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 Recently, lot of interest have been put forth by researchers to improve 

workload scheduling in cloud platform. However, execution of scientific 

workflow on cloud platform is time consuming and expensive. As users are 

charged based on hour of usage, lot of research work have been emphasized 

in minimizing processing time for reduction of cost. However, the processing 

cost can be reduced by minimizing energy consumption especially when 

resources are heterogeneous in nature; very limited work have been done 

considering optimizing cost with energy and processing time parameters 

together in meeting task quality of service (QoS) requirement. This paper 

presents cost and performance aware workload scheduling (CPA-WS) 

technique under heterogeneous cloud platform. This paper presents a cost 

optimization model through minimization of processing time and energy 

dissipation for execution of task. Experiments are conducted using two widely 

used workflow such as Inspiral and CyberShake. The outcome shows the 

CPA-WS significantly reduces energy, time, and cost in comparison with 

standard workload scheduling model. 
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1. INTRODUCTION 

Cloud computing platforms are widely used for provisioning high-performance computing as web-

services for execution of workflows [1]. Recently, wide-range of scientific areas such as bioinformatics, 

physics, and astronomy have leveraged cloud environment for modeling scientific workflows representing real-

world problems [2]; thus, large scientific workflows can be analyzed through simulation in more effective 

manner [3] with minimal time and cost [4], [5]. The scientific workflow is represented directed acyclic graph 

(DAG) where edges represent set of task and vertices represent its dependencies. Thus, the forthcoming task 

will not be initiated until the preceding task is completed [6]–[9]. These dependencies among task makes 

scheduling in cloud very challenging.  

Recently, workflow scheduling in cloud computing platform have gained wide attention across 

research community [10], a basic architecture of workload scheduling using cloud is shown in Figure 1. 

However, designing efficient scheduling design adopting currently available heuristic models pose several 

difficulties such as large scientific workflow prerequisite higher execution time and execution cost. Further, it 

becomes even more difficult when task demands deadline prerequisite. Extensive work have been done for 

establishing optimal solution through heuristic algorithm. However, heuristic strategy depends on job order 

without considering the job scheduling duration. As a result, fails to obtain optimal solution, affecting overall 

quality of services (QoS) and higher service level agreement (SLA) violation. Thus, the workflow scheduling 

https://creativecommons.org/licenses/by-sa/4.0/
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is considered to non-polynomial (NP-hard) problem [10], [11]. Optimizing cost and time together becomes 

extremely difficult [12]. For example, if the scheduling design try to minimize cost it increase the execution 

time; this is because there exist relationship among each other. Many existing model fails to consider virtual 

machine selection policy in scheduling design, thus cost-makespan optimization problem still exist [13], [14]. 

 

 

 
 

Figure 1. Basic architecture of workload scheduling using cloud 

 

 

In addressing research problems this paper presents cost and performance aware workload scheduling 

(CPA-WS) technique for heterogeneous cloud computing (HCC) environment. The model optimizes workload 

execution cost through energy and processing time minimization constraint; further, the CPA-WS presents an 

effective queuing model for ideal load balancing between already scheduled tasks with respect to newly 

arriving task. The manuscript significance is described as: 

− This paper presets an effective workload scheduling technique that reduces cost. 

− Cost optimization is done through minimization of energy and processing time constraint under 

heterogeneous computing platform. 

− CPA-WS provide an effective load balancing mechanism; thus, reduces buffer overhead and task waiting 

time. 

− CPA-WS achieves much better cost, energy, and processing time efficiency in comparison with energy 

minimized scheduling (EMS).  

The manuscript is arranged as: in section 2, various existing workload scheduling models advantages 

and limitation is studied. The section 3, provides the mathematical representation of proposed CPA-WS model 

is given. The result and discussion is given in section 4 and in section 5 the research is concluded with future 

research direction 

 

 

2. LITERATURE SURVEY 

In the research, survey is conducted for understanding the benefits and limitation of using standard 

workload scheduling. They focused on designing optimizing energy and cost together to design workflow 

scheduling for heterogeneous computing platform [15]. Here a main function is modelled for reducing the 

energy cost and meeting task deadlines considering task information are geographically distributed. Here they 

divided the task considering different deadline and sorted according to deadline small to high. Finally, an 

adaptive searching method is designed for optioning effective schedule for workflow execution. It is showed 

how energy consumption play a significant role on increasing computing cost of service provisioning [16]. 

