
International Journal of Reconfigurable and Embedded Systems (IJRES) 

Vol. 12, No. 3, November 2023, pp. 384~391 

ISSN: 2089-4864, DOI: 10.11591/ijres.v12.i3.pp384-391      384  

 

Journal homepage: http://ijres.iaescore.com 

Security of software defined networks: evolution and challenges 
 

 

Siham Aouad1, Issam El Meghrouni2, Yassine Sabri3, Adil Hilmani2, Abderrahim Maizate2 
1Smart Systems Laboratory, National School of Computer Science and Systems Analysis, Mohamed V University, Rabat, Morocco 

2RITM-ESTC/CED-ENSEM, Hassan II University, Casablanca, Morocco 
3Laboratory of Innovation in Management and Engineering for Enterprise (LIMIE), ISGA Institut Supérieur d'Ingénierie & des Affaires, 

Rabat, Morocco 

 

 

Article Info  ABSTRACT  

Article history: 

Received Mar 4, 2023 

Revised Apr 18, 2023 

Accepted May 8, 2023 

 

 In software-defined networking (SDN), network traffic is managed by 

software controllers or application programming interfaces (APIs) rather 

than hardware components. It differs from traditional networks, which use 

switches and routers to control traffic. Using SDN, you can create and 

control virtual networks or traditional hardware networks. Furthermore, 

OpenFlow allows network administrators to control exact network behavior 

through centralized control of packet forwarding. For these reasons, SDN 

has advantages over certain security issues, unlike traditional networks. 

However, most of the existing vulnerabilities and security threats in the 

traditional network also impact the SDN network. This document presents 

the attacks targeting the SDN network and the solutions that protect against 

these attacks. In addition, we introduce a variety of SDN security controls, 

such as intrusion detection systems (IDS)/intrusion prevention system (IPS), 

and firewalls. Towards the end, we outline a conclusion and perspectives. 
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1. INTRODUCTION  

In the last several years, traditional computer networks have experienced great challenges that 

mainly result from modern applications deployed on these networks. The paradigm of software-defined 

networking (SDN) emerged within this particular context, this enables us primarily to adjust to the constantly 

changing nature of various applications. Indeed, SDN mainly allows the centralization of the logic 

determining the management policies of a network in one or more units called controllers. These controllers 

communicate with the rest of the network equipment. Therefore, defining a network management policy 

amounts to writing programs and deploying them in the controllers. In most cases, these programs will be 

compiled, taking into account the topology and the available resources, to generate the configurations 

necessary for each network device to implement the desired policies. Several prominent companies and 

universities, including Google and Stanford, have embraced the SDN architecture. On the other hand, 

manufacturers of network equipment such as Cisco, HP, and Juniper now offer SDN solutions that make it 

possible to manage data centers. 

SDN, an inventive architecture, enables the separation of the control plane from the data plane, 

allowing them to evolve and develop independently. Ethane [1] was one of the first protocols used in SDN. 

Using a centralized control architecture, this model was suggested for corporate networks. In order to support 

the Ethane protocol, custom switches were needed (NetFPGA, OpenWrt, Linux). SDN's main protocol is 
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Openflow [2], an open architecture originally developed to allow researchers to experiment on heterogeneous 

networks without impacting actual traffic. In the switch data plane, Openflow [3] aims to provide more 

configuration optionsOpenflow involve communication between the data plane and the centralized control 

plane, allowing for the network to be entirely managed through user software applications application 

programming interfaces (APIs). With the implementation of OpenFlow [3], the restrictions of static protocols 

are eliminated, facilitating quick advancement and stimulating exploration of new network technologies. The 

subsequent sections of the paper are structured in the following manner: in section 2, a definition of the SDN 

architecture is presented. Then, section 3 presents security attacks and solutions for SDN. Subsequently, section 

4 explores the challenges associated with SDN. In conclusion, we provide our perspectives on this work. 

 

 

2. ARCHITECTURE OF SOFTWARE-DEFINED NETWORKING 

By utilizing software applications, SDN enables intelligent control over the network's functioning, 

making it a distinctive network architecture approach [4]. The traditional network environment that relies on 

predetermined software and hardware from network hardware vendors undergoes a transformation through 

SDN, into a flexible, centrally managed software and management environment, enabling network 

abstraction programming. Then, it is based on a structure with three superimposed planes a data plane, a 

control plane, and an application plane. The southbound interface (SBI) at the SDN switch level facilitates 

communication, while the northbound interface (NBI) located in the control plane ensures communication 

between controllers and applications [5]. 

