
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 13, No. 1, March 2024, pp. 33~40

ISSN: 2089-4864, DOI: 10.11591/ijres.v13.i1.pp33-40  33

Journal homepage: http://ijres.iaescore.com

FPGAs memory synchronization and performance evaluation

using the open computing language framework

Abedalmuhdi Almomany, Amin Jarrah
Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan

Article Info ABSTRACT

Article history:

Received Mar 24, 2023

Revised Sep 1, 2023

Accepted Sep 11, 2023

 One advantage of the open computing language (OpenCL) software

framework is its ability to run on different architectures. Field programmable

gate arrays (FPGAs) are a high-speed computing architecture used for

computation acceleration. This work develops a set of eight benchmarks

(memory synchronization functions, explained in this study) using an

OpenCL framework to study the effect of memory access time on overall

performance when targeting the general FPGA computing platform. The

results indicate the best synchronization mechanism to be adopted to

synthesize the proposed design on the FPGA computation architecture. The

proposed research results also demonstrate the effectiveness of using a task-

parallel model approach to avoid using high-cost synchronization

mechanisms within proposed designs that are constructed on the general

FPGA computation platform.

Keywords:

Field programmable gate arrays

Memory

Mutex

Open computing language

Synchronization
This is an open access article under the CC BY-SA license.

Corresponding Author:

Abedalmuhdi Almomany

Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University

Irbid, Jordan

Email: emomani@yu.edu.jo

1. INTRODUCTION

A field programmable gate array (FPGA) is an integrated circuit that programmers can configure

many times to achieve their goals [1], [2]. FPGAs include many low-level operations, such as shifts and

additions. Usually, the intel FPGA incorporates several resources, such as random access memory (RAM)

blocks and digital signal processors (DSPs), to perform various complex arithmetic functions and look-up

tables (LUTs) [2]. LUTs are also used to implement several functions Figure 1. However, multiple LUTs can

be combined to implement more complex functions. The DE5 (Stratix V) FPGA device is used in the present

study. The adaptive logic module (ALM) resource allows a wide range of functions to be implemented

efficiently. Each ALM contains several function units. The block diagram for ALM is shown in Figure 1 [3].

FPGA as a reconfigurable architecture provides better reconfiguration in which bit-level configuration is

performed [4]–[7].

The flexible parallel hardware architecture is guaranteed by FPGA technology. It includes many logic

components, such as adders, multipliers, and comparators. It also includes a lot of DSPs, LUTs, clocks,

configurable I/O, memories, and wired connections between these components. Because these components

operate concurrently, allowing for a large amount of computation to be done independently at once, we can

achieve a high level of parallelization with this FPGA implementation [8]–[10]. Many semiconductor

companies, including Xilinx, Altera, Actel, Lattice, Quick Logic, and Atmel, produced and improved FPGA.

Three types of FPGA-based spatially reconfigurable computing environments are now commercially

available. They include commodity FPGA-based accelerator cards, stand-alone system on programmable chip

(SoPC) environments, and cloud-based spatially reconfigurable platforms. Commodity FPGA-based

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 1, March 2024: 33-40

34

accelerator cards are the most common commercially available spatially reconfigurable computing

environment and were chosen as the computing environment for this research. These cards are designed to be

incorporated within a standard central processing unit (CPU)-based computing system as an add-on low-profile

peripheral component interconnect express (PCIe)-based daughter card. They incorporate one or more high-

end FPGAs and significant amounts of multi-banked double data rate synchronous dynamic random-access

memory (DDR SDRAM) physical memory (8 GB to 32 GB), which are local to the card. The cards often also

contain high speed network ports and flash memory that can be used to load default configurations within the

FPGAs. Stand-alone SoPC configurations are also quite prevalent at the time of this writing. SoPC

configurations also include high-end FPGAs that often contain built-in embedded CPU processing cores. SoPC

configurations also contain varying amounts of DDR SDRAM physical memory and a host of I/O interfaces.

SoPC configurations differ primarily from accelerator cards in that they are not designed to augment an existing

CPU system [11].

Figure 1. ALM block diagram

FPGA platforms are now becoming available on the cloud [12]. FPGA-based resources are accessible

using OpenStack virtual machine environment, which provides tools for cloud resource management [13], [14].

