve a variety of specific objectives, such as:

i) identifying the functions or methods that are consuming the most CPU time, ii) detecting CPU-intensive

loops or algorithms, iii) finding functions or methods that are called too frequently, iv) analysing CPU usage

across different threads or processes, and v) comparing the performance of different versions of an

application or different hardware platforms.

In embedded systems, CPU loading refers to the amount of processing being performed by the CPU

at a given time, just like in any other computing system [10]. However, in embedded systems, CPU loading is

critical because of the limited processing power and resources available. High CPU loading in embedded

systems can cause performance issues, such as slower response times, system instability, and increased

power consumption. In some cases, it can even lead to system failure or crashes. Managing CPU loading in

embedded systems is essential to ensure optimal system performance and stability [11]–[13]. This can be

done by designing the system to have a sufficient processing power to handle the required tasks [14],

optimizing the software to minimize CPU usage [15], [16], and implementing real time operating system

(RTOS) that can efficiently manage CPU resources. RTOS provides scheduling and prioritization

mechanisms [17] that ensure that the most critical tasks are executed first and that the CPU resources are

efficiently used. This helps to avoid overloading the CPU and ensures that the system can handle its intended

workload. In addition to RTOS, other strategies for managing CPU loading in embedded systems include

using hardware accelerators and offloading processing to other devices or systems, such as cloud-based

servers or edge devices. These approaches can help to reduce the processing workload on the CPU and

improve system performance and efficiency.

2. METHOD

The methodology is as shown in Figure 1. CPU loading procedure is performed to obtain the load on

the CPU. The CPU loading procedure consists of many activities that need to be carried out simultaneously,

which ensures maximum load is applied. The load results are analysed using a tool called Tracealyzer. The

performance bottlenecks or tasks and functions which are utilising the processing power of the CPU is noted

and suitable measures to reduce the load are taken.

The load on the CPU will be maximum when different tasks are being executed simultaneously.

Before releasing the relay to the market, the load on the CPU should be monitored in order to ensure longer

lifespan, reliability and better performance of the device. To ensure the device can perform as per

expectations even in extreme working conditions, CPU loading procedure is carried out where all the

protection functions, measurement functions and other tasks are being executed properly. In order to reduce

the CPU load, memory should be utilized efficiently. Instead of storing all the instructions, data and variables

in one single memory component, they can be allocated different memory segments such as instruction

tightly coupled memory (ITCM), data tightly coupled memory (DTCM) and on chip random access memory

(OCRAM). As tightly coupled memory (TCM) is placed near the core, the execution time is reduced as well

as the latency, which reduces the load on the CPU. Application code can be optimized by removing the

redundant code, unused code, duplicate functions and one-line functions. Some lines of code which are used

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Central processing unit load reduction through application code … (Sowmya Kandiga Bhadrayya)

81

only for testing purpose are also removed. Some lines of code are used for simulation purpose, which are also

retracted. This has no effect on the actual application functionality.

Figure 1. CPU loading methodology

This increases the readability, reusability and efficiency of the code. The size of the application code

reduces which also reduces the load on the CPU. The final method which is used is implementation of

Interrupt based data transfer, which plays a major role in CPU load reduction. The conventional polling

method is replaced by the interrupt-based data transfer. A significant amount of CPU load can be reduced by

incorporating this method. After the optimization measures are taken, the CPU loading procedure is

performed once again and the results are compared with the results taken in the beginning. The CPU loading

procedure can be performed after each optimization method to compare the results and also check if the

method implemented has had any effect on the CPU load.

3. DESIGN AND IMPLEMENTATION

The application code is written for a feeder protective relay. The relay has a number of protection

functions, measurement functions, and supervision function. It also has keypad, liquid crystal display (LCD)

display, light emitting diode (LEDs) in the local human machine interface. In order to apply maximum load,

all the tasks and functions of the relay should be active and during this period, the CPU loading procedure

should be conducted.

3.1. Central processing unit loading procedure

Application code in embedded systems refers to the software program that runs on an embedded

system, which is a computer system that is designed for a specific task or application. The application code is

written for a feeder protective relay which specifies the functionality of the relay. A feeder protective relay is

a type of protective relay used to protect electrical power systems against faults and other abnormal

conditions in electrical feeders. Feeder protective relays monitor the electrical parameters of the feeder, such

as voltage, current, frequency, and power, and detect any abnormal changes in these parameters. The primary

function of a feeder protective relay is to detect faults in the feeder and isolate the faulty section to prevent

further damage to the system. When a fault occurs, the protective relay quickly sends a signal to the breaker

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 79-88

82

to trip, thereby disconnecting the faulty section from the rest of the system. This helps to prevent damage to

the equipment and reduces the risk of injury or death to personnel. The CPU load is observed for a period of

5 seconds.

