
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 12, No. 3, November 2023, pp. 384~391

ISSN: 2089-4864, DOI: 10.11591/ijres.v12.i3.pp384-391  384

Journal homepage: http://ijres.iaescore.com

Security of software defined networks: evolution and challenges

Siham Aouad1, Issam El Meghrouni2, Yassine Sabri3, Adil Hilmani2, Abderrahim Maizate2
1Smart Systems Laboratory, National School of Computer Science and Systems Analysis, Mohamed V University, Rabat, Morocco

2RITM-ESTC/CED-ENSEM, Hassan II University, Casablanca, Morocco
3Laboratory of Innovation in Management and Engineering for Enterprise (LIMIE), ISGA Institut Supérieur d'Ingénierie & des Affaires,

Rabat, Morocco

Article Info ABSTRACT

Article history:

Received Mar 4, 2023

Revised Apr 18, 2023

Accepted May 8, 2023

 In software-defined networking (SDN), network traffic is managed by

software controllers or application programming interfaces (APIs) rather

than hardware components. It differs from traditional networks, which use

switches and routers to control traffic. Using SDN, you can create and

control virtual networks or traditional hardware networks. Furthermore,

OpenFlow allows network administrators to control exact network behavior

through centralized control of packet forwarding. For these reasons, SDN

has advantages over certain security issues, unlike traditional networks.

However, most of the existing vulnerabilities and security threats in the

traditional network also impact the SDN network. This document presents

the attacks targeting the SDN network and the solutions that protect against

these attacks. In addition, we introduce a variety of SDN security controls,

such as intrusion detection systems (IDS)/intrusion prevention system (IPS),

and firewalls. Towards the end, we outline a conclusion and perspectives.

Keywords:

Intrusion detection systems

Intrusion prevention system

OpenFlow

Security

Software-defined networking

This is an open access article under the CC BY-SA license.

Corresponding Author:

Siham Aouad

Smart Systems Laboratory, National School of Computer Science and Systems Analysis

Mohamed V University

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Marocco

Email: siham.aouad@ensias.um5.ac.ma

1. INTRODUCTION

In the last several years, traditional computer networks have experienced great challenges that

mainly result from modern applications deployed on these networks. The paradigm of software-defined

networking (SDN) emerged within this particular context, this enables us primarily to adjust to the constantly

changing nature of various applications. Indeed, SDN mainly allows the centralization of the logic

determining the management policies of a network in one or more units called controllers. These controllers

communicate with the rest of the network equipment. Therefore, defining a network management policy

amounts to writing programs and deploying them in the controllers. In most cases, these programs will be

compiled, taking into account the topology and the available resources, to generate the configurations

necessary for each network device to implement the desired policies. Several prominent companies and

universities, including Google and Stanford, have embraced the SDN architecture. On the other hand,

manufacturers of network equipment such as Cisco, HP, and Juniper now offer SDN solutions that make it

possible to manage data centers.

SDN, an inventive architecture, enables the separation of the control plane from the data plane,

allowing them to evolve and develop independently. Ethane [1] was one of the first protocols used in SDN.

Using a centralized control architecture, this model was suggested for corporate networks. In order to support

the Ethane protocol, custom switches were needed (NetFPGA, OpenWrt, Linux). SDN's main protocol is

https://creativecommons.org/licenses/by-sa/4.0/

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Security of software defined networks: evolution and challenges (Siham Aouad)

385

Openflow [2], an open architecture originally developed to allow researchers to experiment on heterogeneous

networks without impacting actual traffic. In the switch data plane, Openflow [3] aims to provide more

configuration optionsOpenflow involve communication between the data plane and the centralized control

plane, allowing for the network to be entirely managed through user software applications application

programming interfaces (APIs). With the implementation of OpenFlow [3], the restrictions of static protocols

are eliminated, facilitating quick advancement and stimulating exploration of new network technologies. The

subsequent sections of the paper are structured in the following manner: in section 2, a definition of the SDN

architecture is presented. Then, section 3 presents security attacks and solutions for SDN. Subsequently, section

4 explores the challenges associated with SDN. In conclusion, we provide our perspectives on this work.

