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 Cloud computing provides solutions for diverse commercial and academic 

applications which is the primary goal. Scientific workflows are used in the 

cloud-computing environment to analyses large-scale scientific applications. 

For scientific workflows, many data is required, and a single scientific 

workflow that includes hundreds of stages, depending on the application's 

time restrictions, task failures, money limits, incorrect task organization, and 

task management issues can all hinder the implementation of scientific 

methods. In light of this, a cloud-based scientific workflow management and 

scheduling system that is fault-tolerant and data-oriented method are 

proposed. This research designs a novel hybrid cost-aware fault tolerant 

(HCFT) mechanism for minimizing the cost. Moreover, HCFT integrates 

optimal clustering and efficient resource utilization through parallel and 

distributed execution. Novelty of HCFT lies in novel clustering of the similar 

task for improvisation, CyberShake, laser interferometer gravitational wave 

observatory (LIGO), Montage, and sRNA identification protocol using high 

throughput technology (SIPHT) processes are used in the simulations to 

evaluate the performance of the proposed approach. 
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1. INTRODUCTION 

The objective of "computer as a utility" has been realized via cloud computing, a new platform for 

distributed computing [1]. The cloud was created by combining two significant computing technologies, cluster 

computing, and grid computing [2]. Cloud computing provides specifically on-demand access to trustworthy 

resources and pay-per-use customization of computer settings [3]. Cloud computing offers a range of 

dynamically scaled, virtualized, abstracted, and adaptable computer resources and services [4]. Networks, 

storage, servers, and applications are all made available as cloud resources in a subscription-based paradigm. 

The three main architectural elements of cloud services are infrastructure as a service (IaaS), platform as a 

service (PaaS), and software as a service (SaaS). Due to the demand-based availability of high-speed internet 

connectivity, these services are accessible to clients outside the company SaaS. 

Research and commercial applications make extensive use of cloud computing's capabilities and 

services [5]. Business apps are organized according to best practices and are task-oriented. To manage such 

operations, organizations adopt business models like Amazon EC2. In contrast, scientific applications are 

created according to scientific principles and are data-driven. In addition to the Pegasus workflow management 

system (WMS), other systems are utilized to coordinate scientific activities.  

https://creativecommons.org/licenses/by-sa/4.0/
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According to Faragardi et al. [6], scientific applications are data-intensive and need a substantial 

amount of computing power and storage space for assessment and computation. Applications for scientific 

workflows are precisely groups of computing activities structured in various ways. When organized as a 

scientific process, even a single scientific application comprises several computer network tasks. Each phase 

of scientific study requires a large amount of data and computational resources. Numerous additional academic 

disciplines, including astronomy, biology, gravitational physics, and earthquake science, have universal 

applicability. Multiple cloud models are designed to be optimized by workflow schedule; nevertheless, 

customers must give priority to quality of service (QoS) satisfaction when submitting workflow applications, 

including cost execution and deadline. In addition, there are issues with energy consumption, time constraints, 

makespan optimization, and cost reduction due to the increasing demand for computers and services in 

scientific workflow applications. Nodes are used to represent jobs in the direct acyclic graph (DAG) modeling 

approach for workflows, while edges are used to show interactions between tasks [7]. DAG is therefore used 

to express workflows. 

The fault tolerance model utilizes a single backup in the event of a failure; as a novel concept, it was 

initially enticing, but the complexity of scientific processes renders it incapable of withstanding several 

failures. As a result, it is required to develop and execute a fault tolerance model that can withstand repeated 

failures and increase the requirement for dependability; cost optimization is also crucial, as the ideal cost 

symbolizes the model's effectiveness [8]. There are two sorts of fault occurrence methodologies for managing 

the various types of failure: active and reactive fault occurrence processes. In addition, a reactive fault-tolerance 

method is intended to mitigate the issue and enhance the efficacy of the fault-tolerance technique. In addition, 

while incurring execution costs, this fault-tolerant technique offers system dependability [9]. The goal was to 

decrease response time and energy usage. In addition, by using replication, this strategy decreases the labor 

required to reject data due to system failure occurrences; yet, cost optimization remains its largest challenge. 