In a related study, a framework that integrated Xilinx FPGAs into the cloud based on OpenStack showed great

efficiency and scalability upon hosting multiple processes and virtual machines (VMs) [15]. FPGAs are also

accessible as an F1 compute instance on the Amazon Elastic Cloud, where each instance contains up to eight

FPGAs [16]. These instances could be used effectively to create a customized user’s design in a wide range of

commercial and scientific applications.

Commodity FPGA-based technology has several issues, though, which must be carefully considered.

One important issue is that while it is possible to create specialized functional units and data paths that closely

mirror the structure of the application, the FPGA resources that are required are usually only a fraction of those

required to implement the application in its most optimized form. Thus, the intelligent time sharing of these

resources is mandatory and is the system-wide focus of what is a very complex optimization problem. The time

it takes to configure an FPGA is large compared to the time taken to perform a base operation. The

reconfiguration time for large FPGAs can be in the order of seconds, whereas the internal clock speed can be

greater than 300 MHz. This means that internal FPGA resource trade-offs may have to be made that will

decrease the utilization and increase time sharing to reduce the number of FPGA reconfigurations required.

Another possibility is to utilize partial reconfigurability, which is supported by most modern FPGAs. Partially

reconfigurable devices allow for the logic functionality of a subsection of its programmable resources to be

reconfigured without interrupting the operation of the other portion of the reconfigurable logic. Unfortunately,

this feature is often poorly utilized. Another major issue is the time it takes to synthesize a design. The fine-

grain complexity of FPGAs can result in extremely long design compilation times, which can take hours or

days to complete. This problem is most apparent when the FPGA-based resources needed by the application

get close to the actual resources that are present on the system. It becomes imperative in such cases that the

high-level design environment allow for the functionality of the design to be verified quickly before it goes

through this lengthy process. Fortunately, high-level synthesis environments, such as the open computing

language (OpenCL) support an emulator mode where emulation can be performed on the CPU. Still, this

constraint precludes the use of just-in-time compilation techniques that are possible in GPU and some CPU

applications. This means all modules that are to be executed on the FPGA must therefore be progenerated in

an offline manner [11].

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

 FPGAs memory synchronization and performance evaluation using the open … (Abedalmuhdi Almomany)

35

OpenCL is used to harness the benefits of multi-processing elements. The wide variety of platforms

that can be used for OpenCL makes it an attractive choice for heterogeneous systems in which several

computations can be distributed among different computation architecture elements [10]. The OpenCL code

written to run on the FPGA is implemented as a kernel, and the kernel code is compiled using the intel offline

compiler (IOC). The kernel could be executed with one or multiple items (threads) [11], the choice depends on

the code characteristics, and the goal is to achieve the highest degree of parallelism. The OpenCL standard

naturally enables the ability to specify parallel algorithms to be implemented on FPGAs, at a far higher degree

of abstraction than hardware description languages (HDLs) like VHDL or Verilog, in addition to providing a

portable model.

Because FPGAs are not just processors using a typical software design flow, targeting FPGAs from

OpenCL presents some special challenges. The FPGA architecture differs significantly from the typical

platforms (such as CPUs and GPUs) that OpenCL implementations target. For instance, FPGA makers recently

debuted programmable system-on-chips (SoCs), in which a SoC is connected to FPGA fabric to create a

customizable platform for an embedded system environment, like the Zynq platform [17]. Additionally, there

is plenty of room for OpenCL to adjust to this kind of platform due to the long compilation time, the

programmable nature of FPGAs, and the capability for partial reconfiguration [18].

The notion of pipeline parallelism is an important concept of the IOC, which synthesizes the high-

level abstracted OpenCL code on the target FPGA device. Pipelined architectures allow data to pass through

various stages before the proposed result is attained. The IOC creates a customized pipeline architecture based

on the proposed kernel code [19]. Figure 2 illustrates how the IOC creates the pipeline architecture for a given

kernel code. Several optimization techniques, such as shift-register and loop unrolling can feasibly be used to

create a powerful design architecture. Loop unrolling allows more operations to be performed per clock cycle

by duplicating the necessary function units. Meanwhile, the shift-register technique helps reduce the

dependency between consecutive statements, thereby reducing the number of stall cycles. The intel FPGA

compiler provides several tools to modify the design’s performance and solve possible critical issues that may

reduce the effectiveness of the architecture before synthesizing the proposed FPGA device [20].