2. ARCHITECTURE OF SOFTWARE-DEFINED NETWORKING

By utilizing software applications, SDN enables intelligent control over the network's functioning,

making it a distinctive network architecture approach [4]. The traditional network environment that relies on

predetermined software and hardware from network hardware vendors undergoes a transformation through

SDN, into a flexible, centrally managed software and management environment, enabling network

abstraction programming. Then, it is based on a structure with three superimposed planes a data plane, a

control plane, and an application plane. The southbound interface (SBI) at the SDN switch level facilitates

communication, while the northbound interface (NBI) located in the control plane ensures communication

between controllers and applications [5].

2.1. Data plan

An SDN infrastructure includes network equipment (switches, routers, and middleboxes) similar to

a traditional network. Physical devices have become simple transmission elements without integrated

controls or software for autonomous operation. Transmission of data flow occurs through the data plane.

Data plane devices provide intelligence to the controller, a logically centralized system. Its main task is to

forward incoming flows to their destinations, using routes defined in flow tables. Furthermore, these novel

networks are constructed using open and standard interfaces like OpenFlow, which ensure interoperability,

communication compatibility, and configuration. As shown in Figure 1, SDN/OpenFlow architectures consist

of two main components: controllers and forwarding devices.

Figure 1. Architecture of SDN [6]

2.2. Control plane

The network operating system (NOS) in SDN logically centralizes network control, simplifying

network management and issue resolution [7]. Similar to traditional operating systems, a NOS offers

developers abstractions, vital services, and APIs. The NOS can offer generic capabilities as services,

including network status and topology information, network configuration distribution, and device discovery.

Thanks to the NOS, a developer is relieved from the burden of handling the intricacies of data distribution

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 12, No. 3, November 2023: 384-391

386

among routing elements. By reducing the complexity associated with developing network protocols and

applications, such systems may allow innovation to occur at a faster rate.

2.3. Application plane

As shown in Figure 1, the application layer is positioned above the control layer. By means of the

northbound interface, SDN applications can obtain a real-time global perspective of the network, including

its instantaneous status, as exemplified by application layer traffic optimization (ALTO) [8]. Armed with this

information, SDN applications can leverage a high-level language offered by the control layer to devise

tactics for controlling the underlying physical networks. SDN provides the "Platform as a Service" paradigm

for networking in this field [9].

2.4. Southbound API

The southbound API, which bridges forwarding devices and control planes, is among the most

crucial elements of an SDN system. The southbound API allows the controller to control network behavior

by managing flow inputs from all the underlying switches, in addition to other functionalities, protocol

plugins (such as simple network management protocol (SNMP), border gateway protocol (BGP), and

NetConf) enable the controller to oversee both new and existing physical or virtual devices through

southbound APIs (like OpenFlow, POF, OpFlex, and OpenState). At present, OpenFlow is widely considered

as the standard for the SBI in SDN [10].

2.5. Northbound

The northbound interface (NBI) is the interface between applications and the controller. Currently,

OpenFlow is widely accepted as the southbound API, but a common northbound API is yet to be developed.

As use cases are still being developed, it might be too early to define a standard northbound API [11]. Either

way, expect a common northbound API to emerge as SDN evolves. Taking advantage of SDN's full potential

requires an abstraction that allows applications to be independent of specific implementations.