The relay comes with a number of tasks and functions. To ensure maximum load on the CPU, all

these tasks and functions should be enabled at the same time. The various tasks and functions are discussed

below:

− Local human machine interface (LHMI): the LHMI is used for setting, monitoring and controlling. The

LHMI of the relay contains following elements: i) LED indicators/signals, ii) LCD display/demonstrate,

and iii) navigation buttons. These navigation keys are used to navigate the LHMI menu, selecting

characters and for configuration purposes. During the testing phase the navigation buttons/keys should be

used randomly to ensure maximum load is exerted on the CPU, the LEDs should operate properly, the

key press speed may be less than one second, ensure LCD is working properly and there is no delay.

− Supervision: the intelligent electronic device (IED) is provided with an extensive self-supervision system

which continuously supervises the software and the hardware. It handles the runtime fault simulations and

informs the user about a fault through the LHMI. At the time of testing, supervision should be running at

all times.

− Fault record: the relay keeps track of analog points for the last 20 trip events in non-volatile memory. The

trip signal triggers the fault recording of a protection function. Every fault record provides the root mean

square (RMS) current values of basic components for all three phases and the neutral current at 20

different times along the trip event. During testing, for every fault, a trip event should occur which can be

validated by reading the fault records using the front port.

− Events: these events include trip circuit supervision, protection start, protection trip, reset, breaker open,

breaker close, remote trip, internal relay fault (IRF), blocking, and memory read fail. To store 100 such

events, the relay incorporates a non-volatile memory. The event log includes the event along with time

and date of occurrence. These event logs are stored sequentially, the most recent being the first and so on.

− Modbus RS485: during the testing phase, both the front port and the rear port should be used

simultaneously, the polling rate should be set to 100 ms, i.e., the polling should occur at every 100 ms.

The data, which is communicated in the form of packets, should not be lost in the process. Modbus

RS485 can be used to read measurement data, read and write configuration, read, and write settings.

− Application function logic (AFL): the relay has around 27 AFLs including measurement functions. Some

of these include protection functions such as undercurrent protection, overcurrent protection, thermal

overload protection, phase discontinuity, inrush current detection, reclosing and measurement functions.

During the testing phase, maximum number of these AFLs should be active. Current injection and

communication to and from the relay should be conducted during the testing phase.

− Power failure: preconfigured functionality facilitates easy and fast commissioning of the relay. The relay

has a universal power supply 24-265 V AC/DC. The relay has configurable binary inputs/outputs which

can be configured using local HMI or communication interface. During the testing phase, power failure

should be detected, during the event of power failure, no data should be lost.

3.2. Optimization techniques

Optimization of the load on the CPU is the main goal. There are many optimization techniques

available. Techniques such as task scheduling, code optimization, and power management can be used to

minimize CPU usage and extend battery life. Additionally, hardware acceleration and specialized

coprocessors can be used to offload specific tasks from the CPU and improve overall system performance.

The optimization techniques used are discussed below.

3.2.1. Memory optimization

Memory optimization plays a critical role in reducing CPU load by reducing the amount of time the

CPU spends accessing memory. When memory access is slow, the CPU must wait for the memory to provide

data, which can result in wasted processing cycles and increased CPU load. One way to optimize memory

access is by reducing the number of memory read and write operations. This can be achieved by optimizing

algorithms and data structures to use memory more efficiently, reducing the number of times data is copied

between different parts of the system. Another way to optimize memory access is by using cache memory.

By using cache memory, the CPU can access frequently used data more quickly, reducing the number of

memory read and write operations and improving system performance. Memory fragmentation can also

increase CPU load by forcing the CPU to spend more time searching for available memory. To reduce

memory fragmentation, developers can use memory allocation algorithms that reduce the number of small

gaps in memory and improve memory utilization. The memory optimization implemented in this work

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Central processing unit load reduction through application code … (Sowmya Kandiga Bhadrayya)

83

utilizes TCM, ITCM, and DTCM. By using ITCM, DTCM, and OCRAM, system performance can be

improved [18], and CPU load can be reduced by reducing the number of memory accesses required. By

partitioning the data and code by storing different components in different memory components, the load on

the CPU can be reduced thereby increasing the speed.

