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 One advantage of the open computing language (OpenCL) software 

framework is its ability to run on different architectures. Field programmable 

gate arrays (FPGAs) are a high-speed computing architecture used for 

computation acceleration. This work develops a set of eight benchmarks 

(memory synchronization functions, explained in this study) using an 

OpenCL framework to study the effect of memory access time on overall 

performance when targeting the general FPGA computing platform. The 

results indicate the best synchronization mechanism to be adopted to 

synthesize the proposed design on the FPGA computation architecture. The 

proposed research results also demonstrate the effectiveness of using a task-

parallel model approach to avoid using high-cost synchronization 

mechanisms within proposed designs that are constructed on the general 

FPGA computation platform. 
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1. INTRODUCTION 

A field programmable gate array (FPGA) is an integrated circuit that programmers can configure 

many times to achieve their goals [1], [2]. FPGAs include many low-level operations, such as shifts and 

additions. Usually, the intel FPGA incorporates several resources, such as random access memory (RAM) 

blocks and digital signal processors (DSPs), to perform various complex arithmetic functions and look-up 

tables (LUTs) [2]. LUTs are also used to implement several functions Figure 1. However, multiple LUTs can 

be combined to implement more complex functions. The DE5 (Stratix V) FPGA device is used in the present 

study. The adaptive logic module (ALM) resource allows a wide range of functions to be implemented 

efficiently. Each ALM contains several function units. The block diagram for ALM is shown in Figure 1 [3]. 

FPGA as a reconfigurable architecture provides better reconfiguration in which bit-level configuration is 

performed [4]–[7]. 

The flexible parallel hardware architecture is guaranteed by FPGA technology. It includes many logic 

components, such as adders, multipliers, and comparators. It also includes a lot of DSPs, LUTs, clocks, 

configurable I/O, memories, and wired connections between these components. Because these components 

operate concurrently, allowing for a large amount of computation to be done independently at once, we can 

achieve a high level of parallelization with this FPGA implementation [8]–[10]. Many semiconductor 

companies, including Xilinx, Altera, Actel, Lattice, Quick Logic, and Atmel, produced and improved FPGA. 

Three types of FPGA-based spatially reconfigurable computing environments are now commercially 

available. They include commodity FPGA-based accelerator cards, stand-alone system on programmable chip 

(SoPC) environments, and cloud-based spatially reconfigurable platforms. Commodity FPGA-based 
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accelerator cards are the most common commercially available spatially reconfigurable computing 

environment and were chosen as the computing environment for this research. These cards are designed to be 

incorporated within a standard central processing unit (CPU)-based computing system as an add-on low-profile 

peripheral component interconnect express (PCIe)-based daughter card. They incorporate one or more high-

end FPGAs and significant amounts of multi-banked double data rate synchronous dynamic random-access 

memory (DDR SDRAM) physical memory (8 GB to 32 GB), which are local to the card. The cards often also 

contain high speed network ports and flash memory that can be used to load default configurations within the 

FPGAs. Stand-alone SoPC configurations are also quite prevalent at the time of this writing. SoPC 

configurations also include high-end FPGAs that often contain built-in embedded CPU processing cores. SoPC 

configurations also contain varying amounts of DDR SDRAM physical memory and a host of I/O interfaces. 

SoPC configurations differ primarily from accelerator cards in that they are not designed to augment an existing 

CPU system [11]. 

 

 

 
 

Figure 1. ALM block diagram 

 

 

FPGA platforms are now becoming available on the cloud [12]. FPGA-based resources are accessible 

using OpenStack virtual machine environment, which provides tools for cloud resource management [13], [14]. 

In a related study, a framework that integrated Xilinx FPGAs into the cloud based on OpenStack showed great 

efficiency and scalability upon hosting multiple processes and virtual machines (VMs) [15]. FPGAs are also 

accessible as an F1 compute instance on the Amazon Elastic Cloud, where each instance contains up to eight 

FPGAs [16]. These instances could be used effectively to create a customized user’s design in a wide range of 

commercial and scientific applications. 

Commodity FPGA-based technology has several issues, though, which must be carefully considered. 