3. SECURITY ATTACKS AND SOLUTIONS FOR SDN

3.1. Security attacks in the SDN network

SDN is a type of network architecture that involves the separation of the data plane and the control

plane, enabling more efficient and flexible network management. However, as with any network architecture,

SDN networks are susceptible to security attacks. One common type of attack on SDN networks is known as

the distributed denial of service (DDoS) attack, which floods the network with traffic, causing it to slow

down or crash. Additionally, SDN networks that rely on centralized controllers may be more vulnerable to

attacks on the controller, which can have a ripple effect on the entire network. SDN architecture offers

several advantages, yet it suffers from security issues:

- Open programmable APIs: APIs with open programming interfaces may cause security issues when

attackers exploit them via software security vulnerabilities like injections of malicious code or web

attacks like cross-site scripting (XSS).

- Controller issues: controllers are centralized, making them single points of failure and attack targets;

therefore, they can be a target for attackers.

- SDN switches issues: SDN switches are susceptible to DDoS attacks, in which an attacker can flood the

flow table with numerous large packets, due to the restricted number of flow tables [12].

After conducting the analysis, it was found that both traditional networks and SDN are susceptible

to security threats such as tampering, spoofing, DoS, and information disclosure. To mitigate such attacks, it

is crucial to implement robust security measures including access control, traffic filtering, and encryption.

Additionally, it is essential to keep the network devices and software updated and patched on a regular basis

to address any known vulnerabilities.

3.1.1. Application layer attacks

Application layer attacks in SDN are a type of security threat that targets the application layer of the

SDN architecture. Application layer attacks aim to exploit vulnerabilities in the network applications running

on the SDN infrastructure. These vulnerabilities can be caused by errors in the software code,

misconfiguration, or insufficient security measures. Above we quote some control layer attacks:

- Unauthorized access: the SDN application layer is located on the control layer that encompasses the

tangible aspects of SDN functionalities. Generally, applications are not developed by controller

vendors, but by third parties, who do not take security concerns into account during the development

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Security of software defined networks: evolution and challenges (Siham Aouad)

387

process [13]. Thus, attackers can exploit this and gain unauthorized access to sensitive information and

make changes without having to authenticate [14].

- Malicious code: an attacker could potentially inject malicious code into the network, either through the

SDN controller or through one of the forwarding devices. This code could then be executed on the

network, potentially allowing the attacker to gain access to systems or steal sensitive information.

- Policy insertion: different fields such as cloud computing use SDN extensively with a variety of

services and sophisticated applications. Consequently, security rules can conflict when created and

inserted.

3.1.2. Control layer attacks

Control layer attacks in SDN refer to attacks that target the control plane of the SDN architecture.

Control layer attacks aim to disrupt the operation of the control plane, either by modifying the control

messages or by injecting fake control messages. We quote some control layer attacks:

- Denial of service and distribute: attackers impose floods of requests on the controller by flooding the

network with flooded requests that saturate the controller by consuming its resources. These attacks can

target the channel level, the controllers, or the controllers and switches. SDN controllers are challenged

by DDoS/DoS attacks that disrupt legitimate users' access to the network [13], [15].

- Attacks from applications: as mentioned before, the application layer sits above the control layer. By

getting unauthorized access to the application layer, an attacker can obtain data over the network and

attack the control layer.

- Attacks that target distributed multi-controllers distributed multi-controllers divide the network into

sub-networks to handle the growing network range. Additionally, this solution can create security

problems, such as implementing an efficient security policy and managing configuration conflicts [16].

3.1.3. Infrastructure layer attacks

Infrastructure layer attacks in SDN are a type of security threat that targets the physical components

of the SDN infrastructure. Infrastructure layer attacks aim to exploit vulnerabilities in the network

infrastructure by targeting network devices such as switches and routers. We quote some control layer

attacks:

- DoS attack: in order to intercept the flow table and buffer flow, for an attacker to generate new rules for

the flow table, they must send large and unfamiliar packets continuously. As a result of this attack,

legitimate packets are dropped and compromised [16], [17].

- Man-in-the-middle: as a man-in-the-middle attack, the attacker intercepts information flowing between

the switches and the controllers without being detected. As a result of this attack, additional attacks that

can be executed include black hole attacks and eavesdropping [13], [17].