TCM facilitates low-latency memory approach that the core can utilize with the predictability of

access time which is a feature of caches [19]. While making use of external cacheable memory, an appealed

instruction or piece of data might be in the cache, giving a fast access, or might not be in the cache, requiring

a delayed access to external memory. When using TCM, the access time is accordant [20]. The TCM is used

to take action on time-critical routines, such as interrupt handling routines or real-time tasks where the

uncertainty of a cache is objectionable. Usually, TCM accesses are set up to collect or send data in a single

cycle [21]. The processor can access time-critical procedures, such as exception handlers, immediately by

storing them in the TCM instead of waiting for an initial code retrieve from external memory.

DTCM is a type of memory architecture used in microcontrollers and processors. DTCM is a fast,

low-latency memory that is tightly integrated with the processor or microcontroller, allowing it to execute

instructions and access data quickly and efficiently [22]–[25]. DTCM is typically used for storing frequently

accessed data, such as variables and stack data, that are critical for the performance of the processor. DTCM

is usually implemented as a small amount of on-chip memory that is physically located close to the processor

or microcontroller.

ITCM is a type of memory that is closely integrated with a processor or microcontroller, allowing

the processor to execute instructions at a higher speed [26] and with lower latency than if the instructions

were stored in external memory. ITCM is typically used in embedded systems, where speed and performance

are critical factors. By storing frequently used instructions in ITCM, the processor can quickly access them,

reducing the overall execution time of the program.

3.2.2. Application code optimization

Application code can be optimized using a number of techniques which include elimination of

redundant code [27], one-line functions, duplicate functions [28]. Function cloning and reduction of function

call chain can also be implemented to reduce the load on the CPU. Very often, different functions may be

declared which perform the same task. Identifying and eliminating such functions can reduce the CPU

load [29], make the code reusable and reliable. Inline functions are those function whose definitions are small

and be substituted at the place where its function call is happened [30]. Function substitution is totally

compiler choice. Another technique used is dynamic memory management which is a process that allocates

memory for variables and data structures at runtime when the program requests it [31]. This provides chance

for adaptability and capacity, as the magnitude and position of memory blocks can be varied as per the logic

of program and size of a data. It also enables the creation and manipulation of complex and dynamic data

structures, such as linked lists, trees, graphs, and hash tables. Furthermore, dynamic memory allocation

allows the program to adapt to different environments and user inputs, as the memory usage can be adjusted

at runtime. This can save memory space and the readability and reusability of code increases.

3.2.3. Interrupt driven data transfer

An interrupt is something that alerts the CPU to take immediate action. To put it a different way, we

can say that this device alerts the CPU to an issue that exists. The CPU typically suspends its current job and

begins running the relevant interrupt handler when an interrupt occurs. When this task is finished, the

previously halted task is resumed. The device notifies the CPU that it requires attention when there is an

interrupt. It is not a protocol, but a hardware mechanism. The Interrupt handler makes the system get

functioned. Functionality works any time. In case of an interrupt, if the device is in need of assistance, then

that is indicated by the interrupt-request line.

The steps involved in the interrupt driven data transfer scheme are as follows:

− Transferring data efficiently utilizes the processor time.

− In this scheme, the processor starts off the I/O device for transfer of data.

− After the device is initiated, the processor will continue to execute the instructions in the program.

− At the nth step of an instruction, the processor checks for a right interrupt signal.

− If there is no interrupt signal, then the processor continues to execute the instructions.

− If the I/O device is ready, it interrupts the processor.

− The processor completes the execution of the current instruction and saves the processor status in the

stack.

− The processor calls function named interrupt service routine.

− The final procedure of ISR is the processor status gets retrieved from the stack and the main program gets

executed.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 79-88

84

4. RESULTS AND DISCUSSION

The optimization techniques, including memory management, application code optimization, and

incorporating interrupt-driven data transfer, are used to conduct the CPU loading procedure. The results are

shown in Figure 2, where the y-axis represents the number of kernel service calls made by the actor and

service referencing any object. The kernel call intensity graph, post optimization as shown in Figure 2,

displays the number of kernel service calls (y-axis) over time (x-axis). It allows for the identification of hot

spots with a high volume of kernel service calls made.

Figure 3 shows the Scheduling intensity view which displays the amount of context switches (y-axis)

over time (x-axis). By default, it shows the entire trace divided into 100 intervals. For each time interval, a

bar is drawn for each actor beginning or resuming execution at least once in that interval. The height of the

bars corresponds to the number of times that actor has begun or resumed execution in the given interval, i.e.,

the number of fragments of the actor. Time stamp of 5 seconds is provided on the x-axis of Figures 2 and 3.