 

2.1.  Data plan 

An SDN infrastructure includes network equipment (switches, routers, and middleboxes) similar to 

a traditional network. Physical devices have become simple transmission elements without integrated 

controls or software for autonomous operation. Transmission of data flow occurs through the data plane. 

Data plane devices provide intelligence to the controller, a logically centralized system. Its main task is to 

forward incoming flows to their destinations, using routes defined in flow tables. Furthermore, these novel 

networks are constructed using open and standard interfaces like OpenFlow, which ensure interoperability, 

communication compatibility, and configuration. As shown in Figure 1, SDN/OpenFlow architectures consist 

of two main components: controllers and forwarding devices.  

 

 

 
 

Figure 1. Architecture of SDN [6] 

 

 

2.2.  Control plane 

The network operating system (NOS) in SDN logically centralizes network control, simplifying 

network management and issue resolution [7]. Similar to traditional operating systems, a NOS offers 

developers abstractions, vital services, and APIs. The NOS can offer generic capabilities as services, 

including network status and topology information, network configuration distribution, and device discovery. 

Thanks to the NOS, a developer is relieved from the burden of handling the intricacies of data distribution 
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among routing elements. By reducing the complexity associated with developing network protocols and 

applications, such systems may allow innovation to occur at a faster rate. 

 

2.3.  Application plane 

As shown in Figure 1, the application layer is positioned above the control layer. By means of the 

northbound interface, SDN applications can obtain a real-time global perspective of the network, including 

its instantaneous status, as exemplified by application layer traffic optimization (ALTO) [8]. Armed with this 

information, SDN applications can leverage a high-level language offered by the control layer to devise 

tactics for controlling the underlying physical networks. SDN provides the "Platform as a Service" paradigm 

for networking in this field [9]. 

 

2.4.  Southbound API 

The southbound API, which bridges forwarding devices and control planes, is among the most 

crucial elements of an SDN system. The southbound API allows the controller to control network behavior 

by managing flow inputs from all the underlying switches, in addition to other functionalities, protocol 

plugins (such as simple network management protocol (SNMP), border gateway protocol (BGP), and 

NetConf) enable the controller to oversee both new and existing physical or virtual devices through 

southbound APIs (like OpenFlow, POF, OpFlex, and OpenState). At present, OpenFlow is widely considered 

as the standard for the SBI in SDN [10]. 

 

2.5.  Northbound  

The northbound interface (NBI) is the interface between applications and the controller. Currently, 

OpenFlow is widely accepted as the southbound API, but a common northbound API is yet to be developed. 

As use cases are still being developed, it might be too early to define a standard northbound API [11]. Either 

way, expect a common northbound API to emerge as SDN evolves. Taking advantage of SDN's full potential 

requires an abstraction that allows applications to be independent of specific implementations. 

 

 

3. SECURITY ATTACKS AND SOLUTIONS FOR SDN 

3.1.  Security attacks in the SDN network 

SDN is a type of network architecture that involves the separation of the data plane and the control 

plane, enabling more efficient and flexible network management. However, as with any network architecture, 

SDN networks are susceptible to security attacks. One common type of attack on SDN networks is known as 

the distributed denial of service (DDoS) attack, which floods the network with traffic, causing it to slow 

down or crash. Additionally, SDN networks that rely on centralized controllers may be more vulnerable to 

attacks on the controller, which can have a ripple effect on the entire network. SDN architecture offers 

several advantages, yet it suffers from security issues: 

- Open programmable APIs: APIs with open programming interfaces may cause security issues when 

attackers exploit them via software security vulnerabilities like injections of malicious code or web 

attacks like cross-site scripting (XSS). 

- Controller issues: controllers are centralized, making them single points of failure and attack targets; 

therefore, they can be a target for attackers. 

- SDN switches issues: SDN switches are susceptible to DDoS attacks, in which an attacker can flood the 

flow table with numerous large packets, due to the restricted number of flow tables [12]. 

