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 Malicious individuals can access a computer network or application thanks 

to a series of programmes known as rootkit malware. These kernel rootkits 

use covert methods to conceal the kernel components, various control 

frameworks, and system activities, making identifying or prohibiting their 

presence in the target machine challenging. The bulk of rootkit detection and 

prevention techniques used today are particular to a system and dependent 

on recognized sources, making them ineffective for growing, evolving, 

concealed, or unnamed rootkits. This study proposes using the kernel rootkit 

prevention model using multiclass (KRPMM) system to identify hash values 

and detect/prevent such rootkits. The file downloaded by the client, who is 

availing of the service, is not permitted into the node used by the client in the 

cloud. But, it is redirected to the node wherein the file that has been 

downloaded and has entered the node anew is examined by a program which 

is specially coded to test the presence of rootkit in the file by some 

mechanisms and then comes to a conclusion of either the file being 

malicious or the file being clean and is free of rootkits. KRPMM tested only 

64 rootkits. 
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1. INTRODUCTION 

A VMware system is an information technology solution that creates and manages computer 

instances virtual machines (VMs) using VMware's virtualization technologies [1]. Because virtual systems 

allow for the abstraction and distribution of physical hardware components like the central processing unit, 

memory, storage, and the internet they can be flexible, effective, and scalable in a VMware context. Since 

each VM has its operating system, set of apps, and configuration options, it functions like a separate physical 

machine. VMware setups are a potent tool for rootkit identification because they can be used to build 

isolated, controlled virtual environments that can be altered without impacting the host operating system. As 

a result, malware and rootkits functioning in the virtual environment can be analyzed and observed without 

affecting the underlying operating system or other systems on the network. 

Kernel rootkits [2] typically intercept system calls sent to the operating system by user-mode 

programs and change the responses that these calls return. This may enable a rootkit to conceal files, 

programs, network links, and other system activity from detection. A kernel rootkit in a VMware 

environment can compromise the virtualization layer, significantly affecting the overall system's security. 

Kernel rootkits can also intercept network traffic and plug into device drivers to mask their presence and 

activities further. Many approaches have been put forth to identify kernel rootkits. The two main kinds of 

these methods are static methods and dynamic methods. The static techniques collect the distinguishing 

characteristics for dividing up excellent and bad kernel modules using static analysis. It will be challenging 
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for static analysis tools to obtain the logical properties of the kernel modules if they use complicate 

techniques. It is advised to use the dynamic strategy to solve the hiding data issue. 

The fundamental tenet of this strategy is to run a kernel module in an appropriate setting before 

observing its behavior in real-time and making a decision subsequently. Most currently used techniques use 

emulation (such as quick emulator (QEMU)) [3] to provide the kernel modules' execution environment. 

Certain malicious kernel components can identify a VM that is in use before changing their behaviour, and 

because some kernel modules may depend on particular system components that the software does not 

support, they might not function properly there to address the above limitation. These drawbacks are caused 

by the emulation, which adds a significant performance penalty. In this work, employing the SHA-256 

algorithm aids efficiently and effectively in rootkit detection in a virtual system [4]. Analysing each hashing 

algorithm's unique characteristics and the needs of the use case is essential when choosing one, such as 

message diggest 5 (MD5) and SHA-256. Here are some of the reasons why MD5 and SHA-256 may be used. 

MD5, efficiency, legacy compatibility, and non-security applications are all advantages of using MD5. 

Strong security, cryptographic standards, and long-term security are all terms used to describe SHA-256. 

The program initially recognizes any records with growth, such as ".exe" records, which are now 

present in the specified index and are considered executable records. The program first secures the target 

record's MD5 hash. The program is granted access to a database of recently discovered records, including 

rootkit or other dangerous software. The MD5 hash estimate of the most recent executable archive obtained 

is then sent to the program. The SHA-256 computation then hashes the report into its pseudo-random imprint 

hash, which is similarly distinguished, and the database that contains sections of SHA-256 hashes of different 

rootkit records as well as the hashes of malware that have recently been seen to be malware or rootkits 

independently. 

