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 In many digital systems like high-performance computing and digital signal 

processing, parallel prefix adders are vital. Field programmable gate array 

(FPGA) technology is a well-known platform for developing parallel prefix 

adders. FPGA performance depends on bit size of the adder, the adder 

structure chosen, and the implementation specifications. An examination of 

the performance and area of parallel prefix adders developed using FPGA 

technology is presented in this research work. We look into how different 

design factors, such as the adder structure and the number of input bits, 

affect the performance and area of parallel prefix adders. The different 

adders used are Sklansky, Kogge-Stone, Brent-Kung, Han-Carlson, and 

Ladner-Fisher adders. These adders are implemented using Verilog 

hardware description language (Verilog HDL) on FPGA boards. The 

performance is significantly influenced by choice of adder structure and 

design factors optimized for area or performance. The suggestions for 

choosing the best adder structure and design factors for the best performance 

or optimized area are obtained from the synthesis results. Ladner-Fisher 

adders is best parallel prefix adder with respect area and performance 

compared with the Sklansky, Kogge-Stone, Brent-Kung and Han-Carlson. 

Our synthesis can be used as a guide for designers looking to construct 

specific hardware on FPGA. 

Keywords: 

Adder structure 

Area 

Field programmable gate array 

Performance (speed) 

Power 

Prefix adders 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Masood Ahmad Mahammad 

Department of Electrical, Electronics, and Communication Engineering 

GITAM Deemed to be University, Hyderabad Campus 

Hyderabad, Telangana, India 

Email: mmahamma@gitam.edu, masoodahmad80@gmail.com 

 

 

1. INTRODUCTION 

Parallel prefix adders are a type of adder that can execute logarithmic add on multiple operands. In 

high-speed arithmetic circuits, parallel prefix adders are commonly utilized. The primary reason is that 

parallel prefix adders can handle big data sets rapidly and efficiently. 

A parallel prefix adder comprises a series of complete adders connected in a tree-like layout. The 

bottom row of the tree receives the input operands, and the outputs of each level are supplied as inputs to the 

following level. Each level computes a partial sum and a carry bit, which are propagated to the next level 

until the final total and carry bits are computed at the tree’s top. The Sklansky, Kogge-Stone, Brent-Kung, 

Han-Carlson, and Ladner-Fisher algorithms can be used to build parallel prefix adders. Each technique 

employs a unique approach to optimizing the carry propagation network and reducing the number of full 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 109-116 

110 

adders required. The high area and delay of exact parallel prefix adders restrict their performance in high-

speed applications. As a result, parallel prefix adders are critical components in high-speed arithmetic 

circuits. They are useful for applications such as digital signal processing, multimedia, encryption, and 

scientific computing because they allow efficient and quick addition of multiple operands. 

In 1960, Robert E. Sklansky invented the Sklansky adder, a parallel prefix adder [1]. It is a very 

efficient and expandable adder topology that works well with parallel technologies such as field 

programmable gate array (FPGA). The Sklansky adder groups input bits and process them in a series of 

steps, each performing a partial addition. The basic structure of the Sklansky adder comprises several stages, 

each with its carry lookahead logic. Each group created from the input bits comprises a power of two bits. 

Eight bits can be split into two groups of four bits each if the adder accepts eight bits as input. The carry 

lookahead circuitry calculates the carry bits for each group during the first stage’s independent processing of 

each group. The partial sums for each group are combined with the carry bits from the previous stage, and 

processing is repeated. The process is repeated until all partial sums have been added to determine the total 

amount. 

Scalability is an advantage of the Sklansky adder. As long as the bit count is a power of two, it can 

accept inputs of any size. Sklansky adder with bit count is a power of two, making it a popular option for 

hardware implementations that use parallelism to achieve high performance, like FPGAs. The Sklansky 

adder carry lookahead logic is used at every stage. Therefore, the Sklansky adder has low latency. The 

Sklansky adder, however, has a few drawbacks. One drawback is that it necessitates a lot of carry lookahead 

logic, which might make the adder bigger and use more power. The sequential treatment of each group of bits 

also diminishes the adder’s parallelism. The Sklansky adder, in conclusion, is an extremely efficient and 

scalable adder structure that is perfect for hardware implementation in parallel. It uses carry lookahead logic 

and partial addition steps to produce minimal latency and great performance. Conversely, employing carry 

lookahead logic and sequential processing may restrict parallelism, increase system size, and use more 

power. Figure 1 shows the 16-bit Sklansky adder schematic diagram. 