- Switch spoofing attacks: these attacks involve a malicious actor posing as a legitimate switch in the

SDN network in order to gain unauthorized access to the network or to steal sensitive information.

- Flow-table overflow attacks: these attacks involve overwhelming the flow table of an SDN switch with

a large number of flow table entries, causing the switch to become unresponsive or malfunction.

3.2. Proposed SDN security solutions

As mentioned in section 3.1, threats and requirements differ at each layer of the SDN architecture.

These requirements need to be met in order to prevent various types of security threats and attacks. Layers

can be affected by communication flood attacks between the controller and the switch. Unauthorized access

to the controller can be a consequence of authorization attacks. The following are the suggested solutions to

the major security issues in SDN:

- Use of transport layer security (TLS): one of the most well-known security protocols today is TLS.

Several network-based applications and services use the TLS protocol to secure end-to-end

communications, including web browsers and server software, email clients and servers, instant

messengers, and teleconference applications. TLS's security has been closely scrutinized, and it has

been updated over time to maintain high-security levels. The TLS protocol is used to secure north-south

communication. It prevents flow injection by encrypting flows [18]. The use of TLS in SDN provides

several benefits, including confidentiality, integrity, and authentication. Confidentiality is achieved by

encrypting the communication between the SDN components, ensuring that the information exchanged

cannot be intercepted and read by unauthorized parties [19]. Securing the communication between

switches and the controller is a crucial use case of TLS in SDN. The importance of this is that the

controller is responsible for overseeing the switches' operation. If the communication between them is

compromised, an attacker may gain control of the network. Securing the communication between the

SDN controller and various network components, including the OpenFlow switch, is another use case of

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 12, No. 3, November 2023: 384-391

388

TLS in SDN. By using TLS, the controller can ensure that it is communicating with the intended switch

and that the communication is encrypted and secure [20]. In conclusion, the use of TLS in SDN is

important for securing communication between different SDN components. It provides confidentiality,

integrity, and authentication, ensuring that the communication is secure and cannot be intercepted or

tampered with by unauthorized parties.

- Firewall implementation: traditionally, firewalls are deployed as distinct devices from network devices.

Forwarding and dropping packets between network devices that support OpenFlow are simple to

implement in SDN networks since it is among the features of the protocol implying that establishing

distributed firewall operations on all OpenFlow-supported network devices is straightforward. Several

tasks that are usually managed by firewalls are executed by SDN controllers. For example, Flow rules

are written into switches' flow tables by controllers in SDN to determine the fate of flows. Controllers

keep rules or access control lists (ACLs) for every switch in an SDN network. Traditional networks do

not support such connections (between firewalls and switches). OpenFlow has extended flow attributes

in recent versions, letting SDN-based firewalls handle flow and packet attributes more specifically.

- Intrusion detection/protection systems (IDS/IPS): by comparing packet signatures with existing threat

inventories, mining data, and recognizing patterns, intrusion detection and prevention systems

(IDS/IPS) are able to allow or stop packets [21].

- Network scan detection: one approach to detecting attached connections is the threshold random walk

method [22], which examines the outcome of TCP connections. There are statistically more failures

than successes, but still enough differences to distinguish TCP packets into the failure of each

connection. With SDN, flows can be monitored by sessions by controlling the flow rules. In these

protocols, the amount of packets forwarded to the server is used to verify the scan, since no session

information is available. The TCP protocol, however, is generally used for most network scanning

attacks.

4. SECURITY CHALLENGES WITH SDN

SDN paradigm offers several advantages, such as flexibility, agility, and scalability. Furthermore, it

presents numerous security challenges that must be tackled to safeguard the network's security. The

following are the significant security challenges linked with SDN.

- Centralization: SDN's centralization of the control plane is one of the primary security challenges, as

one potential drawback is that it creates a single point of failure and a possible target for attacks. An

attacker who gains control of the central controller can compromise the entire network [23].