One important issue is that while it is possible to create specialized functional units and data paths that closely 

mirror the structure of the application, the FPGA resources that are required are usually only a fraction of those 

required to implement the application in its most optimized form. Thus, the intelligent time sharing of these 

resources is mandatory and is the system-wide focus of what is a very complex optimization problem. The time 

it takes to configure an FPGA is large compared to the time taken to perform a base operation. The 

reconfiguration time for large FPGAs can be in the order of seconds, whereas the internal clock speed can be 

greater than 300 MHz. This means that internal FPGA resource trade-offs may have to be made that will 

decrease the utilization and increase time sharing to reduce the number of FPGA reconfigurations required. 

Another possibility is to utilize partial reconfigurability, which is supported by most modern FPGAs. Partially 

reconfigurable devices allow for the logic functionality of a subsection of its programmable resources to be 

reconfigured without interrupting the operation of the other portion of the reconfigurable logic. Unfortunately, 

this feature is often poorly utilized. Another major issue is the time it takes to synthesize a design. The fine-

grain complexity of FPGAs can result in extremely long design compilation times, which can take hours or 

days to complete. This problem is most apparent when the FPGA-based resources needed by the application 

get close to the actual resources that are present on the system. It becomes imperative in such cases that the 

high-level design environment allow for the functionality of the design to be verified quickly before it goes 

through this lengthy process. Fortunately, high-level synthesis environments, such as the open computing 

language (OpenCL) support an emulator mode where emulation can be performed on the CPU. Still, this 

constraint precludes the use of just-in-time compilation techniques that are possible in GPU and some CPU 

applications. This means all modules that are to be executed on the FPGA must therefore be progenerated in 

an offline manner [11]. 
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OpenCL is used to harness the benefits of multi-processing elements. The wide variety of platforms 

that can be used for OpenCL makes it an attractive choice for heterogeneous systems in which several 

computations can be distributed among different computation architecture elements [10]. The OpenCL code 

written to run on the FPGA is implemented as a kernel, and the kernel code is compiled using the intel offline 

compiler (IOC). The kernel could be executed with one or multiple items (threads) [11], the choice depends on 

the code characteristics, and the goal is to achieve the highest degree of parallelism. The OpenCL standard 

naturally enables the ability to specify parallel algorithms to be implemented on FPGAs, at a far higher degree 

of abstraction than hardware description languages (HDLs) like VHDL or Verilog, in addition to providing a 

portable model. 

Because FPGAs are not just processors using a typical software design flow, targeting FPGAs from 

OpenCL presents some special challenges. The FPGA architecture differs significantly from the typical 

platforms (such as CPUs and GPUs) that OpenCL implementations target. For instance, FPGA makers recently 

debuted programmable system-on-chips (SoCs), in which a SoC is connected to FPGA fabric to create a 

customizable platform for an embedded system environment, like the Zynq platform [17]. Additionally, there 

is plenty of room for OpenCL to adjust to this kind of platform due to the long compilation time, the 

programmable nature of FPGAs, and the capability for partial reconfiguration [18]. 

The notion of pipeline parallelism is an important concept of the IOC, which synthesizes the high-

level abstracted OpenCL code on the target FPGA device. Pipelined architectures allow data to pass through 

various stages before the proposed result is attained. The IOC creates a customized pipeline architecture based 

on the proposed kernel code [19]. Figure 2 illustrates how the IOC creates the pipeline architecture for a given 

kernel code. Several optimization techniques, such as shift-register and loop unrolling can feasibly be used to 

create a powerful design architecture. Loop unrolling allows more operations to be performed per clock cycle 

by duplicating the necessary function units. Meanwhile, the shift-register technique helps reduce the 

dependency between consecutive statements, thereby reducing the number of stall cycles. The intel FPGA 

compiler provides several tools to modify the design’s performance and solve possible critical issues that may 

reduce the effectiveness of the architecture before synthesizing the proposed FPGA device [20]. 