Figure 2. Illustration of the pipeline architecture created by the IOC for a given kernel code written in

OpenCL

The code written in OpenCL to perform the acceleration process on the intel FPGA architecture has

two parts. The first part is the host code, which is written in standard C/C++ code and compiled using the

gcc/g++ compiler [8]. The host code is responsible for starting the acceleration process, deciding what data

should be transferred between the host and the FPGA global memory, and deciding which parts of the code

should be accelerated on the FPGA device. The overall host code is a sequence of steps taken before and after the

kernel code is launched. The second part is the kernel code, which is implemented using the OpenCL application

programming interfaces (APIs) and compiled with the IOC to generate the device executable code [10].

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 1, March 2024: 33-40

36

This work is based on the study titled “efficient synchronization primitives for GPU” [21], in which a

set of eight benchmarks was developed using a compute unified architecture (CUDA) software framework to

study the effect of memory access time on overall performance. The present study intends to replicate this work

and study the effect of several synchronization functions on the overall performance when targeting the general

FPGA computing platform. Several synchronization techniques can be used when multiple threads cooperate

to perform related tasks and have access to commonly shared variables. The barrier is a common

synchronization technique that allows all synchronized threads to stop at a certain point; then, once the last

thread reaches this point, all threads resume their execution [22]. Mutex is another synchronization mechanism

that allows only one thread to execute in the critical section to avoid the race condition issue. A binary

semaphore is similar to a mutex mechanism when a single resource exists [23]. Meanwhile, the counting

semaphore controls access to shared resources when there are multiple instances of a resource, and each

instance cannot be used by more than one thread concurrently [24].

Although these synchronization techniques must be used to control access to shared resources, they

introduce a significant time overhead due to the overall waiting time required for each thread to access the

critical resource [25]. The present research recommends a technique that could have less overhead than other

techniques when implemented on the FPGA platform. Several benchmarks are developed to analyze the

memory access time of various implementations, thereby achieving the study’s purpose. These benchmarks are

classified as atomic or non-atomic in the first layer and as having high or low contention in the second layer.

Finally, for read or write memory operations, we define atomic access as the access of only one thread

to a distinct memory location, such that atomic accesses to the same memory location must be serialized. High

contention means that all threads will access the same memory location. Meanwhile, in low contention

instances, we generate multiple memory locations separated by at least 64 bytes, and there is a minimal chance

that two or more threads will access the same memory location [21]. Lastly, in this design, we assume that each

workgroup has 128 work items. Only one thread (the master thread) is given access to memory; for simplicity,

thread zero is the master thread.

2. RESEARCH EXPERIMINTAL ENIVRONMENT

All benchmarks are compiled using the GCC V4.4 and the intel FPGA compiler V13.1, which are

compatible with the Linux Centos operating system. The target FPGA used is the DE5 Stratix V device

(5SGXEA7N2F45C2). This board contains enough resources, including 234 K ALMs, more than 250 DSP

blocks, and 2.6 K RAM blocks to synthesize the user's code in various heavy computation applications. The

host CPU and the target board are connected via a PCIe connection, which enables extremely rapid data

transfers between the processing units.

3. AVAILABLE RESOURCES VS THROUGHPUT TRADE-OFFS
Each FPGA contains a countable number of specific resources, such as ALMs, memory blocks, and

DSPs. The proposed FPGA is usually connected to the host machine using the PCIe interface [6]. Each kernel

is translated into a proposed hardware circuit using a fixed amount of resources. Typically, all kernels are

combined into a single.cl (device code) file. While it takes only microseconds to milliseconds to run the kernel

on the proposed FPGA (depending on the synthesized design), the overhead associated with switching the

kernel during runtime is extremely large. The experiment was run 100 times to determine that it took

approximately 1.612 seconds to configure the device at runtime. This outcome indicates that the configuration

time is significant in most cases.