Moreover, Shahidinejad and Barshandeh [10] created fault‐tolerant dynamic scheduling (FTDS), a fault-

tolerance technique intended to overcome the static scheduling strategy. FTDS recognizes the processor fault 

and then attempts to efficiently reschedule the halted operations. 

There are several actions and tasks with various limitations in scientific workflows. For management's 

benefit, various workflow management techniques are used to plan and carry out scientific processes on the 

intended resources [11], [12]. When managing and scheduling scientific workflows, several factors may be 

used in a system that could result in performance degradation, involving the creation, organization, and control 

of scientific workflows as well as task management, resource management, scheduling guidelines, and fault-

tolerant procedures [13]. Additionally, some of the processes are too big to transfer across nodes without 

incurring additional costs. Five practical scientific methods for various scientific applications were thoroughly 

analyzed from the start [14]. In the following fields, these techniques can be applied: i) seismic research with 

CyberShake; ii) biological research with sRNA identification protocol using high throughput technology 

(SIPHT); iii) astronomy using Montage; iv) genetic research with epigenomics; and v) gravitational physics 

with laser interferometer gravitational wave observatory (LIGO).  

The research details each scientific approach's organizational, data, and technological needs. 

Additionally, words from the computer industry are used to illustrate the many structural and functional aspects 

of scientific procedures. A few examples of these characteristics are the pipeline, data parallelism, data 

dispersion and redistribution, data aggregation, and compositions of scientific procedures. A scalable workflow 

management system used for automating research is called a WMS. It was characterized by Fan et al. [15]. 

Distributed computer infrastructures are changed to provide room for scientific process conceptual models. In 

our research, we analyze and comprehensively address the aforementioned issues by presenting: a data-driven, 

fault-tolerant model is developed.  

The following are the most significant contributions of this study: i) this research work designs and 

develops a hybrid cost-aware fault tolerant (HCFT) mechanism in workflow scheduling considering a cloud-

computing environment; ii) HCFT minimizes cost through novel clustering and optimal balancing mechanism, 

which reduces the entire cost; moreover fault-tolerance is carried out through the clustering approach; also 

parallel processing is carried out for further optimization of the process; and iii) HCFT is evaluated considering 

scientific workflow to prove the model efficiency based on the execution cost for various variants of workflow 

like CyberShake, Montage, SIPHT, and Inspiral. 

This particular research is organized as follows: the first section starts with the background of cloud 

computing and the integration of workflow scheduling along with it. The further section proceeds with the 

challenges and needs for the fault-tolerant model in workflow scheduling. The section ends with a research 

contribution. The second section focuses on discussing the existing fault-tolerant technique concerning cost 

reduction; the third section designs the mathematical modeling of the HCFT model and is evaluated in the 

fourth section.  
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2. RELATED WORK 

Five real scientific methods with various scientific applications were thoroughly examined, starting 

with Fan et al. [15]. Epigenomics is used to investigate genetics, Montage is used to study astronomy, 

CyberShake is used to analyze seismic activity, SIPHT is used to study biology, and LIGO is used to study 

gravitational physics. The organizational, data, and computer needs of each scientific technique are covered in 

the article. Additionally, certain structural and functional features of scientific methods are examined using 

computers. This includes information on data aggregation, data parallelism, data dispersion and redistribution, 

and data aggregation. It also includes works that employ the scientific approach. According to research by 

Ahmad et al. [16], Pegasus is a scalable WMS for the automation of research. Distributed computer systems 

are constructed using abstract models of scientific procedures. 

A scheduling technique for scientific workflows called dynamic scheduling of a bag of tasks-based 

workflows (DSB) tries to cut costs while still following user-specified time limits. The technique breaks down 

into bag of tasks (BoTs), optimizes their distribution, and then schedules them in line with priority restrictions 

and data dependencies. The method satisfies the process's deadline and significantly lowers the cost of 

workflow computing. Utilizing methods that quickly and efficiently utilize resources is a requirement for 

planning scientific work. According to previous research [17]–[19], adaptive data-aware scheduling (ADAS) 

is a scheduling technique that gives priority to resource use and workflow completion time. It is a technique 

for combining task management and data for a range of jobs in the cloud. Although the suggested scheduling 

approach is efficient, it does not consider error tolerance, which is an essential component of workflow 

scheduling. The budget driven algorithm for generating high-quality schedules (BAGS) scheduling method 

was developed in [20] to maximize process execution time while respecting budgetary limitations. The BAGS 

algorithm distributes money to activities before making choices about dynamic resource provisioning and 

scheduling in response to environmental changes. The approach still needs to be improved in terms of time 

constraints and error-tolerance measures even if it is effective for scheduling scientific activities while adhering 

to financial constraints. When organizing scientific procedures, the designed dynamic benefit weighted 

scheduling (DBWS) method takes time and financial constraints into consideration. 