- Communication security: another significant security challenge in SDN is securing the communication

between the controller and switches. In the event of this communication being compromised, it would

allow an attacker to manipulate the network traffic, leading to data theft or unauthorized access [24].

- Malicious applications: SDN allows for the creation and installation of applications on the controller,

which can access the network infrastructure. If a malicious application is installed, it can present a

substantial risk to the network's security [25].

- Authorization and access control: in SDN, the controller has complete control over the network, which

means that proper authorization and access control mechanisms must be in place to prevent

unauthorized access and manipulation of the network [26].

- Denial of service attacks: since the control plane in SDN is centralized, it is susceptible to DoS attacks.

Attackers can flood the controller with a high volume of requests, causing it to become unresponsive

and preventing it from controlling the network.

SDN solutions face a number of security challenges, among them robustness and scalability.

Conducting stateful inspections at advanced levels or on numerous subjects necessitates substantial memory,

storage, and network resources. Managing the surge in the number of states poses a challenge as any

modification in the traffic flows or network elements alters the network state, which is defined by rules and the

traffic flows within the network. There can be a huge number of possible states as a result. The utilization of

FlowTest for the evaluation of SDN policies and firewall scenarios in stateful network scenarios was suggested

by Casado et al. [27]. In order to test stateful behaviors systematically, they emphasized data plane testing. In

general, policies include high-level instructions that are stateful. "Block unsolicited Internet connections" is an

example of a policy. There is no reference to any (L2-L3) information in such a policy. Firewalls must work

beyond the L2-L3 layer in order to accomplish this. There are different states of TCP connections (e.g., new,

null, … invalid, or established). Rather than representing network states, they represent traffic states. Moreover,

a session-level proxy module is also proposed to support stateful inspection. Hypertext transfer protocol (HTTP)

objects are used to express proxy state. In addition, providing access control solutions that are flexible and

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Security of software defined networks: evolution and challenges (Siham Aouad)

389

dynamic is the goal of SDN. A fine-grained access control policy is provided by the Ethane SDN architecture

[28]. SDN was inspired by the Ethane protocol and the OpenFlow protocol, which enables central control over

networks. A central controller and flow-based networks are used in Ethane. Makes decisions about flows by

switching them directly to the controller. The central controller maintains policies. Therefore, the primary

objective is to ensure the security of the controller and its communication. According to Huang et al. [29]

PermOF is a fine-grained system for SDN access control. The PermOF provides 18 levels of permission to

minimize the possibility of privilege escalation or intrusion. As part of the permission system, run-time isolation

(between the controller and applications) is also implemented. An OpenFlow application is granted the least

privilege by default. The applicability of such approaches depends on the ability to isolate applications from

controllers. On the other hand, there are also other challenges in the SDN network which concern traffic

monitoring tools and intrusion detection. Traffic monitoring can be implemented using dynamic measurements

aware routing or forwarding [30]. In the discussion, three challenges were addressed: dynamic evaluation of

traffic importance, flow aggregation and minimizing network disruptions. These tasks are based on information

from OpenFlow switches. A flow's importance is determined by its size. The flow-query and flow-expire

messages allow controllers to determine the size of flows. In terms of intrusion detection, Snort integration with

SDN poses several challenges. It has been proposed in [31] to integrate Snort with OpenFlow networks. As a

result of SnortFlow's ability to detect and prevent intrusions in real-time, the cloud system can be reconfigured

on the spot. Three components make up SnortFlow: a daemon that collects alerts, an alert interpreter that parses

alerts and determines which traffic to focus on, and a generator of rules that produces OpenFlow rules. As a

result of the new rules, changes are saved so they can be rolled back or restored if needed.