 

 

 
 

Figure 1. 16-bit Sklansky adder schematic diagram 

 

 

The parallel prefix adder, the Kogge-Stone adder, was first introduced in 1973 by Kogge and Stone 

[2]. This adder topology is effective, scalable, and functions well with similar technology like FPGAs. The 

Kogge-Stone adder’s basic structure comprises several stages, each performing a partial addition on the input 

bits. Each stage is organized as a binary tree with a unique lookahead mechanism. The input bits are split into 

pairs in the first step, and each pair is added to provide a partial sum and carry output. In the second stage, 

the first stage’s partial sums are connected in pairs and added once more to produce another set of partial 

sums and carry outputs. This process is repeated until the output and final result are acquired by adding all 

component sums. One advantage of the Kogge-Stone adder is its high level of parallelism. The parallel 

processing of numerous bits at each stage allows for rapidly adding large quantities. Additionally, each 

stage’s binary tree structure and carry lookahead logic offer minimal latency and excellent performance. 

However, the Kogge-Stone adder has a lot of limitations. It has the disadvantage of requiring a lot of carry 

lookahead logic, which could increase the size and power consumption of the adder. Implementing the binary 

tree structure in hardware could also be difficult. In conclusion, the Kogge-Stone adder is a scalable adder 

structure that is extremely effective and well-suited for implementation on parallel hardware. Although it 
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enables fast performance and little delay, the adder’s use of a binary tree structure with carry lookahead logic 

increases its size and power usage. 

Brent and Kung [3] invented the Brent-Kung adder in 1982, a parallel prefix adder. It is extremely 

effective and scalable for hardware implementations, like in FPGAs. The input bits are initially split into 

smaller groups for the Brent-Kung adder’s recursive divide-and-conquer strategy, which combines the input 

bits gradually to get the final total and carry output. A high level of parallelism is possible with the divide-

and-conquer strategy since each stage can process several bits concurrently. Each level of the Brent-Kung 

adder uses half as many bits as before. The input bits are split into pairs and added in the first stage to create 

a collection of partial sums and carry outputs. The first stage’s partial sums are joined in pairs and added 

again in the second stage to create another set of partial sums and carry outputs. Each subsequent stage of this 

process is repeated until the final sum and output are produced by adding all the component sums. 

The effectiveness and scalability of the Brent-Kung adder are two benefits. High levels of 

parallelism are possible using the divide-and-conquer strategy, enabling quick addition of big numbers. The 

adder’s structure is also very regular, which makes it simple to construct in hardware. The Brent-Kung adder 

has some drawbacks, including the need for extensive wiring to link the multiple stages together. The 

extensive wiring may increase the adder’s size and energy usage, especially for greater quantities of bits. In 

conclusion, the Brent-Kung adder is a parallel prefix adder that is extremely effective, scalable, and ideally 

suited for hardware implementation. Due to the intricacy of the wiring, even though it uses a recursive 

divide-and-conquer strategy to achieve high levels of parallelism, the adder’s size and power consumption 

may also increase. 

Han and Carlson [4] first presented the Han-Carlson adder, a parallel prefix adder, in 1993. It is 

made effective and scalable for use in hardware implementations like FPGAs. In the Han-Carlson adder’s 

recursive technique, the input bits are divided into groups and merged in stages to produce the final sum and 

carry output. The recursive approach has a high level of parallelism because each stage can handle many bits 

simultaneously. A sequence of steps makes up the Han-Carlson adder. Each of them uses a certain subset of 

the input bits. The input bits are divided into groups at each level and processed concurrently to produce a 

collection of partial sums and carry outputs. After combining all of the component’s sums to produce the 

final sum and carry output, the separate sums are blended again in the following stage. The effectiveness and 

scalability of the Han-Carlson adder are two advantages. The recursive approach allows for great parallelism 

and rapid addition of large numbers. Furthermore, the structure of the adder is fairly regular, making it 

straightforward to implement in hardware. However, one shortcoming of the Han-Carlson adder is that it 

necessitates extensive wiring to connect the various stages. The extensive wiring can increase the adder’s 

space and power consumption, especially for greater bits. Finally, the Han-Carlson adder is a parallel prefix 

adder that is very effective, scalable, and well-suited for hardware implementation. Although adopting a 

recursive approach allows for high levels of parallelism due to the wiring complexity, it can also increase the 

adder’s size and power consumption. 