After conducting the analysis, it was found that both traditional networks and SDN are susceptible 

to security threats such as tampering, spoofing, DoS, and information disclosure. To mitigate such attacks, it 

is crucial to implement robust security measures including access control, traffic filtering, and encryption. 

Additionally, it is essential to keep the network devices and software updated and patched on a regular basis 

to address any known vulnerabilities. 

 

3.1.1. Application layer attacks 

Application layer attacks in SDN are a type of security threat that targets the application layer of the 

SDN architecture. Application layer attacks aim to exploit vulnerabilities in the network applications running 

on the SDN infrastructure. These vulnerabilities can be caused by errors in the software code, 

misconfiguration, or insufficient security measures. Above we quote some control layer attacks: 

- Unauthorized access: the SDN application layer is located on the control layer that encompasses the 

tangible aspects of SDN functionalities. Generally, applications are not developed by controller 

vendors, but by third parties, who do not take security concerns into account during the development 
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process [13]. Thus, attackers can exploit this and gain unauthorized access to sensitive information and 

make changes without having to authenticate [14]. 

- Malicious code: an attacker could potentially inject malicious code into the network, either through the 

SDN controller or through one of the forwarding devices. This code could then be executed on the 

network, potentially allowing the attacker to gain access to systems or steal sensitive information. 

- Policy insertion: different fields such as cloud computing use SDN extensively with a variety of 

services and sophisticated applications. Consequently, security rules can conflict when created and 

inserted. 

 

3.1.2. Control layer attacks 

Control layer attacks in SDN refer to attacks that target the control plane of the SDN architecture. 

Control layer attacks aim to disrupt the operation of the control plane, either by modifying the control 

messages or by injecting fake control messages. We quote some control layer attacks: 

- Denial of service and distribute: attackers impose floods of requests on the controller by flooding the 

network with flooded requests that saturate the controller by consuming its resources. These attacks can 

target the channel level, the controllers, or the controllers and switches. SDN controllers are challenged 

by DDoS/DoS attacks that disrupt legitimate users' access to the network [13], [15]. 

- Attacks from applications: as mentioned before, the application layer sits above the control layer. By 

getting unauthorized access to the application layer, an attacker can obtain data over the network and 

attack the control layer. 

- Attacks that target distributed multi-controllers distributed multi-controllers divide the network into 

sub-networks to handle the growing network range. Additionally, this solution can create security 

problems, such as implementing an efficient security policy and managing configuration conflicts [16]. 

 

3.1.3. Infrastructure layer attacks 

Infrastructure layer attacks in SDN are a type of security threat that targets the physical components 

of the SDN infrastructure. Infrastructure layer attacks aim to exploit vulnerabilities in the network 

infrastructure by targeting network devices such as switches and routers. We quote some control layer 

attacks: 

- DoS attack: in order to intercept the flow table and buffer flow, for an attacker to generate new rules for 

the flow table, they must send large and unfamiliar packets continuously. As a result of this attack, 

legitimate packets are dropped and compromised [16], [17]. 

- Man-in-the-middle: as a man-in-the-middle attack, the attacker intercepts information flowing between 

the switches and the controllers without being detected. As a result of this attack, additional attacks that 

can be executed include black hole attacks and eavesdropping [13], [17]. 

- Switch spoofing attacks: these attacks involve a malicious actor posing as a legitimate switch in the 

SDN network in order to gain unauthorized access to the network or to steal sensitive information.  

- Flow-table overflow attacks: these attacks involve overwhelming the flow table of an SDN switch with 

a large number of flow table entries, causing the switch to become unresponsive or malfunction. 

 

3.2.  Proposed SDN security solutions 

As mentioned in section 3.1, threats and requirements differ at each layer of the SDN architecture. 

These requirements need to be met in order to prevent various types of security threats and attacks. Layers 

can be affected by communication flood attacks between the controller and the switch. Unauthorized access 

to the controller can be a consequence of authorization attacks. The following are the suggested solutions to 

the major security issues in SDN: 

- Use of transport layer security (TLS): one of the most well-known security protocols today is TLS. 