5. CONCLUSION

With the advent of software-defined networks, the requirement for a well-managed, trustworthy,

flexible, and secure network has been met. In contrast to traditional networks, SDNs are more vulnerable to

attacks because of the separation of the two planes. As a result, network and control traffic could be

compromised rigorously in terms of availability, consistency, authenticity, confidentiality, and integrity. This

paper provides a concise summary of the current research on security threats in SDNs, as well as security

controls. As SDN research and development progresses, the security landscape changes in SDN. It may be

necessary to take specific measures to counteract security threats associated with SDN protocols and APIs.

We end by considering various SDN security concerns and research areas. The privileges of insider threats in

SDN are often higher, particularly if they can gain entry to the controller modules or resources. Security

attacks can propagate within virtualized SDN environments either intentionally or unintentionally.

Continuously assessing security measures is crucial to guarantee the complete isolation of tenants who share

the same physical network. Another type of insider threat is the compromise of controller resources.

Controller APIs can be exploited as backdoors by applications interacting with the controller. This type of

attack can cause severe network damage because the controller has such privileges. Another research topic is

the policy life cycle; The SDN offers the possibility of implementing policy lifecycle activities automatically.

Managing policy requires the integration of low-level mechanisms with high-level requirements, which

presents a major challenge. For traditional networks, firewall rules at low levels need to be contextualized.

The third topic is application access control; There is no practical way to completely deny the host when a

security attack compromises certain applications. Users/hosts and switches/networks can be targeted for

access control with SDN global policies. The controller can create a central access control module to oversee

information from various levels and allow or block traffic depending on the information. In this way, access

control information can be changed dynamically.

REFERENCES
[1] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane: taking control of the enterprise,” Computer

Communication Review, vol. 37, no. 4, pp. 1–12, 2007, doi: 10.1145/1282427.1282382.

[2] K. Greene, “MIT Tech Review 10 breakthrough technologies: software-defined networking,” 2009, Accessed: May 05, 2023.
[Online]. Available: http://www.technologyreview.com/article/412194/tr10-software-defined-networking/.

[3] N. McKeown et al., “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Computer Communication Review,

vol. 38, no. 2, pp. 69–74, 2008.
[4] “OpenFlow switch specification 1.4.0,” Opennetworking, 2013. Accessed: May 05, 2023. [Online]. Available:

https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf.

[5] R. Masoudi and A. Ghaffari, “Software defined networks: A survey,” Journal of Network and Computer Applications, vol. 67, pp.
1–25, May 2016, doi: 10.1016/j.jnca.2016.03.016.

[6] N. Gude, J. Pettit, B. Pfaff, N. Mckeown, and S. Shenker, “NOX : towards an operating system for networks,” ACM SIGCOMM

computer communication review, vol. 38, no. 3, pp. 105–110, 2008, doi: 10.1145/1384609.1384625.
[7] V. K. Gurbani, M. Scharf, T. V. Lakshman, V. Hilt, and E. Marocco, “Abstracting network state in software defined networks

(SDN) for rendezvous services,” in 2012 IEEE International Conference on Communications (ICC), Jun. 2012, pp. 6627–6632,

doi: 10.1109/ICC.2012.6364858.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 12, No. 3, November 2023: 384-391

390

[8] E. Keller and J. Rexford, “The ‘platform as a service’ model for networking,” in 2010 Internet Network Management Workshop /

Workshop on Research on Enterprise Networking, INM/WREN 2010, 2010.
[9] H. Jamjoom, D. Williams, and U. Sharma, “Don’t call them middleboxes, call them middlepipes,” in Proceedings of the third

workshop on Hot topics in software defined networking, Aug. 2014, pp. 19–24, doi: 10.1145/2620728.2620760.

[10] J. Dix, “Clarifying the role of software-defined networking northbound APIs,” Networkworld, 2012. Accessed: Apr. 30, 2023.
[Online]. Available: http://www.networkworld.com/article/2165901/lan-wan/clarifying-the-role-of-software-defined-networking-

northbound-apis.html.

[11] M. Arif, G. Wang, and V. E. Balas, “Secure VANETs: Trusted communication scheme between vehicles and infrastructure based
on fog computing,” Studies in Informatics and Control, vol. 27, no. 2, pp. 235–246, Jan. 2018, doi: 10.24846/v27i2y201811.