Activities that require a lot of data and calculation are thought to utilize the most energy. To use less 

energy, Juarez et al. [21] offered a real-time dynamic scheduling system for the effective execution of task-

based applications. The authors developed a polynomial-time solution that satisfies the requirements of low 

energy consumption and quick execution speed by combining a resource allocation method with a set of 

heuristic criteria. Authors fail to address the significant problem of accessibility of fault-tolerant systems [22]. 

Proclaims that when fault-tolerant practices are foregone to maintain profitability or save costs, cloud-

computing systems collapse. The fault-tolerant technique for scientific workflow systems received approval 

for use in scientific operations in its second submission. For scientific processes to run properly, fault-tolerant 

techniques are required since the failure of bottleneck nodes renders the entire operation meaningless [23]. If 

a job is not successfully finished during execution, it is promptly resubmitted to the same resource or another. 

As a result, faster, a dynamic fault-tolerant scheduling approach was created (a method for fault-tolerant 

scheduling of real-time scientific workflows). 

Applications for scientific methods include detailed, multi-level computation. Since all activity levels 

demand the same services, this sort of computing is perfect for fault-tolerant clustering (FTC) systems. The 

FTC method, developed in [24]–[26], is useful for many scientific projects. The aforementioned study offers 

three techniques: dynamic clustering (DC), selective re-clustering (SR), and dynamic re-clustering (DR). DC's 

initial approach is to maintain a clustering factor that is dynamically adjusted to the rate of job failure. The 

second technique, known as SR, is repeatedly carrying out failed tasks inside a single position. The third 

technique, known as DR, combines the first two strategies by providing failing tasks within a job a second 

chance in addition to dynamically maintaining the clustering factor based on the failure rate of recognized 

activities. Improvements to data-oriented scheduling methods with dynamic clustering defeat-resistant 

mechanism the title of the piece is [27]. Data-oriented scheduling was integrated by the enhanced data-oriented 

scheduling strategy with dynamic clustering fault-tolerant technique (EDS-DC) developers. A dynamic 

clustering method with fault tolerance was offered by EDS-DC. The results of processes that were modeled 

using workflows were compared to the three well-known scheduling rules minimum completion time-dynamic 

clustering (MCT-DC), max-min-DC, and min-min-DC. Simulations show that EDS-DC significantly 

decreased cost and manufacturing time when compared to traditional methods. For scientific activities, 

Chakraborty et al. [28] proposes a QoS aware fault tolerant workflow management system (QFWMS). A 

cluster-based, fault-tolerant, data-intensive (CFD) approach is given in [29] for cloud-based scientific 

applications. The suggested CFD approach provides a precise strategy for obtaining outcomes from the 

presentation of scientific data. The figures show that, when using the Montage workflow, the CFD approach 

outperformed the alternatives [30]. Applications of scientific processes have other distinctive features aside 

from pipelining, parallelism, integration, and disintegration. These programs use a lot of computation and 
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information. Scientific workflow applications require workflow management and fault-tolerant scheduling 

systems that are data-centric and have high data storage and processing capacities. 

Scientific workflows must be gathered, categorized, and managed using a data-oriented scheduling-

based energy-efficient WMS since they are composed of several data- and computation-intensive applications 

at the bottleneck node or level, a large number of workflow activities are performed, and if even one of them 

fails, the execution as a whole is meaningless. A fault-tolerant system is therefore required. Given that different 

workflow activity at various levels, have comparable service and resource needs, scientific operations can be 

carried out using a cluster-based scheduling and fault-tolerant approach. A fault-tolerant, data-centric, and 

energy-efficient system for coordinating and scheduling scientific activities is produced because of these 

restrictions. 