Reliability and timeliness are few key metrics in service provisioning. They designed a scheduling design that 

reduce energy dissipation and meets reliability and timeliness requirement of workflow executions. Here a 

heuristic solution is obtained through non-linear mixed integer programming problem. First, a scheduling 

length minimization strategy is modelled for meeting reliability. Second, in reducing energy dissipation 

designed processor merging strategy by leveraging dynamic voltage frequency scaling (DVFS) technique. Here 

inefficient machine are switched off and scaling is done at both task and processor level.  
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Modeled tradeoff to handle unpredictable resource availability nature of cloud computing through 

adoption of evolutionary computing algorithm [17]. Here a multi-objective parameter optimization model of 

cost and makespan is considered together. Performance is studied considering various level of interruption and 

outcome shows better performance than existing models [18]. Modeled an evolutionary computing model 

namely nested particle swarm optimization (NPSO) and faster version of NPSO namely (FNPSO) optimizing 

execution of composite workflows [19]. The FNPSO significantly reduce in comparison with NPSO model. 

Combined Q-learning (QL) and heterogeneous earliest finish time (HEFT) together for designing an effective 

scheduling technique namely QL-HEFT [20]. The QL-HEFT is intended to reduce computation time. The 

reward function in QL is updated using upward rank outcome of HEFT. This aid in improving learning 

efficiency of QL algorithm. The QL first obtain an optimal order of task and then finds the suitable machine 

for execution of task utilizing earliest finishing time. Designed a scheduling design considering contention 

awareness for workflow execution [21]. In minimizing makespan a list scheduling heuristic with endpoint 

contention awareness is modelled. A ranking mechanism is introduced to schedule task to computational 

machines and modeled a rescheduling design to improve scheduling efficiency. 

They designed a workflow scheduling design adopting evolutionary computing model to meet task 

deadline by optimizing cost namely deadline-constrained cost optimization for hybrid clouds (DCOH) [22]. 

Further, improved DCOH by incorporating multi-objective parameter by optimizing makespan and cost 

together under hybrid cloud platform. Workflow applications scheduling designed meeting application 

deadline and cost together [23]. Here they improved priority selection design for establishing the order of task 

and during allocation of computational resource, budget and cost ratio are used correlate among budget, and 

deadline constraint. In improving success rate (i.e. reliability) certain decision are discarded through discarding 

mechanism. 

They showed scheduling model in cloud must meet user deadline prerequisite and SLA’s. Here they 

adopted a multi-cloud platform for meeting stream workflow application performance requirement and cost 

reduction [24]–[26]. They design a fault-tolerant scheduling design for workflow execution leveraging multi-

cloud platform. Further, the model assures in meeting reliability requirement and with reduced cost [26]. Here 

they employed continuous probability distribution for analyzing failure rate and reliability. Then, a 

mathematical model to measure cost of executing using multi-cloud platform is given followed by defining 

fault-tolerant workflow scheduling design by assuring reliability, reducing cost and execution time. However, 

could not guarantee in meeting cost constraint of application requirement because of poor load balancing 

mechanism. In addressing aforementioned issues, tin next section presents cost, and performance aware 

scheduling technique under heterogeneous cloud environment. 

 

 

3. COST AND PERFORMANCE AWARE SCHEDULING TECHNIQUE FOR CLOUD 

COMPUTING ENVIRONMENT 

This section present CPA-WS technique for executing scientific workflow in HCC environment. The 

workload scheduling architecture of CPA-WS is shown in Figure 2. The CPA-WS technique is modelled to 

schedule task with minimal cost by optimizing energy consumption meeting task deadlines performance 

prerequisite without causing any congestion in HCC environment. Here an effective task queueing 

methodology is modelled for load balancing. The task queuing methodology is composed of 𝑜 HCC server 

𝑇1, 𝑇2, … , 𝑇𝑜 with capacity 𝑛1, 𝑛2, … , 𝑛𝑜 and its computational capability is 𝑡1, 𝑡2, … , 𝑡𝑜. Let the HCC server 𝑇𝑗 

is composed of 𝑛𝑗 identical servers with computational capability 𝑡𝑗. The arrival load 𝛼 is exponentially 

distributed with randomness (𝑠) and mean average (𝑠) 1/𝛼 considering Poisson process with 𝑀/𝑀/𝑚 queuing 

model. The CPA-WS technique segment the task set into 𝑜 sub-set where the 𝑗𝑡ℎ sub-set with arrival load 𝛼𝑗 

is communicated to HCC server 𝑇𝑗, where 1 ≤ 𝑗 ≤ 𝑜, 𝛼 = 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑜. A HCC server 𝑇𝑗 retains a queue 

with boundless capacity for task in queue which is waiting to be executed when whole server 𝑛𝑗 is busy. The 

scheduling is done according to first come first serve with exponential randomness 𝑠 and mean 𝑠. The 𝑛𝑗servers 

of HCC server 𝑇𝑗 have similar computation capacity 𝑡𝑗. Therefore, the computation time with exponential 

randomness is measure using (1): 