[12] Z. Shu, J. Wan, D. Li, J. Lin, A. V. Vasilakos, and M. Imran, “Security in software-defined networking: threats and

countermeasures,” Mobile Networks and Applications, vol. 21, no. 5, pp. 764–776, Oct. 2016, doi: 10.1007/s11036-016-0676-x.
[13] OWASP Top 10 application security risks,” OWASP, 2010, Accessed: Apr. 30, 2023. [Online]. Available:

https://www.owasp.org/index.php/Top_10_2010-Main.

[14] P. Zhang, H. Wang, C. Hu, and C. Lin, “On denial of service attacks in software defined networks,” IEEE Network, vol. 30, no. 6,
pp. 28–33, Nov. 2016, doi: 10.1109/MNET.2016.1600109NM.

[15] S. Scott-Hayward, “Design and deployment of secure, robust, and resilient SDN controllers,” in Proceedings of the 2015 1st IEEE

Conference on Network Softwarization (NetSoft), Apr. 2015, pp. 1–5, doi: 10.1109/netsoft.2015.7258233.
[16] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assessment,” in Proceedings of the second ACM SIGCOMM

workshop on Hot topics in software defined networking, Aug. 2013, pp. 151–152, doi: 10.1145/2491185.2491222.

[17] S. E. Schechter, J. Jung, and A. W. Berger, “Fast detection of scanning worm infections,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3224, 2004, pp. 59–81, doi:

10.1007/978-3-540-30143-1_4.

[18] D. S. Rana, S. A. Dhondiyal, and S. K. Chamoli, “Software defined networking (SDN) challenges, issues and solution,”
International journal of computer sciences and engineering, vol. 7, no 1, pp. 884-889, 2019.

[19] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn Security: A Survey,” in 2013 IEEE SDN for Future Networks and Services
(SDN4FNS), Nov. 2013, pp. 1–7, doi: 10.1109/SDN4FNS.2013.6702553.

[20] J. Esch, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 10–13, Jan. 2015,

doi: 10.1109/JPROC.2014.2374752.
[21] K. Nam and K. Kim, “A Study on SDN security enhancement using open source IDS/IPS Suricata,” in 9th International

Conference on Information and Communication Technology Convergence: ICT Convergence Powered by Smart Intelligence,

ICTC 2018, Oct. 2018, pp. 1124–1126, doi: 10.1109/ICTC.2018.8539455.
[22] S. K. Fayaz and V. Sekar, “Testing stateful and dynamic data planes with FlowTest,” in Proceedings of the third workshop on Hot

topics in software defined networking, Aug. 2014, pp. 79–84, doi: 10.1145/2620728.2620751.

[23] M. C. Dacier, H. König, R. Cwalinski, F. Kargl and S. Dietrich, “Security challenges and opportunities of software-defined
networking,” in IEEE Security & Privacy, vol. 15, no. 2, pp. 96-100, March-April 2017, doi: 10.1109/MSP.2017.46.

[24] S. Saraswat, V. Agarwal, H. P. Gupta, R. Mishra, A. Gupta, and T. Dutta, “Challenges and solutions in software defined

networking: A survey,” Journal of Network and Computer Applications, vol. 141, pp. 23-58, 2019, doi:
10.1016/j.jnca.2019.04.020.

[25] S. Scott-Hayward, S. Natarajan and S. Sezer, “A survey of security in software defined networks,” in IEEE Communications

Surveys & Tutorials, vol. 18, no. 1, pp. 623-654, Firstquarter 2016, doi: 10.1109/COMST.2015.2453114.
[26] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and S. Guizani, “Securing software defined networks: taxonomy,

requirements, and open issues,” in IEEE Communications Magazine, vol. 53, no. 4, pp. 36-44, April 2015, doi:

10.1109/MCOM.2015.7081073..
[27] M. Casado et al., “Rethinking enterprise network control,” IEEE/ACM Transactions on Networking, vol. 17, no. 4, pp. 1270–

1283, 2009.