 

 

3. PROPOSED METHOD 

The scientific community to perform the task using IaaS cloud as a platform has extensively utilized 

workflow schedules; moreover, being fault tolerant is one of the major entities in the cloud platform, which 

tends to minimize the cost per task and further workflow. This research work aims at designing a hybrid fault-

tolerant mechanism, which reduces the cost as given in Figure 1. The data here is fetched from each user, which 

is further reviewed and executed. A user here refers to the individual from whom the data is collected. Here 

the user submits a collection of various types of data. Once it is executed, the output is generated respectively. 

The application interface (AI) here is responsible to connect the user with the proposed method. The user here 

feeds the data to the AI for execution. The AI transfers data to the next component of the model, the ƥ model 

that transmits the data to the workflow model for size, nodes, and edges. The AI serves as an interface to one 

or more users or for workflows submitted to the proposed model. 

 

 

 
 

Figure 1. Hybrid fault tolerance workflow 

 

 

3.1.  Designing optimal 𝐃𝐀𝐆𝐖𝐨𝐫𝐤𝐟𝐥𝐨𝐰 

DAGWorkflow here is depicted as ƥ, the data received by the interface for the functioning and evaluation 

of various applications. For the data generated the ƥ generates a DAG graph. The ƥ functions as the data 

collected by various workflows produce a reliably synthetic workflow. The DAG graph structure is represented 

as shown in (1). 

 

GDAG = (Swf, DF) (1) 

 

GDAG denotes a DAG with features such as Swf = Swf1, Swf2,Swf3, … … . Swfn denotes the number of 

iterations involved and DF = {(Swf(x), Swf(y)|Swf(x), Swf(y) ∈ Swf} denotes the DF dependencies in between the 

iterations. The dependency set Swf(x), Swf(y) consisting of the parameters in between the iterations Swf(x) and 

Swf(y). The step Swf(x) is termed the successor of the iteration Swf(y). Any step toward the initiation is termed 

the initiation step and the end step is termed the termination step shown in (2). A person can submit input and 
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generate an output; the ƥ receives data that contains multiple inputs used by the user. This depicts the data in 

their subsequent workflows that generate a DAG which is further passed on to ϒ. 

 

Swf(x)_initiate = Ρ (2) 

 

Swf(x)_terminate = P (3) 

 

3.2.  Optimal-workflow execution  

The executable workflow is denoted as ϒ fed with multiple workflows through the ϒ for each 

resource. The ϒ rebuilt the workflow to enhance the performance. This integrates each iteration of the 

workflow into a job into a single iteration henceforth the overhead is minimized. However, after that ϒ the job 

includes the execution of several iterations. The iterations are arranged following their dependencies. The 

iterations here are executed in a parallel and integrated sequence. At this point, the parameters for each 

workflow are provided by the data for the output. Additionally, the ϒ is also responsible to produce the data 

from various jobs and then estimate the storage resources, from various inputs transferred to the next model. 

The ϒ transmits all the jobs to the next component. 

 

3.3.  Resource allocator 

The resource allocator is denoted as ϑ allocated multiple jobs through the ϒ and then allocates 

resources to it. The allocated resources are extracted from the cloud and handled separately through the 

proposed technique. The ϒ is responsible to allocate the resources; this is done in a manner that the cost is 

optimized. This is accomplished by a set of iterations allocated to the resources. The resource allocated for 

each iteration to optimize the period to transfer data. Each iteration allocated all the resources, henceforth the 

task is allocated to a resource within the optimized time limit. Here rescost(x) depicts the cost of the resource x 

and DTtime denotes the data transfer time for step x for resource x. By assigning the resource to each phase 

with the least amount of data transmission time possible, the list is traversed entirely. 

 

Resource(rescost(x)) = Step{Swf(x)|Swf(x) ← DTtime(rescost(x))} (4) 

 

3.4.  Fault tolerant system () 

Fault tolerant system () is denoted as 𝝉 executes the iterations allocated by the ϒ which is executed 

completely, the interface is used to return the results to the user. The ϒ initiates the fault-tolerant approach and 

executes the failure of subsequent iterations. This model produces results upon successful execution, the 𝝉 

adapts Automate_clustering () based on 𝝉 once the iteration fails. In this state, the assumption is considered 

based on a 5% failure rate based on the jobs selected, henceforth the τ() is initiated in each period. The optimal 

workload balancer here is responsible for cost optimization requiring resource utilization in ascending a 

payload of nodes that are dispersed to use the available nodes. The resource utilization is done based on three 

levels i.e Top_peak, bottom_peak, and Mid_peak. 