Figure 2. Kernel call intensity graph post optimization

Figure 3. Scheduling intensity post optimization

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Central processing unit load reduction through application code … (Sowmya Kandiga Bhadrayya)

85

Figure 4 shows the CPU load trace view after implementation of all the optimization techniques.

The main component of this view is scheduling trace, showing fragments of actors displayed as color-coded

rectangles. This is the trace view after implementing all the optimization techniques. It can be observed that

display task is being executed at different time intervals. Self-supervision task is also consistent as it is one of

the most important features of the relay.

The CPU load graph taken after implementing all the discussed optimization techniques is depicted

in Figure 5. All the functions or tasks can be seen which can be differentiated using the legend provided on

the right side of the window. Time stamp of 5 seconds is provided on the x-axis and the CPU load (y-axis) at

particular instants. It can be observed for each instant of time, what tasks are executed and what percentage

of load is exerted on the CPU. Display task is implemented by continuously pressing random keys on the

relay’s LHMI and the LCD should work accordingly. AFL task is executed at all instances as it is the main

application.

Figure 4. CPU load trace view post optimization

Figure 5. CPU load graph post optimization

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 79-88

86

It can be observed from the Figure 6 that the CPU usage % for NULLTASK is 70.418%. This shows

that the total load on the CPU when all the tasks and functions were active is around 29%. This is an

acceptable load on the CPU for an ideal embedded system. The CPU load after implementing each and every

optimization technique is presented in the Table 1.

Figure 6. CPU lod statistic report after optimization

Table 1. Analysis of CPU load results
Method of optimization CPU load (%)

Memory optimization 59.37

Application code optimization 42.37
Interrupt driven data transfer 29.58

The application code is written for a feeder protection relay which is commonly used in substations

and in the manufacturing and process industry. The relay comprises of both hardware and software. The

software consists of the application code which describes the functionality of the relay and the various

components of the relay. The load on the CPU before optimization was found to be around 78.9%. Ideal load

on the CPU has to be around 30%. Optimization techniques discussed previously are implemented and load

is brought down to around 29.58%.

5. CONCLUSION

CPU load refers to the amount of processing power being used by CPU at a particular time. The

application programmed to the digital board is made to carry out all the tasks and functions, thereby applying

full load on the CPU. For an ideal embedded system, the idle time or null task should occupy about 70% of

CPU usage. The load on the CPU before any optimization was found to be around 90%. Firstly, memory

optimization which translates to efficient usage of memory is carried out. After the implementation of this

step, the load on the CPU reduced to around 60%. The next step is the application code optimization which

comprises of removal of duplicate functions, nil functions and any other redundant code. After optimizing the

application code, the load on the CPU reduced to 43%. The load on the CPU is found to be around 29% after

the implementation of interrupt driven data transfer. The CPU load has decreased from 90% to almost 30%.

This ensures higher lifespan, reliability, and better system performance and lower power consumption.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Central processing unit load reduction through application code … (Sowmya Kandiga Bhadrayya)

87

REFERENCES
[1] R. Elnaggar, K. Basu, K. Chakrabarty, and R. Karri, “Runtime malware detection using embedded trace buffers,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 1, pp. 35–48, Jan. 2022, doi:

10.1109/TCAD.2021.3052856.

[2] A. K. N. Ramachandra and A. K. Kannur, “Analysis of CPU utilisation and stack consumption of a multimedia embedded
system,” in Proceedings - 4th IEEE International Symposium on Electronic Design, Test and Applications, DELTA 2008, IEEE,

Jan. 2008, pp. 89–94. doi: 10.1109/DELTA.2008.38.

[3] K. Olukotun, T. Mudge, and R. Brown, “Performance optimization of pipelined primary caches,” in Proceedings of the Ninth
Annual International Symposium on Computer Architecture, IEEE, 1993, pp. 181–190. doi: 10.1145/146628.139726.

[4] K. B. Bey, F. Benhammadi, A. Mokhtari, and Z. Guessoum, “CPU load prediction model for distributed computing,” in 8th

International Symposium on Parallel and Distributed Computing, ISPDC 2009, IEEE, Jun. 2009, pp. 39–45, doi:
10.1109/ISPDC.2009.8.