The assessment of the execution of deep learning and artificial intelligence (AI) algorithms was 

performed using memory data. The successful malware detection was attributed to a memory study 

conducted with a logistic regression analysis method. As a result, conflicting results may occur if a different 

type of information is used or if the number of different features is unique and cannot be applied to 

alternative datasets. Data from memory analyses enabled high rates of malware identification accuracy. It has 

been observed that MapReduce on disk is capable of processing data faster than apache spark [5]. A cloud-

based virus detection method, visualized memory change area dimensionality reduction (VMCADR), was 

developed to ensure uncompromised client privacy. This method immediately detects malware within images 

of binary storage without accessing user data. The memory changed area (MCA) files are created using the 

memory difference (MDIFF) approach with the memory sample, although they require more time to obtain 

compared to typical files. This technique serves to protect the user's private information [6]. 

A monitoring tool uses out of VM introspection to check for hooked system calls on the VM and 

changes to the kernel address space. VM introspection library (LibVMI), handle VM introspection and VM 

control is dealt with by the libvirt application programming interface (API). It detects a rootkit assault by 

keeping the contents of a system call function's hash values and contrasting them with hash values routinely 

produced from live memory. If the scan results are accurate, it sends the user an email and allows them to 

move the virtual computer to a different system for further forensic analysis. Kernel check scan checks the 

legitimacy of the kernel address space. The hash values are computed using the MD5 hash method. The 

simple mail transfer protocol (SMTP) library is then used to send the mail notification to a Gmail SMTP 

server using transport layer security (TLS). The message is created using multipurpose internet mail 

extensions (MIME) multipart. The software is only compatible with Linux distributions [7]. 

A herd of connected VMs has been used to find the kernel-resident malware. The fingerprints are 

compared, and those that indicate anomalous hosts are found without kernel-specific semantics. They 

implemented their method into fluorescence and demonstrated that it can identify Linux and Windows hosts 

infected with kernel-resident malware in real-world situations. In an hour, fluorescent can analyze many VMs 

running Linux distributions. The standardized values of a kernel's code pages are expressed as a collection of 

hashes that make up each fingerprint. These hashes were created using fuzzy hashing, which allows 

comparable page contents to map to similar hash values. Fluorescence was used to identify all contaminated 

hosts in the Linux and Windows-based groups. It gathers each VM's most recent fingerprint, does feature 

alignment, and detects anomalies in the data using deep learning techniques. For quicker analysis, large herds 

can be split up into smaller groups. Without the necessity for training over particular ones, it employs virtual 

server introspection-based insights to find abnormalities. Only a portion of the kernels under investigation are 

known. Code that has been just-in-time (JIT)-compiled needs to be taken into account [8]. 

Cloud-based malware detection and mitigation system have been presented, and it has relied on the 

signatures like MD5 and SHA1 and the characteristics of many different families of contemporary malware. 

In this study, cloud services deliver cloud-based antivirus, and intrusion detection systems will use hash 

signatures and patterns. Additionally, they suggest a method for cloud-based real-time malware detection and 
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prevention. The signatures are downloaded from various sites, including virus total, utilizing a hash 

calculator to generate hashes in SHA and MD5. The system will compare any folder or directory being 

scanned with the pre-existing signatures from the database. The file is classified as unknown if the signature 

cannot be found, and rule-based detection is then performed. If any string satisfies the rule, the file is 

considered malicious, an alert is generated, and the database is updated with the signature of the new file. 

Cloud security was enhanced by real-time malware analysis. Property signature-based systems can achieve 

very high detection speeds due to their small size precision and low number of false positives. Signatures can 

only be created after identifying a malware sample [9]. 