 

Resource usage (Resource(rescost(x)) = {

Mid_peak (Resource usage = 0.4 to 0.8)
bottom_peak(Resource usage = 0 to 0.4)

Top_peak(Resource usage = 0.8 to 1)
 (5) 

 

Here bottom_peak, denotes the lowest peak value usage and Top_peak value indicates the highest 

peak value. The resources here are made available to transfer the workload from resources for the bottom_peak 

value a null value when the resources with null value are terminated. The data is fed via an AI that is responsible 

for providing data from two to three workflows to the proposed model. The proposed method is applied to the 

ϒ which is applied to the data given as input, the ϒ is the next key component. The ϒ converts the workflow 

model into appropriate resource initialization based on the iterations for the work allocated. This is then 

transferred to the ϑ that sends the jobs and tasks to the workflow and then transmitted to the ϑ, this system is 

responsible to schedule the resources based on the scheduling policy. The 𝝉 uses an AI, receives the 

corresponding iterations, and returns the outcome to the entity. The cost-aware optimal balancer for initiating 

effective cost-efficient optimization is launched when the iterations fail to execute. The energy is used based 

on the ascending order of the resources, which further distributes the workload throughout the nodes for 

minimal consumption of other nodes. The ϑ receives the jobs through the ϒ and schedules them by allocation 

of resources to the cloud, ϒ allots the jobs upon conversion to essential tasks. The resources are fetched from 

the cloud, along with the proposed system to plan and manage the tasks specifically. The ϒ allocates the 

resources in a way to spend a minimal amount of money for the completion of the task. The task is completed 
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by considering the list of tasks and resources, the mapping list is then generated upon the allocation of efficient 

resources in the shortest period for each iteration. The integration of automated clustering of the proposed 

method ensures fault tolerance mechanisms that are related to the iterations involved in a job for workflow are 

combined as a cluster and execution on a single resource. The uncompleted tasks remaining in the cluster, 

create clusters automatically depending on the completion of the given job and execute it repeatedly. The (6) 

and (7) depict the mechanism of automatic clustering.  

 

Ex(∫ Swf(x)
n

x=1
) (6) 

 

Clus(∫ Swf(x)
n

x=1
) (7) 

 

Ex (∫ Swf(y)
n

x=y
) (8) 

 

AutoClus (∫ Swf(y)
n

y=x
(Fail(∫ Swf(x)

n

x=x
))) (9) 

 

The (8) denotes the clusters for n similar tasks and executes them, henceforth the (9) denotes the job 

that has failed and automatically clusters it for execution purposes. To reduce the workload, the proposed 

mechanism results in evaluating the resources, arranging them in ascending order, and then automatically 

clustering and transferring the workload for resource utilization of other resources and arranging them in 

ascending order that transfers the workload for the resources with the least utilization of other nodes. This 

categorizes the usage into three segments i.e Top_peak, bottom_peak, and Mid_peak. The workload is 

transferred from the bottom_peak to the Mid_peak to make bottom_peak resources null and then the 

resources with null usage are switched off. Algorithm 1 depicts the algorithm designed for minimizing the cost. 

 

Algorithm 1. Hybrid-fault tolerant cost algorithm 
Input µ(data) 

Step 1 Z_1←µ (data fed to the queue), DAGWorkflow ⟶ ƥ, Executable_workflow⟶ ϒ,  

       Resource_Allocator →ϑ, Fault_tolerant system ⟶ 𝝉 
Step 2 ƥ() 

Step 3 Z_2←fetchworkflow() in the range wf1……….wfn up to Z1 

Step 4 for(All the Workflow ( wf1……….wfn) do 

           ϒ() 

           Steps S1 to Sn for the Workflow 

        end for 

           ϑ() 

        fetchresource() from r1……….rn) 