Another factor to consider is the additional resource consumption associated with using a high-level

abstract OpenCL programming tool. Experiments demonstrate that approximately 16% of the ALMs, 11% of

memory blocks, 3% of the total memory bits, and 53,893 registers are consumed to implement a blank (empty

code) kernel. The extra resource overhead shown in Table 1 can be avoided by combining multiple kernels into

a single file. Table 1 summarizes multiple kernels of vector addition, where the kernel is duplicated up to five

times in a single file. Column 2 shows the resource usage of the blank kernel, column 3 shows the resource

usage of a single vector addition kernel, and columns 4 to 7 show the resource usage of two, three, four, and

five vector addition kernels. The experiment demonstrates the overhead associated with using a high-level

abstracted OpenCL tool.

Loop unrolling can enhance performance by running several loop iterations in each clock cycle.

However, the duplication function unit required to implement the loop unrolling technique consumes more

resources. As such, the loop unrolling factor depends mainly on the number of resources available. Because of

hardware limitations, we cannot fully unroll the loop in this work. Therefore, the loops in all benchmarks are unrolled

256 times. The same is true for different mutex implementations; all implementations are unrolled 10 times.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

 FPGAs memory synchronization and performance evaluation using the open … (Abedalmuhdi Almomany)

37

Table 1. FPGA resource usage for a single and multible vector addition kernel
Resources/kernel Blank

Kernel
Vadd-1
kernel

Vadd–two
kernels

Vadd-three
kernels

Vadd–four
kernels

Vadd–five
kernels

Logic utilization (ALMs) 16% 20% 23% 26% 29% 31%

Total registers 53,893 72,397 84,439 97,485 106,650 115,269

M20k blocks (RAM blocks) 11% 14.72% 17.38% 20% 21.68% 22.62%
Total block memory bits 3% 3% 3% 4% 4% 4%

4. PROPOSED METHOD AND THE DEVELOPED BENCHMARKS

A set of eight benchmarks is created and compiled with the IOC to test the performance of FPGA

memory systems. The benchmarks are classified as atomic or non-atomic, contentious or non-contentious, and

read or write. For an atomic memory access operation, only one thread can access the desired memory location

at a time, and no other thread can access the same memory location concurrently. In cases of contentious access,

all threads access the same memory location, whereas in non-contentious access cases, different threads access

different memory locations. Threads are divided into work groups, each of which contains 128 threads.

However, only one thread in each workgroup (the first and master thread) can access the memory. Each master

thread performs 1,024 memory access operations, which can be read or written. The “atomicadd” operation is

used to implement the atomic read, and “atomicexchange” is used to implement the write operation. All

benchmark loops are unrolled 256 times; this unrolling factor number is based on the available resources on

the target FPGA to synthesize the proposed design.

Table 2 shows that atomic operations need more time to execute. Reducing the number of atomic

operations will enhance the performance significantly. The effects of contention are not marked. The

computing unit is saturated by running eight workgroups, each comprising 128 threads. Only the master thread

can access the desired memory location.

Table 2. Benchmarks execution times for 1,000 memory operations, measured in milliseconds
Parameter Read (ms) Write (ms) Average access time (ms)

Atomic contention 545 569 557

Atomic non-contention 422 428 425

Contention volatile 64 71 68
Non-contention volatile 68 73 71

The average execution times of various memory read/write operations are shown in Figure 3, and

these are normalized to the execution time of a contention volatile memory operation. Figure 3 also shows the

effects of atomic operations on memory access operations, which may increase the memory access time by

more than eight times. However, the task-parallel model is more commonly used to construct the proposed

design on the FPGA platform. The intel FPGA compiler has the capability to create an effective pipeline design

where data can be shared among multiple loop iterations; this reduces the overall dependencies and the high

cost of using several synchronization mechanisms.

Figure 3. Average memory execution times normalized to the execution time of a contention volatile memory

operation

5. MUTEX IMPLEMENTATION AND RESULTS DISCUSSION
After studying memory access benchmarks, several possible implementations of mutex are developed

and tested on the intel FPGA architecture. All proposed algorithms perform atomic memory access, and only

the master thread has access to memory. These suggested implementations [21] are described.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 1, March 2024: 33-40

38

a. Spinning: in this implementation, the target thread is in the waiting state until the status of the proposed

memory location is changed. Two operations are considered here: i) lock function: the memory location is

continually accessed using atomicexchange, which always returns the old value of the lock. If the returned

value of the lock is 0, the thread can access the critical section; otherwise, it will continuously perform

atomicexchange until it is granted access to the critical section; and ii) unlock function: the critical section

is released by assigning a lock value of 0 using atomicexchange. This method is easy to implement;

however, threads are not necessary to access critical sections in the same order in which they arrive (not

first come first served (FCFS)).

b. Backoff: the target thread continues doing non-useful work before getting access to the resource, two

operations are carried out: i) lock function: the thread tries to gain access to the critical section if it is free.