 

𝑦𝑗 =
𝑠

𝑡𝑗
 (1) 

 

with mean: 

 

𝑦𝑗 =
𝑠

𝑡𝑗
 (2) 
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Figure 2. Workload scheduling architecture of CPA-WS 

 

 

The mean task (i.e., the mean success rate) which are possibly be finished by HCC server within 𝑇𝑗 is 

measured as (3). 

 

𝛽𝑗 =
1

𝑦𝑗
 (3) 

 

The mean amount of time the server will be busy i.e., the resource utilization is measured as (4). 

 

𝛾𝑗 =
𝛼𝑗

𝑛𝑗𝛽𝑗
=

𝛼𝑗𝑦𝑗

𝑛𝑗
=

𝛼𝑗𝑠

𝑛𝑗𝑡𝑗
 (4) 

 

Let 𝑝𝑗,𝑙 defines the probability that 𝑙 task resides in queue or can be handled in HCC server 𝑇𝑗  is 

measured as (5): 

 

𝑝𝑗,𝑙 = {𝑝𝑗,0

(𝑛𝑗𝛾𝑗)
𝑙

𝑙!
, 𝑙 < 𝑛𝑗;  𝑝𝑗,0

𝑛
𝑗

𝑛𝑗
𝛾𝑗

𝑙

𝑙!
, 𝑙 ≥ 𝑛𝑗; (5) 

 

where: 

 

𝑝𝑗,0 = (∑
𝑛𝑗−1

𝑙=0

(𝑛𝑗𝛾𝑗)
𝑙

𝑙!
+

(𝑛𝑗𝛾𝑗)
𝑛𝑗

𝑛𝑗!
∙

1

1−𝛾𝑗
)

−1

 (6) 

 

the probability of newly arriving workflow task that will resides in HCC server 𝑇𝑗 when whole server in 𝑇𝑗 is 

busy is measured as (7). 

 

𝑃𝑟,𝑗 =
𝑞𝑗,𝑛𝑗

1−𝛾𝑗
= 𝑝𝑗,0

𝑛
𝑗

𝑛𝑗

𝑛𝑗!
∙

𝛾
𝑗

𝑛𝑗

1−𝛾𝑗
 (7) 

 

The average workflow task that are currently being executed/waiting in HCC server 𝑇𝑗 is measured as (8). 
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𝑂𝑗 = ∑∞
𝑙=0 𝑙𝑝𝑗,𝑙 = 𝑛𝑗𝛾𝑗 +

𝛾𝑗

1−𝛾𝑗
𝑃𝑟,𝑗 (8) 

 

In similar manner to (8), the average workflow task completion time of HCC server 𝑇𝑗 is measured as (9). 

 

𝑈𝑗 =
𝑂𝑗

𝛼𝑗
= 𝑦𝑗 +

𝑃𝑟,𝑗

𝑛𝑗(1−𝛾𝑗)
𝑦𝑗 = 𝑦𝑗 (1 +

𝑃𝑟,𝑗

𝑛𝑗(1−𝛾𝑗)
) (9) 

 

For easiness the mean workflow task computation time of HCC server 𝑇𝑗 is measured as (10). 

 

𝑈𝑗 =
𝑠

𝑡𝑗
(1 + 𝑝𝑗,0

𝑛
𝑗

𝑛𝑗−1

𝑛𝑗!
∙

𝛾
𝑗

𝑛𝑗

(1−𝛾𝑗)
2) (10) 

 

The energy need for completing task execution is measured as (11): 

 

𝑄 = 𝑎𝐶𝑉2𝐹 = 𝛿𝑡𝜇 (11) 

 

where 𝑎 represent the task characteristics, 𝑉, 𝐶, 𝐹, and 𝑡 depicts voltage, load capacitance, clock frequency, 

processor speed, respectively. In (11), the 𝛿 is measured as (12): 

 

𝛿 =
𝑎𝑏2𝐶

𝑐2𝜌+1 (12) 

 

in (12), the parameter 𝑏 and 𝜌 defines constant higher than zero. The 𝜇 is measured as (13). 

 

𝜇 = 2𝜌 + 1 (13) 

 

Existing method consider both 𝛿 and 𝜇 across server; however, in this work it is not the case because 

of HCC environment adopted; thus, we have different value of 𝛿 and 𝜇. Here we consider two different energy 

type such as static energy and dynamic energy type. In static energy type, the computational machine will not 

perform any task and energy consumed is measured as (14). 