A unique rootkit detection method adapted to the cuckoo sandbox is based on the idea of 

aggregating and trending micro locality sensitive hashing (TLSH), and it aims to give interactive analytical 

reports on documents by analysing them in a safe setting. Leveraging chi-square, random forest, and 

principal component analysis (PCA) strategies, the most crucial traits are chosen. To construct clusters, the 

model compares the hash values of various files and sets a threshold limit. The clustering strategy using 

TLSH might provide a robust intrusion detection systems approach without compromising performance, and 

the predictive accuracy demonstrates the upgraded version of the classifier and a decreased amount of false 

positives. The scalability of the technique is limited and requires several hours to cluster a set of several 

hundred samples [10]. 

Using the WEKA classifier and random forests with a Jupyter Notebook helps identify and 

categorize malware dynamically. The cuckoo sandbox and XEN cloud platform were the foundation for the 

cloud test. They monitored various machine learning (ML)-based classifiers to increase the effectiveness of 

malware analysis. Relying upon the attribute selection derived by the WEKA, the information gain ratio 

feature extraction would be capable of achieving the most pertinent traits that optimize the reliability of the 

information available. The processing time required to create the model depends on the dataset size [11]. 

This work developed the trusted kernel rootkit detection (TKRD) technique for automatically 

detecting kernel rootkits in VMs from private clouds performed on a kernel-based VM (KVM) hypervisor. 

Memory dumps from the VM are inspected utilizing a memory forensic analysis approach every ten minutes 

to discover harmful functionalities. The characteristics of veiled orphan threads, kernel units, callbacks, 

driver objects, device trees, timers, and the system service descriptor table (SSDT) function are utilised to 

construct a range of machine-learning classification frameworks in addition to based on regulations 

classifiers, trees of choice, support vector machines, and Bayesian models. The data capture interval can be 

changed and flexibly programmed for rootkits that run for short or extended periods as an exchange between 

efficiency and efficacy. Memory dumps were used to generate the extensive features that precisely identify 

kernel rootkits and reveal their peculiar activities. It can only be run in the public cloud and rootkit samples 

are executed one at a time on the VM [12]. 

To assess whether a client file type is harmful, this study compares the attributes of .exe files. The 

decision tree separates the nodes according to the variables and then selects the division that yields the most 

homogenous subnodes. Instead of using memory analysis, heuristics, or analytical detection techniques, and 

signature-based detection should be emphasized [13]. A malicious dataset to efficiently discover 

distinguishing traits that offer high-performance malware detection for both known and new threats. After 

identifying it as cruel or usual, the system stores each file and combines it with ML classifiers. The feature 

extraction and detection phases comprise the two cloud-based detection sections. When a user delivers a 

questionable document over the system, the server responds with an analysis indicating whether or not the 

file is malware. Some parts of the malware variants remain undetected because of the use of sophisticated 

code obfuscation methods [14]. 

 

 

2. METHOD 

The content of this section explains how to get rid of dangerous software such as rootkits. In simple 

terms, the procedure is that the client using the service is not allowed to upload the content downloaded onto 

the node (system), and the client is using it in the cloud. The file that has been downloaded and has entered 

the node anew is scrutinized by a program that is specifically coded to test for the presence of a rootkit in the 

file using some mechanisms, and it then determines whether the file is malicious or clean and free of rootkits. 

This dictates whether the recently downloaded file is returned to the node used by the client provided or the 

file is free of the rootkit [15]. If not, the file is discarded and the information is reported to the client by a 

message in a text file instead of the downloaded file. The file will not be provided even if the user is willing 

to download it with its risks. Thus, the file is blocked and makes the node used by the client in the cloud free 

of rootkits. This is explained in detail about how the mechanism works on two given platforms on any two 

nodes on the cloud service. This may also render security to systems not part of the cloud services. It may 

also enhance the security of all machines. Architecture diagram of kernel rootkit prevention model using 

multiclass (KRPMM) is shown in Figure 1. 
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Figure 1. Architecture diagram of KRPMM 

 

 

The target computer that needs to be secured must first be mapped to the node that contains the 

rootkit prevention mechanism for the software to run and the rootkit [16] to be prevented. The node's browser 

is set to the recently mapped disc and links to the other node or the node with the prevention mechanism. 