[5] S. Lee, S. Lee, and D. Shin, “Design and implementation of a configurable embedded trace macrocell for ARM Cortex-M3

processor,” IEEE Transactions on Consumer Electronics, 2011.
[6] C. Kim, H. Lee, and J. Kim, “Design and implementation of a high-performance embedded trace macrocell for a multi-core

processor,” IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 2017.

[7] J. Lin, Y. Chen, and S. Wang, “A power-efficient embedded trace macrocell for ARM processors,” IEEE Transactions on
Circuits and Systems II: Express Briefs, 2013.

[8] Y. Li, Y. Liu, and H. Li, “Design of an efficient embedded trace macrocell for ARM processors,” IEEE Transactions on Very

Large - Scale Integration (VLSI) Systems, 2016.
[9] K. B. Sowmya, S. Gomes, and V. R. Tadiparthi, “Design of UART module using ASMD technique,” in Proceedings of the 5th

International Conference on Communication and Electronics Systems, ICCES 2020, 2020, pp. 176–181, doi:
10.1109/ICCES48766.2020.09138098.

[10] F. Tao, C. Sun, and J. Wu, “Energy-efficient CPU load balancing for virtualized cloud environments,” IEEE Transactions on

Cloud Computing, 2015.
[11] L. Yang, I. Foster, and J. M. Schopf, “Homeostatic and tendency-based CPU load predictions,” in Proceedings - International

Parallel and Distributed Processing Symposium, IPDPS 2003, 2003, p. 9, doi: 10.1109/IPDPS.2003.1213129.

[12] J. Liang, K. Nahrstedt, and Y. Zhou, “Adaptive multi-resource prediction in distributed resource sharing environment,” 2004
IEEE International Symposium on Cluster Computing and the Grid, CCGrid 2004, pp. 293–300, 2004, doi:

10.1109/ccgrid.2004.1336580.

[13] Y. Zhang, W. Sun, and Y. Inoguchi, “CPU load predictions on the computational grid,” IEICE Transactions on Information and
Systems, vol. E90-D, no. 1, pp. 40–47, 2007, doi: 10.1093/ietisy/e90-1.1.40.

[14] R. Kaur, N. Kumar, and V. Kumar, “Design of a high-speed on-chip embedded trace macrocell for ARM processors,” IEEE

Transactions on Very Large - Scale Integration (VLSI) Systems, 2015.
[15] J. Liang, J. Cao, J. Wang, and Y. Xu, “Long-term CPU load prediction,” in Proceedings - IEEE 9th International Conference on

Dependable, Autonomic and Secure Computing, DASC 2011, IEEE, Dec. 2011, pp. 23–26, doi: 10.1109/DASC.2011.28.

[16] J. Kim and T. Kim, “Memory access optimization through combined code scheduling, memory allocation, and array binding in
embedded system design,” in Proceedings - Design Automation Conference, pp. 105–110, 2005, doi: 10.1145/1065579.1065611.

[17] H. Zhou, J. Song, and X. Pu, “The design of a novel modbus TCP/RTU gateway for high reliable communication,” in

Proceedings - 24th IEEE International Conference on High Performance Computing and Communications, 8th IEEE
International Conference on Data Science and Systems, 20th IEEE International Conference on Smart City and 8th IEEE

International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application,

HPCC/DSS/SmartCity/DependSys 2022, IEEE, Dec. 2022, pp. 2039–2042, doi: 10.1109/HPCC-DSS-SmartCity-
DependSys57074.2022.00303.

[18] K. H. Salem, Y. Kieffer, and S. Mancini, “Efficient algorithms for memory management in embedded vision systems,” in 2016

11th IEEE International Symposium on Industrial Embedded Systems, SIES 2016 - Proceedings, IEEE, May 2016, pp. 1–6, doi:
10.1109/SIES.2016.7509426.

[19] T. Kim and J. Kim, “Integration of code scheduling, memory allocation, and array binding for memory-access optimization,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 1, pp. 142–151, Jan. 2007, doi:
10.1109/TCAD.2006.882639.

[20] R. S. Lin, Y. C. Wei, and R. X. Zhang, “Reduction of CPU computation load based on OpenCL for speech codec,” 2018 IEEE

International Conference on Consumer Electronics-Taiwan, ICCE-TW 2018, pp. 1–2, 2018, doi: 10.1109/ICCE-
China.2018.8448515.

[21] I. Enesi, E. Zanaj, S. Kokonozi, and B. Zanaj, “Performance evaluation of statefull load balancing in predicted time intervals and

CPU load,” in 17th IEEE International Conference on Smart Technologies, EUROCON 2017 - Conference Proceedings, IEEE,
Jul. 2017, pp. 89–94, doi: 10.1109/EUROCON.2017.8011083.