 

𝑄𝑗 = 𝑛𝑗 (𝛾𝑗𝛿𝑗𝑡
𝑗

𝜇𝑗
+ 𝑄𝑗

∗) = 𝛼𝑗𝑡𝛿𝑗𝑡
𝑗

𝜇𝑗−1
+ 𝑛𝑗𝑄𝑗

∗ (14) 

 

Similarly, in dynamic energy type the computational machine will execute task/will be waiting for task arrival 

and the energy consumed is measured as (15): 

 

𝑄𝑗 = 𝑛𝑗 (𝛿𝑗𝑡
𝑗

𝜇𝑗
+ 𝑄𝑗

∗) (15) 

 

this work aimed at allocating ideal resource with minimal execution cost by optimizing energy and processing 

time for executing workload task under HCC environment with varying processing speed and power 

consumption.  

Let consider a 𝑜 HCC server with size of 𝑛1, 𝑛2, … , 𝑛𝑜, with dynamic energy dissipation and 

computation capacity for execution of workflow with prerequisite 𝑠 with task arrival rate 𝛼, and have load 

distribution 𝛼1, 𝛼2, … , 𝛼𝑜 in achieving high performance efficiency is obtained through following minimization 

function: 

 

𝑚𝑖𝑛𝑈(𝛼1, 𝛼2, … , 𝛼𝑜) (16) 

 

the (16) is subjected to constraint described in (17) and (18): 

 

𝐺(𝛼1, 𝛼2, … , 𝛼𝑜) = 𝛼 (17) 

 

where, 

 

𝐺(𝛼1, 𝛼2, … , 𝛼𝑜) = 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑜 (18) 

 

and 𝛾𝑗 < 1, ∀ 1 ≤ 𝑗 ≤ 𝑜.  



                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 1, March 2024: 9-19 

14 

Let consider a 𝑜 HCC server with size of 𝑛1, 𝑛2, … , 𝑛𝑜, with dynamic energy dissipation and 

computation capacity for execution of workflow with prerequisite 𝑠 with task arrival rate 𝛼, and have load 

distribution 𝛼1, 𝛼2, … , 𝛼𝑜 in reducing energy consumption is obtained through following minimization function 

as (19). 

 

𝑚𝑖𝑛𝑄(𝛼1, 𝛼2, … , 𝛼𝑜) (19) 

 

The (19) is subjected to constraint described in (20) and (21): 

 

𝐺(𝛼1, 𝛼2, … , 𝛼𝑜) = 𝛼 (20) 

 

where, 

 

𝐺(𝛼1, 𝛼2, … , 𝛼𝑜) = 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑜 (21) 

 

and 𝛾𝑗 < 1, ∀ 1 ≤ 𝑗 ≤ 𝑜.  

Let’s consider heterogeneous computing platform 𝑇𝑗, the cost outcome can be measured through 

inverse proportion of execution time using (22). 

 

𝐶 =
1

𝑈𝑗
 (22) 

 

However, the proposed design considers energy factor 𝑄𝑗  into consideration for measuring cost as 

defined in (23). 

 

𝑆𝑗 = 𝑄𝑗𝑈𝑗 (23) 

 

The mean cost-performance 𝑆 considering 𝑜 heterogeneous computing platform 𝑇1, 𝑇2, … , 𝑇𝑜 is measured 

through (24). 

 

𝑆(𝛼1, 𝛼2, … , 𝛼𝑜) =
𝛼1

𝛼
𝑆1 +

𝛼2

𝛼
𝑆2 + ⋯ +

𝛼𝑜

𝛼
𝑆𝑜 (24) 

 

For simplicity the (24) is rewritten as (25). 

 

=
𝛼1

𝛼
𝑄1𝑈1 +

𝛼2

𝛼
𝑄2𝑈2 + ⋯ +

𝛼𝑜

𝛼
𝑄𝑜𝑈𝑜 (25) 

 

Here the workload tasks are scheduled by minimizing (16) and (19), and meeting constraint defined in (17), 

(18), (20), and (21) in order to bring tradeoffs between performance and cost. 

 

 

4. SIMULATION RESULTS 

Experiment is conducted for evaluating CPA-WS and EMS [16]. CloudSim3 [26] is used modelling 

workload scheduling algorithm [27]. The complex workload Inspiral and CyberShake is used [28], [29] 

because it is widely used validating various scheduling model [30]–[34], where Inspiral requires more central 

processing unit (CPU) and memory; however, the CyberShake requires CPU and I/O resources [28], [29]. Time 

efficiency, energy consumption and cost efficiency is metrics used measuring performance of CPA-WS and 

EMS. 