 

 

 
 

Figure 2. Illustration of the pipeline architecture created by the IOC for a given kernel code written in 

OpenCL 

 

 

The code written in OpenCL to perform the acceleration process on the intel FPGA architecture has 

two parts. The first part is the host code, which is written in standard C/C++ code and compiled using the 

gcc/g++ compiler [8]. The host code is responsible for starting the acceleration process, deciding what data 

should be transferred between the host and the FPGA global memory, and deciding which parts of the code 

should be accelerated on the FPGA device. The overall host code is a sequence of steps taken before and after the 

kernel code is launched. The second part is the kernel code, which is implemented using the OpenCL application 

programming interfaces (APIs) and compiled with the IOC to generate the device executable code [10]. 
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This work is based on the study titled “efficient synchronization primitives for GPU” [21], in which a 

set of eight benchmarks was developed using a compute unified architecture (CUDA) software framework to 

study the effect of memory access time on overall performance. The present study intends to replicate this work 

and study the effect of several synchronization functions on the overall performance when targeting the general 

FPGA computing platform. Several synchronization techniques can be used when multiple threads cooperate 

to perform related tasks and have access to commonly shared variables. The barrier is a common 

synchronization technique that allows all synchronized threads to stop at a certain point; then, once the last 

thread reaches this point, all threads resume their execution [22]. Mutex is another synchronization mechanism 

that allows only one thread to execute in the critical section to avoid the race condition issue. A binary 

semaphore is similar to a mutex mechanism when a single resource exists [23]. Meanwhile, the counting 

semaphore controls access to shared resources when there are multiple instances of a resource, and each 

instance cannot be used by more than one thread concurrently [24]. 

Although these synchronization techniques must be used to control access to shared resources, they 

introduce a significant time overhead due to the overall waiting time required for each thread to access the 

critical resource [25]. The present research recommends a technique that could have less overhead than other 

techniques when implemented on the FPGA platform. Several benchmarks are developed to analyze the 

memory access time of various implementations, thereby achieving the study’s purpose. These benchmarks are 

classified as atomic or non-atomic in the first layer and as having high or low contention in the second layer. 

Finally, for read or write memory operations, we define atomic access as the access of only one thread 

to a distinct memory location, such that atomic accesses to the same memory location must be serialized. High 

contention means that all threads will access the same memory location. Meanwhile, in low contention 

instances, we generate multiple memory locations separated by at least 64 bytes, and there is a minimal chance 

that two or more threads will access the same memory location [21]. Lastly, in this design, we assume that each 

workgroup has 128 work items. Only one thread (the master thread) is given access to memory; for simplicity, 

thread zero is the master thread. 

 

 

2. RESEARCH EXPERIMINTAL ENIVRONMENT 

All benchmarks are compiled using the GCC V4.4 and the intel FPGA compiler V13.1, which are 

compatible with the Linux Centos operating system. The target FPGA used is the DE5 Stratix V device 

(5SGXEA7N2F45C2). This board contains enough resources, including 234 K ALMs, more than 250 DSP 

blocks, and 2.6 K RAM blocks to synthesize the user's code in various heavy computation applications. The 

host CPU and the target board are connected via a PCIe connection, which enables extremely rapid data 

transfers between the processing units. 

 

 

3. AVAILABLE RESOURCES VS THROUGHPUT TRADE-OFFS 
Each FPGA contains a countable number of specific resources, such as ALMs, memory blocks, and 

DSPs. The proposed FPGA is usually connected to the host machine using the PCIe interface [6]. Each kernel 

is translated into a proposed hardware circuit using a fixed amount of resources. Typically, all kernels are 

combined into a single.cl (device code) file. While it takes only microseconds to milliseconds to run the kernel 

on the proposed FPGA (depending on the synthesized design), the overhead associated with switching the 

kernel during runtime is extremely large. The experiment was run 100 times to determine that it took 

approximately 1.612 seconds to configure the device at runtime. This outcome indicates that the configuration 

time is significant in most cases. 

Another factor to consider is the additional resource consumption associated with using a high-level 

abstract OpenCL programming tool. Experiments demonstrate that approximately 16% of the ALMs, 11% of 

memory blocks, 3% of the total memory bits, and 53,893 registers are consumed to implement a blank (empty 

code) kernel. The extra resource overhead shown in Table 1 can be avoided by combining multiple kernels into 

a single file. Table 1 summarizes multiple kernels of vector addition, where the kernel is duplicated up to five 

times in a single file. Column 2 shows the resource usage of the blank kernel, column 3 shows the resource 

usage of a single vector addition kernel, and columns 4 to 7 show the resource usage of two, three, four, and 

five vector addition kernels. The experiment demonstrates the overhead associated with using a high-level 

abstracted OpenCL tool. 