Otherwise, the thread sleeps for a certain time based on the thread group ID. This time increases after each

trial until it reaches the maximum value, which is determined during the compilation time. This value is

assigned to the minimum value if the incremented value is greater than the maximum value. This process

is repeated until the thread accesses the critical section; and ii) unlock function: the unlock function assigns

a lock value of 0 (nonatomic operation).

c. Fetch and add using backoff: a well-known instruction supported by many processors to introduce an

effective mutex implementation. The backoff is employed here to let the thread wait if the resource is not

available, two operations are implemented here: i) lock function: each thread that should gain access to the

critical section takes a ticket (the first variable), which is a number based on the thread’s arrival order. The

thread can access the critical section only if the value of the ticket is equal to the value of the turn (the

second variable). If the ticket value is not equal to the turn value, the thread uses the backoff algorithm to

sleep for a certain period of time; and ii) unlock function: increment the turn value (nonatomic operation).

d. Fetch and add using sleeping: same as in "fetch and add using backoff", but with the sleeping technique is

used instead of backoff to implement the thread waiting: i) lock function: this function is the same as that

described in the fetch and add using the backoff algorithm, but if the ticket value is not equal to the turn

value, the thread continuously polls the variables’ memory locations to check if the equality condition is

satisfied; and ii) unlock function: increment the turn value (nonatomic operation).

Several experiments with varying numbers of thread blocks are carried out to compare the

performance of these algorithms. The performance of each algorithm is evaluated by measuring the number of

memory operations completed per second. Table 3 shows the experimental results, which demonstrate that the

highest throughput is achieved using the spinning implementation of mutex. Values represent millions of

memory operations per second on the intel DE5 FPGA device. In this case, the target platform is a general intel

FPGA device.

Table 3. The number of operations completed per second × 106. Spinlock is the preferred implementation,

and the fetch and add using the backoff algorithm has the lowest throughput.
Number of blocks Spinning Backoff Fetch and add using Backoff Fetch and add using sleeping

1 1.85 0.83 0.61 0.81
2 2.63 1.00 0.54 1.23

3 3.00 0.95 0.56 1.24

4 2.72 0.96 0.51 1.25
5 2.94 0.98 0.59 1.26

6 3.11 1.03 0.53 1.24

7 2.90 1.16 0.52 1.16

8 3.03 1.26 0.51 1.10

9 3.14 1.32 0.51 1.12

10 2.99 1.32 0.51 1.11

The preferred implementation is that which uses the fewest hardware resources. Table 4 shows some

common resources used for each algorithm. The proposed synthesized architecture of the spinning algorithm

consumes fewer resources than other algorithms. For all algorithms, each loop iteration contains 100 memory

operations, and each operation has lock and unlock functions.

Table 4. Common hardware recourses used in each algorithm
Parameter Spinning Backoff Fetch and add using backoff Fetch and add using sleeping

LUTs (using parentage) 25% 67% 65% 38%

Registers 86.2 K 300.7 K 305.8 K 143.4 K
Total memory blocks (using parentage) 4% 12% 18% 5%

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

 FPGAs memory synchronization and performance evaluation using the open … (Abedalmuhdi Almomany)

39

6. CONCLUSION

Several memory-access-based benchmarks are developed to study the effect of common

synchronization techniques on the overall performance of the proposed synthesized design constructed on the

intel FPGA platform. These benchmarks are developed using the abstracted high-level OpenCL programming

tool. The results demonstrate that using atomic operations in the synthesized design leads to significant

reductions in performance. Therefore, the task-parallel model, which improves the efficiency of the created

design by generating an effective pipeline architecture, is a favorable choice when extra atomic operations are

used. The present study also investigates several implementations of the widely used mutex synchronization

mechanism and determines which implementation could be adopted by the proposed design to maximize the

number of memory operations performed per second.