 

4.1.  Time efficiency vs workload size 

Here the time efficiency of CPA-WS and EMS is measured by varying the Inspiral and CyberShake 

workload task size from 30 to 1,000. The time efficiency is measured as time taken to complete the task, lesser 

time indicates better performance. The Figure 3 shows time taken to complete task using CPA-WS and EMS 

for varied Inspiral workload size. Similarly, the Figure 4 shows time taken to complete task using CPA-WS 

and EMS for varied CyberShake workload size. From experiments, it can be seen the CPA-WS is very efficient 

for both smaller and larger workload; however, EMS achieves very poor result for larger workload considering 

both Inspiral and CyberShake workload. The CPA-WS improves time efficiency by 83.32% over EMS for 

Inspiral workload. Similarly, the CPA-WS improves time efficiency by 79.16% over EMS for CyberShake 

workload. 
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Figure 3. Time efficiency with different Inspiral workload size 

 

 

 
 

Figure 4. Time efficiency with different CyberShake workload size 

 

 

4.2.  Energy consumption vs workload size 

Here the energy consumption is measured of CPA-WS and EMS is measured by varying the Inspiral 

and CyberShake workload task size from 30 to 1,000. The energy consumption is measured as amount of power 

consumed in watt to complete the task, lesser watt indicates better performance. The Figure 5 shows energy 

consumed to complete task using CPA-WS and EMS for varied Inspiral workload size. Similarly, the Figure 6 

shows energy consumed to complete task using CPA-WS and EMS for varied CyberShake workload size. 

From experiments, it can be seen the CPA-WS is very energy efficient for both smaller and larger workload; 

however, EMS achieves significantly higher energy for both smaller and larger workload considering both 

Inspiral and CyberShake workload. The CPA-WS improves energy efficiency by 44.85% over EMS for 

Inspiral workload. Similarly, the CPA-WS improves energy efficiency by 24.35% over EMS for CyberShake 

workload. 
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Figure 5. Energy efficiency with different Inspiral workload size 

 

 

 
 

Figure 6. Energy efficiency with different CyberShake workload size 

 

 

4.3.  Cost efficiency vs workload size 

Here the cost efficiency of CPA-WS and EMS is measured by varying the Inspiral and CyberShake 

workload task size from 30 to 1,000. The cost efficiency is measured as energy consumed and time taken to 

complete the task, lesser value indicates better performance. The Figure 7 shows cost incurred to complete task 

using CPA-WS and EMS for varied Inspiral workload size. Similarly, the Figure 8 shows cost incurred to 

complete task using CPA-WS and EMS for varied CyberShake workload size. From experiments it can be seen 

the CPA-WS is very efficient for both smaller and larger workload; however, EMS achieves very poor result 

for larger workload considering both Inspiral and CyberShake workload. The CPA-WS reduce computation 

cost by 83.13% over EMS for Inspiral workload. Similarly, the CPA-WS reduce computation cost by 78.851% 

over EMS for CyberShake workload. 
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Figure 7. Cost efficiency with different Inspiral workload size 

 

 

 
 

Figure 8. Cost efficiency with different CyberShake workload size 

 

 

5. CONCLUSION 

Here we studied different workload scheduling technique for execution of real-time workload 

employing cloud-computing platform. The study identified majority of existing workload scheduling focused 

on reducing cost through minimization of processing time, energy, and delay; however, very limited have 

focused on addressing cost minimization considering both energy and processing time together under 

heterogeneous cloud platform. This paper designed a workload scheduling technique by presenting energy and 

processing time optimization constraint for reducing computation cost. Further, an effective load balancing 

technique is presented for reducing the waiting time; the adoption of such strategy significantly aid in utilizing 

resource more efficiently. Experiment outcome shows the CPA-WS significantly improves time, energy, and 

cost efficiency by 83.32%, 44.85%, and 83.13% over EMS for executing Inspiral workload, respectively. 

Similarly, CPA-WS significantly improves time, energy and cost efficiency by 79.16%, 24.35%, and 78.851% 

over EMS for executing CyberShake workload. From result, it can be stated CPA-WS computation cost 
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performance gets profitable with increasing in workload size in comparison with EMS. Thus, are suitable for 

provisioning both smaller and larger workload with high profitability. Future work would consider improving 

resource usage efficiency and consider provisioning security for workload execution for performing different 

kind of task.  
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