[28] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a secure controller platform for OpenFlow applications,” in HotSDN
2013 - Proceedings of the 2013 ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Aug. 2013, pp. 171–

172, doi: 10.1145/2491185.2491212.

[29] G. Huang, C. N. Chuah, S. Raza, and S. Seetharaman, “Dynamic measurement-aware routing in practice,” IEEE Network, vol. 25,
no. 3, pp. 29–34, May 2011, doi: 10.1109/MNET.2011.5772058.

[30] T. Xing, D. Huang, L. Xu, C. J. Chung, and P. Khatkar, “SnortFlow: A OpenFlow-based intrusion prevention system in cloud

environment,” in Proceedings - 2013 2nd GENI Research and Educational Experiment Workshop, GREE 2013, Mar. 2013, pp.
89–92, doi: 10.1109/GREE.2013.25.

[31] C. J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “NICE: Network intrusion detection and countermeasure selection in

virtual network systems,” IEEE Transactions on Dependable and Secure Computing, vol. 10, no. 4, pp. 198–211, Jul. 2013, doi:
10.1109/TDSC.2013.8.

BIOGRAPHIES OF AUTHORS

Siham Aouad born in Tangier, Morocco in 1981, holds a Ph.D. in Computer

Engineering from Mohammadia School of Engineers EMI in 2014. She obtained her network

engineering degree from the National School of Applied Sciences ENSA Tangier in 2005.

Currently, she works at the department of communication networks at the National School of

Computer Science and Systems Analysis ENSIAS. Her research interests span across various

areas including wireless communications, WSN, smart cities, SDN, AI, virtualization, cloud

computing, and security. She can be contacted at email: siham.aouad@ensias.um5.ac.ma.

https://orcid.org/0009-0003-0024-5868

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

Security of software defined networks: evolution and challenges (Siham Aouad)

391

Issam El Meghrouni is currently a Ph.D. student in the RITM (Networks, IT,

Telecommunications and Multimedia) Laboratory at Hassan II University. Recognition

gesture, machine learning, and deep learning are among his research interests. He can be

contacted at email: magrouni@gmail.com.

Yassine Sabri was born on October 28, 1984, in Rabat, Morocco. He pursued his

Ph.D. in the field of WSN Technology at the Laboratory of Science and Technology. In 2013,

he joined the Department of Science and Technology at ISGA Rabat, Morocco, as an Assistant

Professor. Yassine's research interests encompass a broad range of topics, including wireless

sensor networks, evolutionary computation, internet of things (IoT), and mobile computing. He

can be contacted at email: yassine.sabri@isga.ma.

Adil Hilmani after completing his diploma in Network and Telecommunication

engineering from the University of Seville in Spain, he went on to obtain his doctorate in

computer engineering from ENSEM in Casablanca-Morocco in 2021. Currently, he serves as a

professor at OFPPT in Kénitra, Morocco. His research interests lie in the areas of mobile

networks and computing, wireless sensor networks, and embedded systems software for IoT.

He can be contacted at email: adilhilmani@gmail.com.

Abderrahim Maizate after completing his diploma in Network &

Telecommunication engineering from the University of Seville in Spain, he went on to obtain

his doctorate in computer engineering from ENSEM in Casablanca-Morocco in 2021.

Currently, he serves as a professor at OFPPT in Kénitra, Morocco. His research interests

lie in the areas of mobile networks and computing, wireless sensor networks, and embedded

systems software for IoT. He is a member of IEEE. He can be contacted at email:

maizate@hotmail.com.

https://orcid.org/0000-0002-7039-5728
https://orcid.org/0000-0002-2083-5422
https://orcid.org/0000-0003-4930-9749
https://orcid.org/0000-0002-7992-4112