ACKNOWLEDGEMENTS

The Deanship of Scientific Research at Yarmouk University funded this work with Grant Number

43/2023. It is also supported by the intel FPGA University Program Ticket nos. LR4043 and BR 11211.

REFERENCES
[1] A. Almomany, A. Jarrah, and A. Al Assaf, “FCM clustering approach optimization using parallel high-speed intel FPGA

technology,” Journal of Electrical and Computer Engineering, vol. 2022, pp. 1–11, 2022, doi: 10.1155/2022/8260283.

[2] A. Abedalmuhdi, B. E. Wells, and K.-I. Nishikawa, “Efficient particle-grid space interpolation of an FPGA-accelerated particle-in-

cell plasma simulation,” in 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), Apr. 2017, pp. 76–79. doi: 10.1109/FCCM.2017.63.

[3] V. J. K. K. Sonti, Y. Varthamanan, and D. Sivaraman, “Performance analysis of enhanced adaptive logic module for high

performance FPGA architecture,” Research Journal of Applied Sciences, Engineering and Technology, vol. 9, no. 3, pp. 215–223,
Jan. 2015, doi: 10.19026/rjaset.9.1397.

[4] A. Devrari and A. Kumar, “Reconfigurable linear feedback shift register for wireless communication and coding,” International

Journal of Reconfigurable and Embedded Systems (IJRES), vol. 12, no. 2, p. 195, Jul. 2023, doi: 10.11591/ijres.v12.i2.pp195-204.
[5] G. N. Chiranjeevi and S. Kulkarni, “Image processing using a reconfigurable platform: pre-processing block hardware architecture,”

International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 10, no. 3, pp. 230-236, Nov. 2021, doi:

10.11591/ijres.v10.i3.pp230-236.
[6] G. R. Reddy, C. Perumal, P. Kodali, and B. V. Rajanna, “Design and memory optimization of hybrid gate diffusion input numerical

controlled oscillator,” International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 12, no. 1, pp. 78-86, Mar. 2023,

doi: 10.11591/ijres.v12.i1.pp78-86.
[7] D. K. Siddaraju and R. Munibyrappa, “Design and performance analysis of efficient hybrid mode multi-ported memory modules

on FPGA platform,” International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 11, no. 2, pp. 115–125, Jul.

2022, doi: 10.11591/ijres.v11.i2.pp115-125.
[8] A. Almomany, W. R. Ayyad, and A. Jarrah, “Optimized implementation of an improved KNN classification algorithm using Intel

FPGA platform: Covid-19 case study,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, pp.

3815–3827, Jun. 2022, doi: 10.1016/j.jksuci.2022.04.006.
[9] W. Andre, “Efficient adaptation of the Karatsuba algorithm for implementing on FPGA very large scale multipliers for

cryptographic algorithms,” International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 9, no. 3, pp. 235-241,

Nov. 2020, doi: 10.11591/ijres.v9.i3.pp235-241.
[10] A. Almomany, A. Al-Omari, A. Jarrah, M. Tawalbeh, and A. Alqudah, “An OpenCL-based parallel acceleration of aSobel edge

detection algorithm using IntelFPGA technology,” South African Computer Journal, vol. 32, no. 1, Jul. 2020, doi:
10.18489/sacj.v32i1.749.

[11] A. M. Almomany, “Efficient OpenCL-based particle-in-cell simulation of auroral plasma phenomena within a commodity spatially

reconfigurable computing environment,” Ph.D. dissertation, Dept. Elect and Comp. Eng., University of Alabama in Huntsville,
USA, 2017.

[12] M. Leeser, S. Handagala, and M. Zink, “FPGAs in the Cloud,” Computing in Science & Engineering, vol. 23, no. 6, pp. 72–76,

Nov. 2021, doi: 10.1109/MCSE.2021.3127288.
[13] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow, “FPGAs in the cloud: booting virtualized hardware

accelerators with OpenStack,” in 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing

Machines, 2014, pp. 109–116. doi: 10.1109/FCCM.2014.42.
[14] S. S. Sahasrabudhe and S. S. Sonawani, “Comparing openstack and VMware,” in 2014 International Conference on Advances in

Electronics Computers and Communications, 2014, pp. 1–4. doi: 10.1109/ICAECC.2014.7002392.