In 1960, Ladner and Fischer [5] developed the Ladner-Fischer adder, a parallel prefix adder [6]-

[19]. It is made effective and scalable for use in hardware implementations like FPGAs. The Ladner-Fischer 

adder uses a recursive method: the input bits are split into groups and then sequentially joined to create the 

final sum and carry output. Due to each stage’s ability to process several bits simultaneously, the recursive 

technique provides a high parallelism level. The Ladner-Fischer adder is a series of steps, each employing a 

different subset of the input bits. The input bits are divided into two groups and processed concurrently in 

each stage to produce a set of partial sums and carry outputs. Once all partial sums have been merged to 

generate the final sum and carry output, the different sums are blended again in the following stage. The 

Ladner-Fischer adder has two advantages: efficacy and scalability. The recursive approach allows for great 

parallelism and rapid addition of large numbers. Furthermore, the structure of the adder is fairly regular, 

making it straightforward to implement in hardware. On the other hand, the Ladner-Fischer adder’s capacity 

to generate redundant carry signals may increase the adder’s size and energy usage. Because a lot of wire is 

needed to connect the adder’s various stages, adding more bits can increase the size and power consumption. 

Last, the parallel prefix adder [20]-[25], the Ladner-Fischer adder, is effective, scalable, and well-

suited for hardware implementation. Last, the parallel prefix adder, the Ladner-Fischer adder, is effective, 

scalable, and well-suited for hardware implementation. Because of its recursive method, it can achieve high 

degrees of parallelism, although wiring complexity might result in redundant carry signals, increasing the 

adder’s size and power consumption. Finally, the Ladner-Fischer adder is a parallel prefix adder that is 

efficient, scalable and well-suited for hardware implementation. Because of its recursive method, it can 

achieve high degrees of parallelism, although wiring complexity might result in redundant carry signals, 

increasing the adder’s size and power consumption. Finally, the Ladner-Fischer adder is a parallel prefix 

adder that is efficient, scalable and well-suited for hardware implementation. Because of its recursive 

method, it can achieve high degrees of parallelism, although wiring complexity might result in redundant 

carry signals, increasing the adder’s size and power consumption. 
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2. METHOD 

The Xilinx Vertex 5 device is selected as the target FPGA device for the parallel prefix adder 

implementation. Due to its numerous internal resources and cutting-edge technology, this device is picked. 

The XC5VLX220 has several features, including 65 nm technology. There are six input look-up tables in its 

configurable blocks. These configuration blocks are referred to as slices. Synthesis and implementation are 

done using the Xilinx ISE software. Two runs of the software tools were organised to allow for the proper 

optimization. The synthesis and implementation strategies were designed to optimise for area in the first run, 

and speed in the second. The optimization attempts of the tools were “high” in both circumstances. The 

findings are presented in the results and discussion section. 

 

 

3. RESULTS AND DISCUSSION 

The results are shown in Tables 1 to 4. The terms BK is short form of the Brent-Kung adder, HC is 

short form of the Han-Carlson adder, KS is short form of the Kogge-Stone adder, LF is short form of the 

Ladner-Fischer, and SK is short form of the Sklansky adder are used throughout the table. The area is 

measured in slice lookup tables units, which are programmable logic units in the FPGA. The time difference 

is measured in nanoseconds. Experimental results: Series 1 is a 16-bit adder. Series 2 is a 32-bit adder. Series 

3 is a 64-bit adder. Series 4 is a 128-bit adder. Series 5 is a 256-bit adder. 

 

 

Table 1. Area results (area optimization) 

Bit size 
Prefix adders LUTs used in FPGA 

SK KS BK HCK=1 HCK=2 LF 

16 54 54 65 58 57 61 

32 140 298 124 225 166 140 
64 282 898 322 545 389 317 

128 619 2295 624 1335 934 605 

256 1447 5891 1366 3229 2072 1207 

 

 

Table 2. Area results (performance optimization) 

Bit size 
Prefix adders LUTs used in FPGA 

SK KS BK HCK=1 HCK=2 LF 

16 19 19 19 19 35 18 
32 51 136 34 100 83 52 

64 134 449 72 236 195 141 

128 296 1111 204 614 432 301 
256 649 2584 586 1335 995 652 

 

 

Table 3. Performance results in nano seconds (area optimization) 

Bit size 
Parallel prefix adders 

SK KS BK HCK=1 HCK=2 LF 

16 12.7 12.9 12.9 13.2 10.8 12.2 

32 17.3 17.8 20.3 19.8 15.6 17.1 
64 25.8 30.5 29.3 28.3 34.5 21.5 

128 41.6 57.3 70 67.3 64.7 36.3 

256 74.7 106.7 92.7 105.8 118 69 

 