[22] M. Yang, H. Wang, and J. Zhao, “Research on load balancing algorithm based on the unused rate of the CPU and memory,” in

Proceedings - 5th International Conference on Instrumentation and Measurement, Computer, Communication, and Control,
IMCCC 2015, IEEE, Sep. 2016, pp. 542–545, doi: 10.1109/IMCCC.2015.120.

[23] N. H. Yatagiri and K. B. Sowmya, “Low power self-controlled pre-charge free content addressable memory,” in Proceedings of

the 3rd International Conference on Electronics and Communication and Aerospace Technology, ICECA 2019, IEEE, Jun. 2019,
pp. 1225–1229, doi: 10.1109/ICECA.2019.8821852.

[24] Z. Ning and F. Zhang, “Hardware-assisted transparent tracing and debugging on ARM,” IEEE Transactions on Information

Forensics and Security, vol. 14, no. 6, pp. 1595–1609, Jun. 2019, doi: 10.1109/TIFS.2018.2883027.
[25] G. Paroux, B. Toursel, R. Olejnik, and V. Felea, “A Java CPU calibration tool for load balancing in distributed applications,” in

Proceedings - ISPDC 2004: Third International Symposium on Parallel and Distributed Computing/HeteroPar ’04: Third International

Workshop on Algorithms, Models and Tools for Parallel Computing on Hete, IEEE, 2004, pp. 155–159, doi: 10.1109/ISPDC.2004.2.
[26] M. W. Bhat, R. Kaartik, and K. B. Sowmya, “Design and implementation of power efficient clock gated dual-port SRAM,”

Journal of Physics: Conference Series, vol. 2325, no. 1, Aug. 2022, doi: 10.1088/1742-6596/2325/1/012034.

[27] A. Bouchi, R. Olejnik, and B. Toursel, “A new estimation method for distributed Java object activity,” in Proceedings -
International Parallel and Distributed Processing Symposium, IPDPS 2002, 2002, p. 116, doi: 10.1109/IPDPS.2002.1016500.

[28] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating android applications’ CPU energy usage via bytecode profiling,”

in 2012 1st International Workshop on Green and Sustainable Software, GREENS 2012 - Proceedings, 2012, pp. 1–7, doi:

10.1109/GREENS.2012.6224263.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 79-88

88

[29] K. B. Sowmya and A. Thejaswini, “Systematising troubleshooting of disputes in network,” International Journal of

Reconfigurable and Embedded Systems, vol. 10, no. 1, pp. 32–36, Mar. 2021, doi: 10.11591/ijres.v10.i1.pp32-36.
[30] J. G. Tong, “Software profiling for an FPGA-based CPU core,” University of Windsor, 2007.

[31] I. Baldini, S. J. Fink, and E. Altman, “Predicting GPU performance from CPU runs using machine learning,” in Proceedings -

Symposium on Computer Architecture and High Performance Computing, 2014, pp. 254–261, doi: 10.1109/SBAC-PAD.2014.30.

BIOGRAPHIES OF AUTHORS

Dr. Sowmya Kandiga Bhadrayya received the B.E. and M. Tech. degree in

electronics and communication engineering from Visvesvaraya Technological University,

Belagavi, India in 2006 and 2012, respectively, and the Ph.D. degree in VLSI design and

signal processing from Visvesvaraya Technological University, Belagavi, India in 2021. She is

currently a full time Assistant Professor of electronics and communication engineering with

the R V College of Engineering, Bengaluru, India. In the past, she was associated with PA

College of Engineering, Mangalore, India. She has been working on VLSI, HDL, system

Verilog, physical design, and system on chip, since 2006. She has contributed many national

and international journals, book chapters to various reputed journals and conference. She can

be contacted at email: sowmyakb@rvce.edu.in.

Vishwas Bangalore Ravishankar received his bachelor’s degree in electrical and

electronics engineering from University Visvesvaraya College of Engineering. He is pursuing

his masters in VLSI design and embedded systems from R V College of Engineering. He is

currently working as an R&D Intern in ABB Innovation Center, Bengaluru. He can be

contacted at email: vishwasbr17@gmail.com.

https://orcid.org/0000-0002-2397-9317
https://scholar.google.com/citations?hl=en&user=biXFkycAAAAJ
https://orcid.org/0009-0007-1334-2869