[15] N. Tarafdar, N. Eskandari, T. Lin, and P. Chow, “Designing for FPGAs in the cloud,” IEEE Design & Test, vol. 35, no. 1, pp. 23–
29, Feb. 2018, doi: 10.1109/MDAT.2017.2748393.

[16] L. Kumar, P. Pooja, and P. Kumar, “Amazon EC2: (Elastic compute cloud) overview,” in Proceedings of Integrated Intelligence

Enable Networks and Computing, 2021, pp. 543–552. doi: 10.1007/978-981-33-6307-6_54.
[17] N. Jacob et al., “Securing FPGA SoC configurations independent of their manufacturers,” in 2017 30th IEEE International System-

on-Chip Conference (SOCC), Sep. 2017, pp. 114–119. doi: 10.1109/SOCC.2017.8226019.

[18] V. Mirian and P. Chow, “UT-OCL: an OpenCL framework for embedded systems using xilinx FPGAs,” in 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig), 2015, pp. 1–6. doi: 10.1109/ReConFig.2015.7393366.

[19] H. M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama, “OpenCL-based FPGA-platform for stencil computation and its

optimization methodology,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1390–1402, 2017, doi:
10.1109/TPDS.2016.2614981.

[20] H. M. Waidyasooriya, M. Hariyama, and K. Uchiyama, Design of FPGA-based computing systems with OpenCL. Cham: Springer

International Publishing, 2018. doi: 10.1007/978-3-319-68161-0.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 1, March 2024: 33-40

40

[21] J. A. Stuart and J. D. Owens, “Efficient synchronization primitives for GPUs,” Prepr. arXiv.1110.4623, 2011, [Online]. Available:

http://arxiv.org/abs/1110.4623
[22] S. Xiao and W. Feng, “Inter-block GPU communication via fast barrier synchronization,” in 2010 IEEE International Symposium

on Parallel & Distributed Processing (IPDPS), Apr. 2010, pp. 1–12. doi: 10.1109/IPDPS.2010.5470477.

[23] A. Carminati, R. S. de Oliveira, and L. F. Friedrich, “Implementation and evaluation of the synchronization protocol immediate
priority ceiling in PREEMPT-RT linux,” Journal of Software, vol. 7, no. 3, Mar. 2012, doi: 10.4304/jsw.7.3.516-525.

[24] J. M. Garrido, Performance modeling of operating systems using object-oriented simulations: A practical introduction, 2000th ed.

Boston: Kluwer Academic Publishers, 2002. doi: 10.1007/b116043.
[25] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer, “A-port networks: preserving the timed behavior of synchronous

systems for modeling on FPGAs,” ACM Transactions on Reconfigurable Technology and Systems, vol. 2, no. 3, pp. 1–26, Sep.

2009, doi: 10.1145/1575774.1575775.

BIOGRAPHIES OF AUTHORS

Abedalmuhdi Almomany His M.Sc. and Ph.D. in computer engineering from the

University of Alabama in Huntsville in 2015 and 2017, respectively. He earned his B.Sc. in

computer engineering from Yarmouk University in 2005. He started working as an assistant

professor in the Computer Engineering Department of the College of Engineering at Yarmouk

University in 2017. His areas of interest in research are embedded systems, parallel processing,

and reconfigurable computing. He received grants from different institutes to pursue his

research. He can be contacted at email: emomani@yu.edu.jo.

Amin Jarrah His M.Sc. and Ph.D. in computer engineering were earned in 2010

and 2014, respectively, from the Jordan University of Science and Technology and the

University of Toledo in the USA. He worked with firms in the TATA group and Magna

Electronics between 2014 and 2016 as an embedded software engineer. As an assistant professor,

he began working at Yarmouk University in January 2016. At the moment, he holds the position

of associate professor at Yarmouk University in Irbid, Jordan's Department of Computer

Engineering. His research focuses on the use of parallel processing with FPGAs, system on chips

(SoC), and GPU in real-time embedded hardware implementation and high speed computing.

He can be contacted at email: amin.jarrah@yu.edu.jo.

https://orcid.org/0000-0002-5922-6106
https://scholar.google.com/citations?user=S03H8CsAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57214344790
https://orcid.org/0000-0001-8039-190X
https://scholar.google.com/citations?hl=en&user=rvIr_7YAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55600199400