        While (ϑ()) do 

           Steps S1 to Sn for the Workflow 

           for(each Steps S1 to Sn for the Workflow ( wf1……….wfn) do 

               fetchresource res_x and allocate it to Step S1 

                     resx←S1 

           end for 

        end while 

Step 5 Initiate_execution.τ() 

        While(τ ()) do 

            If (System Faulty) 

                 Automate_clustering() 

            else  

                 fetchresults 

            end if else 

        end while 

Step 6 for(All resx to resi)do 

           resused←fetch(resource_used)() 

           If(resused(x) ==Null)then 

              terminate(res((x))) 

           else if (resused<=lowerthreshold) then 

              shift resused alternatively 

              terminate(res((x))) 

           end if else 

        end for 

Step 7 𝝳←results 
        return 𝝳 
output δ(results) 
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4. RESULT SECTION 

In this section, the proposed model is evaluated upon further minimizing the cost optimization. The 

run-time is evaluated based on allocating jobs at values 30, 50, 100, and 1,000. This is depicted in the form of 

graphs for the expected outcomes shown by taking into account cost optimization. The proposed model is 

tested with the CyberShake dataset by using the simulator of cloudsim. The model is deployed against 64-bit 

Windows 11 operating system for 16 GB RAM that has Intel ®Core™i7 processor. It contains a 3.20 GHz 

CPU, the proposed model is deployed on EclipseWS Neon.3 editor, and the code is written in JAVA. 

 

4.1.  Dataset description 

The performance of the proposed model is evaluated via the different scientific areas, here CyberShake 

is used to facilitate the earthquake hazards that are produced by synthetic seismograms and categorized 

according to a data-centric workflow model through by wide memory-range and basic CPU necessities. The 

custom Montages of the sky are based on the Montage application for the input images considered. The tasks 

are differentiated by using the I/O intensive applications by not considering the CPU processing activity. 

Gravitational waves are detected by using the astrophysics LIGO method. It is composed mostly of CPU-

intensive tasks with high memory requirements. Several genome-sequencing processes are automated using 

the CPU-intensive epigenomics approach, which is utilized by the bioinformatics industry. In bioinformatics, 

SIPHT is used to automate the search for sRNA-encoding genes. The majority of SIPHT workloads are CPU-

heavy but I/O-light. You can review examples of the design of these processes, as well as their full description 

and characterization. Using the Pegasus workflow generator, five scientific processes from the actual world 

were generated during experiments (CyberShake, Montage, LIGO, and SIPHT), there are 50, 100, 200, 500, 

and 1,000 jobs of varying sizes; the suggested model is compared to the existing model, and all prices are 

estimated in dollars. 

 

4.2.  Cost evaluation 

4.2.1. CyberShake approach 

The CyberShake method, which is utilized to generate the seismic hazard probability curve for 

numerous areas in Southern California, takes an average of 8 hours and 51 minutes to execute. Figure 2 is a 

depiction of the same topic. In addition, it creates a significant quantity of data and has a high number of jobs; 

processing such a vast quantity of data demands a tremendous deal of energy, rendering the model inefficient. 

The suggested model efficiently minimizes energy usage in consideration of ecosystem adoption of practices 

over time (EAPT). To further evaluate the new model, it is contrasted with the current mechanism.  

By considering the four CyberShake method, Table 1 compares the total expenses of the existing system 

with the proposed system. In addition, the existing model for CyberShake_30 costs $22,232.6165 whereas the 

proposed model costs $17,497.7745; similarly, the existing model for CyberShake_50 costs $24,669.0295 

while the proposed model costs $19,036.5655. The existing model for CyberShake_100 requires $30,138.901, 

but the proposed model only requires $22,674.6285 milliseconds. The existing model costs $204,102 to 

perform the CyberShake_1000 job, whereas the proposed method costs $145,983.8115. Here PS stands for 

proposed system and ES stands for existing system. 