Loop unrolling can enhance performance by running several loop iterations in each clock cycle. 

However, the duplication function unit required to implement the loop unrolling technique consumes more 

resources. As such, the loop unrolling factor depends mainly on the number of resources available. Because of 

hardware limitations, we cannot fully unroll the loop in this work. Therefore, the loops in all benchmarks are unrolled 

256 times. The same is true for different mutex implementations; all implementations are unrolled 10 times. 
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Table 1. FPGA resource usage for a single and multible vector addition kernel 
Resources/kernel Blank 

Kernel 
Vadd-1 
kernel 

Vadd–two 
kernels 

Vadd-three 
kernels 

Vadd–four 
kernels 

Vadd–five 
kernels 

Logic utilization (ALMs) 16% 20% 23% 26% 29% 31% 

Total registers 53,893 72,397 84,439 97,485 106,650 115,269 

M20k blocks (RAM blocks) 11% 14.72% 17.38% 20% 21.68% 22.62% 
Total block memory bits 3% 3% 3% 4% 4% 4% 

 

 

4. PROPOSED METHOD AND THE DEVELOPED BENCHMARKS 

A set of eight benchmarks is created and compiled with the IOC to test the performance of FPGA 

memory systems. The benchmarks are classified as atomic or non-atomic, contentious or non-contentious, and 

read or write. For an atomic memory access operation, only one thread can access the desired memory location 

at a time, and no other thread can access the same memory location concurrently. In cases of contentious access, 

all threads access the same memory location, whereas in non-contentious access cases, different threads access 

different memory locations. Threads are divided into work groups, each of which contains 128 threads. 

However, only one thread in each workgroup (the first and master thread) can access the memory. Each master 

thread performs 1,024 memory access operations, which can be read or written. The “atomicadd” operation is 

used to implement the atomic read, and “atomicexchange” is used to implement the write operation. All 

benchmark loops are unrolled 256 times; this unrolling factor number is based on the available resources on 

the target FPGA to synthesize the proposed design. 

Table 2 shows that atomic operations need more time to execute. Reducing the number of atomic 

operations will enhance the performance significantly. The effects of contention are not marked. The 

computing unit is saturated by running eight workgroups, each comprising 128 threads. Only the master thread 

can access the desired memory location. 

 

 

Table 2. Benchmarks execution times for 1,000 memory operations, measured in milliseconds 
Parameter Read (ms) Write (ms) Average access time (ms) 

Atomic contention 545 569 557 

Atomic non-contention 422 428 425 

Contention volatile 64 71 68 
Non-contention volatile 68 73 71 

 

 

The average execution times of various memory read/write operations are shown in Figure 3, and 

these are normalized to the execution time of a contention volatile memory operation. Figure 3 also shows the 

effects of atomic operations on memory access operations, which may increase the memory access time by 

more than eight times. However, the task-parallel model is more commonly used to construct the proposed 

design on the FPGA platform. The intel FPGA compiler has the capability to create an effective pipeline design 

where data can be shared among multiple loop iterations; this reduces the overall dependencies and the high 

cost of using several synchronization mechanisms. 

 

 

 
 

Figure 3. Average memory execution times normalized to the execution time of a contention volatile memory 

operation 

 

 

5. MUTEX IMPLEMENTATION AND RESULTS DISCUSSION 
After studying memory access benchmarks, several possible implementations of mutex are developed 

and tested on the intel FPGA architecture. All proposed algorithms perform atomic memory access, and only 

the master thread has access to memory. These suggested implementations [21] are described. 
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a. Spinning: in this implementation, the target thread is in the waiting state until the status of the proposed 

memory location is changed. Two operations are considered here: i) lock function: the memory location is 

continually accessed using atomicexchange, which always returns the old value of the lock. If the returned 

value of the lock is 0, the thread can access the critical section; otherwise, it will continuously perform 

atomicexchange until it is granted access to the critical section; and ii) unlock function: the critical section 

is released by assigning a lock value of 0 using atomicexchange. This method is easy to implement; 

however, threads are not necessary to access critical sections in the same order in which they arrive (not 

first come first served (FCFS)). 

b. Backoff: the target thread continues doing non-useful work before getting access to the resource, two 

operations are carried out: i) lock function: the thread tries to gain access to the critical section if it is free. 