 

Table 4. Performance results in nano seconds (speed optimization) 

Bit size 
Parallel prefix adders’ type 

SK KS BK HCK=1 HCK=2 LF 

16 10.5 10.5 10.2 11.1 10.8 11 
32 11.8 13.4 17.5 16.2 13.2 11.5 

64 17.3 19 26.6 19.6 16.7 15.4 

128 26.1 29.2 41.8 31.4 28.3 31.3 
256 30.1 42.7 62.2 45.1 36.2 27.3 

 

 

Tables 1 and 2 show the results of the area and speed optimization software, respectively. These 

tables show how the area optimization method produces significantly smaller adders than the speed 

optimization method. Table 1 shows how frequently adder zones match the characteristics of their type. The 

Brent kung is the smallest adder, while the Kogge stone is the largest. The results of the Han Carlson adder, 
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which fall between the Brent kung and the Kogge stone, show a more compact k=2 structure. The Sklansky 

and Ladner fisher types are unexpected in this chart because the Lend fisher was predicted to have less area. 

Figure 1 is created using data from Table 1. Figure 2 is created using data from Table 2. 

 

 

 
 

Figure 2. Number of lookup tables used in FPGA with area optimization 

 

 

Tables 3 and 4 show that when the optimization target was set to speed, the critical delay of each 

adder was greatly reduced. Table 3 shows that the adders have significant critical path delays as a result of 

the software’s efforts to fit the synthesised circuits as tightly as possible within the FPGA’s limits. The Brent 

kung adder outperforms the Han Carlson and Kogge stone adders in this table, which is an unusual case. The 

prefix tree of the Brent kung adder, on the other hand, has a more complex structure. Another surprising 

result is that, despite having shallow prefix trees, the Ladner-Fischer and Sklansky adder adders outperform 

the Kogge-Stone adders. Adders frequently perform worse as the number of interconnects in their prefix 

networks grows. Table 3 data is used to generate Figure 3. 

 

 

 
 

Figure 3. Number of lookup tables used in FPGA with speed optimization 

 

0

500

1000

1500

2000

2500

3000

SK KS BK HC HC LF

N
o

 o
f 

lo
o

k
 u

p
 t

ab
le

s 
u
se

d

Parallel prefix adders

Comparison of paralle prefix adders

Series1 Series2 Series3 Series4 Series5



                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 14, No. 1, March 2025: 109-116 

114 

Table 4 shows the rate at which all adders improve their speed. Given their common characteristics, 

each adder in this table performs as expected. We can see that for 256-bit adders, adders with a high 

interconnect count perform slower than adders with the same critical path length but fewer interconnects. 

According to the table, the 256-bit Ladner-Fischer adder is slightly faster than the 128-bit version. Nothing in 

the two adders’ prefix tree networks can account for this result. As a result, it is possible that it is linked to 

tool-dependent resource allocation and optimizations. Table 4 data was used to create Figure 4. Table 5 is 

used to develop the Figure 5. The Figure 5 shows delay measured in nano seconds in parallel prefix adders 

when they are optimized for the speed while synthesized in the FPGA. 

 

 

 
 

Figure 4. Performance of parallel prefix adders with area optimization 

 

 

 
 

Figure 5. Performance of parallel prefix adders with speed optimization 
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4. CONCLUSION 

In conclusion, parallel prefix adders are widely used in computationally demanding applications, 

including digital signal and image processing. The parallel prefix adder’s performance is obtained with 

implementation on FPGA. The Sklansky adder, Brent-Kung adder, Kogge-Stone adder, Han-Carlson adder, 

and Ladner-Fischer adder are the parallel prefix adders we covered in this study. We evaluated the 

performance of parallel FPGA-based prefix adders in this study. The results suggest that the key factors 

influencing adder performance were software optimization settings, effective resource allocation, and the use 

of specialised FPGA resources. In several cases, software tool optimizations caused some adders to lose their 

algorithm dominance. PPA design elements include area, logic depth, connection count, and fan-out. The 

results of parallel prefix adders demonstrate that the number of interconnects has the largest influence on 

both area and speed performance. The 256-bit Ladner-Fischer is the area efficient and fastest parallel prefix 

adder compared to the Sklansky, Kogge-Stone, Brent-Kung, and Han-Carlson. 
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