This step ensures that the download is skipped to the other node and diverted away from the target node. 

After that KRPMM is executed. The following step is to generate a text file containing the following 

information: the file contains rootkit [17] or malicious software that could potentially cause harm or corrupt 

the system and is deleted without any exceptions. 

The program will only send this text file containing the notice above if it determines that the 

incoming file, which the client received, is malicious or a rootkit [18]. Once the program has been 

downloaded, the indicated protection measure will be implemented once it is present in the other node to 

which the file is being transferred. This makes the client node rootkit safe by ensuring that the incoming file 

cannot infect it [19]. 

 

2.1.  Rootkit prevention mechanism 

As mentioned above, the rootkit prevention mechanism involves the file being bypassed to the node 

where the prevention program resides. Now, the file has to be processed to have an insight into whether the 

file is free of any malicious software or possesses a rootkit or malicious software that may threaten the 

system. A directory is assigned for quarantining the file suspected of having a rootkit or malicious software 

that threatens the system's security or subverts the whole of the deposit to corrupt the node or exploit the 

resources of that node and its sensitive data. 

 

2.1.1. Detection of rootkits/malicious software 

The program first detects any files with an extension, for instance, ".exe," i.e., an executable file 

currently in the specified directory. The program then obtains the MD5 hash of the target file first. The 

program is given access to a database of previously found files containing rootkits or malicious software. 

This proves effective on most rootkits or malicious software in that consent. The program then gets the MD5 

hash value of the newly downloaded executable file. The MD5 hash is then processed to meet the 

requirements such that it would be normalized to compare with any data from the database that contains the 

MD5 [20] hash values of a vast set of malware or rootkits or any other malicious software which are defined 

as malware or rootkits or malicious software by its previous encounters by anti-virus software; thus, updating 

the database with the "MD5" hashes of that software respectively. 

 

2.1.2. Prevention measures 

The program, consisting of the MD5 hash of the executable file to be tested for discrepancies, will 

be compared with the data values obtained from the database and will be cross-checked for equality. This test 

reports the crucial result. This result will be one of the major deciding factors with which the program 

decides whether to send the file back to the client's node or discard the file and send a file-blocked report to 

the client. The result will be considered with a higher priority by the program, and that data, in turn, will 

affect the transfer of the executable file. If the executable file contains no such identifiable and significant 

difference, it will be sent back to the client's node without any modification to the downloaded executable 

file. When the executable file is clean, the program takes control to send the same executable file that was 
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received by the node from the client's node, which was bypassed to this node, is sent to the client's node by 

using the drive that was mapped to each other on the network. 

Immediately after the MD5 [21] hash algorithm is executed and used for detection, the SHA-256 

algorithm is implemented on the same specified file. SHA-256 algorithm then hashes the file into its pseudo-

random signature hash, which is also compared with the database that contains entries of SHA-256 hashes of 

various rootkit files and also the hashes of malware that have been previously found to be malware or 

rootkits, respectively. Then, the algorithm compares its original file's secure hashing algorithm-256 [22] 

hash. That is, the original version of the file is sent to a hashing function that implements the SHA-256 hash. 

The soup "secure hashing algorithm", first converts all bytes to binary format. This then pads the other 

remaining spaces with 0's. The last few digits are filled with the last of the original message, i.e., the file's 

previous content at the latest. The padding should be exactly 512 bits of 64 blocks. Separated, the algorithm 

calculates the hash by interchanging the first half of the 1st word and then performs the suitable shift 

operation. Then, it serves the soup wherein the algorithm recursively calls the hashing function to the extent 

that the original message is represented by a pseudo-random string that, in no sense, means the same as the 

original message. 