Several network-based applications and services use the TLS protocol to secure end-to-end 

communications, including web browsers and server software, email clients and servers, instant 

messengers, and teleconference applications. TLS's security has been closely scrutinized, and it has 

been updated over time to maintain high-security levels. The TLS protocol is used to secure north-south 

communication. It prevents flow injection by encrypting flows [18]. The use of TLS in SDN provides 

several benefits, including confidentiality, integrity, and authentication. Confidentiality is achieved by 

encrypting the communication between the SDN components, ensuring that the information exchanged 

cannot be intercepted and read by unauthorized parties [19]. Securing the communication between 

switches and the controller is a crucial use case of TLS in SDN. The importance of this is that the 

controller is responsible for overseeing the switches' operation. If the communication between them is 

compromised, an attacker may gain control of the network. Securing the communication between the 

SDN controller and various network components, including the OpenFlow switch, is another use case of 
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TLS in SDN. By using TLS, the controller can ensure that it is communicating with the intended switch 

and that the communication is encrypted and secure [20]. In conclusion, the use of TLS in SDN is 

important for securing communication between different SDN components. It provides confidentiality, 

integrity, and authentication, ensuring that the communication is secure and cannot be intercepted or 

tampered with by unauthorized parties. 

- Firewall implementation: traditionally, firewalls are deployed as distinct devices from network devices. 

Forwarding and dropping packets between network devices that support OpenFlow are simple to 

implement in SDN networks since it is among the features of the protocol implying that establishing 

distributed firewall operations on all OpenFlow-supported network devices is straightforward. Several 

tasks that are usually managed by firewalls are executed by SDN controllers. For example, Flow rules 

are written into switches' flow tables by controllers in SDN to determine the fate of flows. Controllers 

keep rules or access control lists (ACLs) for every switch in an SDN network. Traditional networks do 

not support such connections (between firewalls and switches). OpenFlow has extended flow attributes 

in recent versions, letting SDN-based firewalls handle flow and packet attributes more specifically. 

- Intrusion detection/protection systems (IDS/IPS): by comparing packet signatures with existing threat 

inventories, mining data, and recognizing patterns, intrusion detection and prevention systems 

(IDS/IPS) are able to allow or stop packets [21]. 

- Network scan detection: one approach to detecting attached connections is the threshold random walk 

method [22], which examines the outcome of TCP connections. There are statistically more failures 

than successes, but still enough differences to distinguish TCP packets into the failure of each 

connection. With SDN, flows can be monitored by sessions by controlling the flow rules. In these 

protocols, the amount of packets forwarded to the server is used to verify the scan, since no session 

information is available. The TCP protocol, however, is generally used for most network scanning 

attacks. 

 

 

4. SECURITY CHALLENGES WITH SDN 

SDN paradigm offers several advantages, such as flexibility, agility, and scalability. Furthermore, it 

presents numerous security challenges that must be tackled to safeguard the network's security. The 

following are the significant security challenges linked with SDN. 

- Centralization: SDN's centralization of the control plane is one of the primary security challenges, as 

one potential drawback is that it creates a single point of failure and a possible target for attacks. An 

attacker who gains control of the central controller can compromise the entire network [23]. 

- Communication security: another significant security challenge in SDN is securing the communication 

between the controller and switches. In the event of this communication being compromised, it would 

allow an attacker to manipulate the network traffic, leading to data theft or unauthorized access [24]. 

- Malicious applications: SDN allows for the creation and installation of applications on the controller, 

which can access the network infrastructure. If a malicious application is installed, it can present a 

substantial risk to the network's security [25]. 

- Authorization and access control: in SDN, the controller has complete control over the network, which 

means that proper authorization and access control mechanisms must be in place to prevent 

unauthorized access and manipulation of the network [26]. 

- Denial of service attacks: since the control plane in SDN is centralized, it is susceptible to DoS attacks. 

Attackers can flood the controller with a high volume of requests, causing it to become unresponsive 

and preventing it from controlling the network. 

SDN solutions face a number of security challenges, among them robustness and scalability. 