Otherwise, the thread sleeps for a certain time based on the thread group ID. This time increases after each 

trial until it reaches the maximum value, which is determined during the compilation time. This value is 

assigned to the minimum value if the incremented value is greater than the maximum value. This process 

is repeated until the thread accesses the critical section; and ii) unlock function: the unlock function assigns 

a lock value of 0 (nonatomic operation). 

c. Fetch and add using backoff: a well-known instruction supported by many processors to introduce an 

effective mutex implementation. The backoff is employed here to let the thread wait if the resource is not 

available, two operations are implemented here: i) lock function: each thread that should gain access to the 

critical section takes a ticket (the first variable), which is a number based on the thread’s arrival order. The 

thread can access the critical section only if the value of the ticket is equal to the value of the turn (the 

second variable). If the ticket value is not equal to the turn value, the thread uses the backoff algorithm to 

sleep for a certain period of time; and ii) unlock function: increment the turn value (nonatomic operation). 

d. Fetch and add using sleeping: same as in "fetch and add using backoff", but with the sleeping technique is 

used instead of backoff to implement the thread waiting: i) lock function: this function is the same as that 

described in the fetch and add using the backoff algorithm, but if the ticket value is not equal to the turn 

value, the thread continuously polls the variables’ memory locations to check if the equality condition is 

satisfied; and ii) unlock function: increment the turn value (nonatomic operation). 

Several experiments with varying numbers of thread blocks are carried out to compare the 

performance of these algorithms. The performance of each algorithm is evaluated by measuring the number of 

memory operations completed per second. Table 3 shows the experimental results, which demonstrate that the 

highest throughput is achieved using the spinning implementation of mutex. Values represent millions of 

memory operations per second on the intel DE5 FPGA device. In this case, the target platform is a general intel 

FPGA device.  

 

 

Table 3. The number of operations completed per second × 106. Spinlock is the preferred implementation, 

and the fetch and add using the backoff algorithm has the lowest throughput. 
Number of blocks Spinning Backoff Fetch and add using Backoff Fetch and add using sleeping 

1 1.85 0.83 0.61 0.81 
2 2.63 1.00 0.54 1.23 

3 3.00 0.95 0.56 1.24 

4 2.72 0.96 0.51 1.25 
5 2.94 0.98 0.59 1.26 

6 3.11 1.03 0.53 1.24 

7 2.90 1.16 0.52 1.16 

8 3.03 1.26 0.51 1.10 

9 3.14 1.32 0.51 1.12 

10 2.99 1.32 0.51 1.11 

 

 

The preferred implementation is that which uses the fewest hardware resources. Table 4 shows some 

common resources used for each algorithm. The proposed synthesized architecture of the spinning algorithm 

consumes fewer resources than other algorithms. For all algorithms, each loop iteration contains 100 memory 

operations, and each operation has lock and unlock functions. 

 

 

Table 4. Common hardware recourses used in each algorithm 
Parameter Spinning Backoff Fetch and add using backoff Fetch and add using sleeping 

LUTs (using parentage) 25% 67% 65% 38% 

Registers 86.2 K 300.7 K 305.8 K 143.4 K 
Total memory blocks (using parentage) 4% 12% 18% 5% 
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6. CONCLUSION 

Several memory-access-based benchmarks are developed to study the effect of common 

synchronization techniques on the overall performance of the proposed synthesized design constructed on the 

intel FPGA platform. These benchmarks are developed using the abstracted high-level OpenCL programming 

tool. The results demonstrate that using atomic operations in the synthesized design leads to significant 

reductions in performance. Therefore, the task-parallel model, which improves the efficiency of the created 

design by generating an effective pipeline architecture, is a favorable choice when extra atomic operations are 

used. The present study also investigates several implementations of the widely used mutex synchronization 

mechanism and determines which implementation could be adopted by the proposed design to maximize the 

number of memory operations performed per second. 
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