As the function works, it generates a unique hash for a message, in our case, the file itself. The 

generated hash is cross-checked for the incoming file. The result will return a Boolean value and the hash values 

of both files. This is implemented to support the development determined by the MD5 hashing algorithm. Thus, 

the file downloaded by the client can be tested for any issues regarding rootkits or malicious software without 

reaching the client's node before it is ensured to be rootkit-free. This also provides the reliability of that file by 

the client, withholding not a sway against the deceitful nature of the file containing any rootkits. 

 

 

3. RESULTS AND DISCUSSION 

In accordance with the usage of the MD5 and SHA-256 hashing algorithms to track the actions 

taken by the programme when given a file, whether it's an executable file or a dynamic link library [23]. 

Different outcomes on the likelihood and promptness of the program to be diagnosed may be obtained by 

comparing the two algorithms' hashes. The diagnostic file is considered in the form it had when it was first 

acquired, i.e., without any conversions the program may have made to it or any other changes that may have 

been reflected on it. Whether it be a rootkit or not, the file is eagerly anticipated. For a more straightforward 

but effective illustration, consider 64 examples of different rootkit files that are uncategorized, or in other 

words, not specified to the program that detects and then prevents the rootkit or any other malware from 

infecting the concerned node. Particular possibilities are formed by the boolean values that the MD5 and 

SHA-256 [24] algorithms returned. Table 1 (legal and illegal rootkits) illustrates the restriction of rootkit-

covered records. 

 

 

Table 1. Input field 
S.no Malware name Malware size Offensive 

1 Virus.bat.qwerty.b 676 kb Ucrtbase.dl 

2 Virus.boot.catman 28 kb Scvhost.exe 
3 Virus.unix.sillysh.b 6.84 kb Aubot.exe 

4 9ba7332fdca46ed72bd788def5498140 793 kb User32.dll 

5 38c7bd26550daa3b4527f4eeefe8a0dd 81.5 kb Svchost.exe 
6 D0617fedf0ea31d7d5fb55bd334d85d6 8 kb Svchost.exe 

7 F0f927ee20a62d0b0a1b37d68d1406ea 78 b Svchost.exe 

8 $%&%_2169.vir@ 22.86 kb Taskhost.exe 
9 Backdoor.win32.haxdoor.gs 1.26 mb Taskhost.exe 

10 Bakuryu 121 kb Scvhost.exe 

11 Shell.jpg 89.1 kb Svchost.exe 
12 F6e671d8630df5d8045ff4243da94f74 24 kb Ucrbase.dl 

13 Afe8df184dccf6db48cf27916d0d0da6 48 kb Ucrtbase.dll 

14 6eddd98e0463acaa3aa0eeab26b1d3c9 1 kb Ucrbase.dll 
15 80da4801d2b70d7044e9d660a05c676 5.03 kb Svchost.exe 

16 4356aded80ee30d1f85321ecc28694b3 140 b Taskhost.exe 

17 E08de794d84c472b1fd9a862bd729556 107 b System32.dll 
18 Rootkit.win32.agent.agk 512 b Ucrbase.dll 

19 Rootkit.win32.agent.azt 512 b Ucrbase.dll 

 

 

Description of Table 2, when done on the optimal launch system in Windows 2022 against 64 

rootkits, every test that tries to differentiate the cloud fails. Each test includes the rootkit [25], which attacks a 

brand-new boot system. No false positives are produced by this system (100% certified negatives, 0 false 
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positives). The ideal Windows instance system is expected to continue to be flawless. 64 rootkits were tested 

in this study to see if they could be detected as rootkits. In contrast to the remaining 58 rootkits, 42 are 

included in the validation set. The remaining 16 of the 58 rootkits need to be distinguishable, leaving only 6. 

This result showed 23.63% false negative and 76.36% positive. An incorrect rootkit installation setup was the 

root of the false negative. Attackers perfect their rootkit installation techniques, lowering the false negatives 

rate. 

Description of Table 3, when injecting the rootkit into the computer, it affects the file, process, and 

port. Obtaining the SHA-256 and MD5 file values and contrasting these values with the data in the database. 