Conducting stateful inspections at advanced levels or on numerous subjects necessitates substantial memory, 

storage, and network resources. Managing the surge in the number of states poses a challenge as any 

modification in the traffic flows or network elements alters the network state, which is defined by rules and the 

traffic flows within the network. There can be a huge number of possible states as a result. The utilization of 

FlowTest for the evaluation of SDN policies and firewall scenarios in stateful network scenarios was suggested 

by Casado et al. [27]. In order to test stateful behaviors systematically, they emphasized data plane testing. In 

general, policies include high-level instructions that are stateful. "Block unsolicited Internet connections" is an 

example of a policy. There is no reference to any (L2-L3) information in such a policy. Firewalls must work 

beyond the L2-L3 layer in order to accomplish this. There are different states of TCP connections (e.g., new, 

null, … invalid, or established). Rather than representing network states, they represent traffic states. Moreover, 

a session-level proxy module is also proposed to support stateful inspection. Hypertext transfer protocol (HTTP) 

objects are used to express proxy state. In addition, providing access control solutions that are flexible and 
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dynamic is the goal of SDN. A fine-grained access control policy is provided by the Ethane SDN architecture 

[28]. SDN was inspired by the Ethane protocol and the OpenFlow protocol, which enables central control over 

networks. A central controller and flow-based networks are used in Ethane. Makes decisions about flows by 

switching them directly to the controller. The central controller maintains policies. Therefore, the primary 

objective is to ensure the security of the controller and its communication. According to Huang et al. [29] 

PermOF is a fine-grained system for SDN access control. The PermOF provides 18 levels of permission to 

minimize the possibility of privilege escalation or intrusion. As part of the permission system, run-time isolation 

(between the controller and applications) is also implemented. An OpenFlow application is granted the least 

privilege by default. The applicability of such approaches depends on the ability to isolate applications from 

controllers. On the other hand, there are also other challenges in the SDN network which concern traffic 

monitoring tools and intrusion detection. Traffic monitoring can be implemented using dynamic measurements 

aware routing or forwarding [30]. In the discussion, three challenges were addressed: dynamic evaluation of 

traffic importance, flow aggregation and minimizing network disruptions. These tasks are based on information 

from OpenFlow switches. A flow's importance is determined by its size. The flow-query and flow-expire 

messages allow controllers to determine the size of flows. In terms of intrusion detection, Snort integration with 

SDN poses several challenges. It has been proposed in [31] to integrate Snort with OpenFlow networks. As a 

result of SnortFlow's ability to detect and prevent intrusions in real-time, the cloud system can be reconfigured 

on the spot. Three components make up SnortFlow: a daemon that collects alerts, an alert interpreter that parses 

alerts and determines which traffic to focus on, and a generator of rules that produces OpenFlow rules. As a 

result of the new rules, changes are saved so they can be rolled back or restored if needed. 

 

 

5. CONCLUSION  

With the advent of software-defined networks, the requirement for a well-managed, trustworthy, 

flexible, and secure network has been met. In contrast to traditional networks, SDNs are more vulnerable to 

attacks because of the separation of the two planes. As a result, network and control traffic could be 

compromised rigorously in terms of availability, consistency, authenticity, confidentiality, and integrity. This 

paper provides a concise summary of the current research on security threats in SDNs, as well as security 

controls. As SDN research and development progresses, the security landscape changes in SDN. It may be 

necessary to take specific measures to counteract security threats associated with SDN protocols and APIs. 

We end by considering various SDN security concerns and research areas. The privileges of insider threats in 

SDN are often higher, particularly if they can gain entry to the controller modules or resources. Security 

attacks can propagate within virtualized SDN environments either intentionally or unintentionally. 

Continuously assessing security measures is crucial to guarantee the complete isolation of tenants who share 

the same physical network. Another type of insider threat is the compromise of controller resources. 

Controller APIs can be exploited as backdoors by applications interacting with the controller. This type of 

attack can cause severe network damage because the controller has such privileges. Another research topic is 

the policy life cycle; The SDN offers the possibility of implementing policy lifecycle activities automatically. 

Managing policy requires the integration of low-level mechanisms with high-level requirements, which 

presents a major challenge. For traditional networks, firewall rules at low levels need to be contextualized. 

The third topic is application access control; There is no practical way to completely deny the host when a 

security attack compromises certain applications. Users/hosts and switches/networks can be targeted for 

access control with SDN global policies. The controller can create a central access control module to oversee 

information from various levels and allow or block traffic depending on the information. In this way, access 

control information can be changed dynamically. 
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