The rootkit can access that specific file if the SHA-256 and MD5 results are true. The detection process time 

is mentioned in Table 3. This procedure is carried out on both Windows and Ubuntu computers. Table 3 

shows that Ubuntu has a faster detection rate than Windows. 8 GB Windows and Ubuntu rootkit detection 

time show in Figure 2. 

 

 

Table 2. Confusion matrix of kernel rootkit prevention model multipart 
Actual  Predicted (-) Predicted (+) 

- 6 0 

+ 16 42 

True positive: MD5 and SHA 256 are both true.  

False negative: MD5 and SHA 256 are both false.  
True negative: MD5 is True and SHA 256 false.  

False negative: MD5 is False and SHA 256 false. 

 

 

Table 3. True positive rootkits sample detection time 

Rootkit 
Detection time in 8 GB volume 

Windows (ms) Ubuntu (ms) 

Trojan-downloader 222 212 
Virus.BAT 220 212 

Downloader-RW24 220 213 

Artemis!7CD08372064A(exe) 214 212 

Artemis!21436A8F3E57 215 211 

Downloader-AWM.gen 213 212 

Virus.BAT.Qwerty.b 214 212 
Artemis!629A4B4ADF6E 213 212 

W32Fujacks 215 211 

PWS-gamania.gen.a 213 211 
BackDoor-DIQ 221 212 

Vanquish.dll 221 211 

Vanquish.exe 222 212 
ASBV 223 213 

W-boot 225 213 

 

 

Accuracy of prevention: there are five evaluation metrics for this model in this area. The rootkit's 

effectiveness at preventing attacks is the primary metric and is calculated as (1) to (5). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑅𝑜𝑜𝑡𝑘𝑖𝑡 𝑇𝑒𝑠𝑡𝑒𝑑−𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠−𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑅𝑜𝑜𝑡𝑘𝑖𝑡 𝑇𝑒𝑠𝑡𝑒𝑑
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3) 

 

𝐹𝑠𝑐𝑜𝑟𝑒 = 2𝑥 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) (4) 

 

𝐺 𝑚𝑒𝑎𝑛 = √𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 (5) 

 

The detection time lengthens with volume size. The rootkit acknowledgment time is quicker with 

this system than with other rootkit detection methods like the mark-based approach and the equipment-based 

localization procedure. Only when the limit volume in this examination stays constant will it be quicker to 

locate the volumes that need 8 GB. The performance measure can be seen in Figure 3. The accuracy of 
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positive classifications, or the likelihood that an anomalous variation detected by the detector has been 

correctly classified, is measured by precision. The degree of efficiency in the scanner's identification of any 

freshly tested information set. Recall measures the detector's ability to detect variations or the likelihood that 

an aberrant examples of will be appropriately classified as such. By partially accounting for all the data, the 

final two measures, F score and G mean, offer a more full assessment of a particular detector's performance. 

 

 

 
 

  

Figure 2. 8 GB Windows and Ubuntu rootkit 

detection time 
Figure 3. Performance measure 

 

 

4. CONCLUSION 

This study sheds light on the present state of rootkit technology in comparison to novel detection 

techniques. The KRPMM rootkit was discussed in general terms as well as in technical detail. The primary 

methods for combating rootkits were examined, and their drawbacks were emphasised. The program then 

first secures the target record's MD5 hash. The program is granted access to a database of recently discovered 

papers that include rootkit or other dangerous software. The MD5 hash estimate of the most recent 

executable archive obtained is then sent to the program. The SHA-256 computation then hashes the report 

into its pseudo-random imprint hash, which is similarly distinguished, and the database that contains sections 

of SHA-256 hashes of different rootkit records as well as the hashes of malware that have recently been seen 

to be malware or rootkits independently. Each method for confirming the kernel rootkit avoidance model that 

was mentioned above, the main problem of multiclass rootkits is the requirement for proper configuration on 

various system. There is now a demand for additional rootkit detection techniques that are simple to 

configure and do not significantly impact performance. 
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