 

 

 

 

 
 

Figure 2. Cost comparison for CyberShake method 

 

 

Table 1. Cost comparison for CyberShake method 
VM ES PS Cost difference (%) 

CyberShake_30 22,232.6165 17,497.7745 23.835 

CyberShake_50 24,669.0295 19,036.5655 25.775 

CyberShake_100 30,138.901 22,674.6285 28.267 

CyberShake_1000 204,102 145,983.8115 33.202 
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4.2.2. Laser interferometer gravitational wave observatory approach 

The LIGO method is used to generate and analyze gravitational waves from data collected by merging 

compact binary models. The LIGO workflow is represented in Figure 3. In addition, this process has four 

separate DAX files; the present model for Inspiral_30 costs $22,951.4585, but the proposed model costs 

$12,673.1235. Inspiral_50 and in Inspiral_100 incur additional costs of $22,519.9115 and $40,281.976, 

respectively, compared to the older models' costs of $40,788.6025 and $72,942.9245. The existing model costs 

789,741.133 and the proposed model costs 436,056.0895 for Inspiral_1000. Table 2 compares the values, and 

Figure 3 illustrates a graph comparing the existing and proposed values. 

 

 

 
 

Figure 3. Graphical comparison of LIGO method 

 

 

Table 2. Cost comparison for LIGO method 
VM ES PS Cost difference (%) 

Inspiral_30 22,951.4585 12,673.1235 57.704 

Inspiral_50 40,788.6025 22,519.9115 57.713 
Inspiral_100 72,942.9245 40,281.976 57.692 

Inspiral_1000 789,741.133 436,056.0895 57.707 

 

 

4.2.3. Montage approach 

With the NASA-developed Montage approach, several images are fed as input and are used to create 

one-of-a-kind mosaics. The Montage technique requires four different dax files for a cost comparison. The 

existing model forecasts costs of $846.8255 and $1,872.66 for Montage_25 and Montage_50, whereas the 

proposed model, predicts costs of $482.8945 and $1,062.9835for Montage_25 and Montage_50, respectively. 

Figure 4 displays the cost comparison on Montage method. Table 3 displays the cost comparison on Montage 

technique. The existing model for Montage_100 and Montage_1000 costs $3,944.9945 and $41,426.565, but 

the proposed model costs $2,231.8825 and $23,398.8515, respectively.  

 

 

 
 

Figure 4. Cost comparison on Montage method 



                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 2, July 2024: 372-382 

380 

Table 3. Cost comparison on Montage technique 
VM ES PS Cost difference (%) 

Montage_25 846.8255 482.8945 54.738 
Montage_50 1,872.66 1,062.9835 55.162 

Montage_100 3,944.9945 2,231.8825 55.469 

Montage_1000 41,426.565 23,398.8515 55.619 

 

 

4.2.4. SIPHT approach 

SIPHT is a Harvard project that searches the NCRI database of bacterial replicons for untranslated 

RNAs. Four SIPHT DAX files, namely SIPHT_30, SIPHT_60, SIPHT_100, and SIPHT_1000, have been 

examined. Existing models for SIPHT_30 and SIPH_60 cost $19,169.0855 and $40,314.883, while the 

proposed models cost $10,565.216 and $22,216.6525, respectively. Existing models of the SIPHT_100, and 

SIPHT_1000 cost $60,047.434 and $599,918.9015, whereas the proposed models cost $33,091.578 and 

$330,580.468 respectively. Figure 5 and Table 4 give comparative cases. 

 

 

 
 

Figure 5. Cost comparisons of SIPHT method 

 

 

Table 4. Cost comparisons of SIPHT method 
VM ES PS Cost difference (%) 

Sipht_30 19,169.0855 10,565.216 57.872 
Sipht_60 40,314.883 22,216.6525 57.885 

Sipht_100 60,047.434 33,091.578 57.883 

Sipht_1000 599,918.9015 330,580.468 57.891 

 

 

4.3.  Comparative analysis 

In this section, several methods are compared. The cost for PS is 23.835%, 25.775%, 28.267% and 

33.202 % less expensive than the prior model for CyberShake_30, CyberShake_50, CyberShake_100, and 

CyberShake_1000, respectively. Similarly, the LIGO procedure's PS criteria are 57.704%, 57.713%, 57.692%, 

and 57.707% for Inspiral_30, Inspiral_50, and Inspiral_1000, respectively. For Montage_25, Montage_50, 

Montage_100, and Montage_1000, PS is 54.738%, 55.162%, 55.469%, and 55.619% less expensive than the 

preceding model. The cost difference between ES and PS for SIPHT_30, SIPHT_60, SIPHT_100, and 

SIPHT_1000 is $57.872, $57.885, $57.883, and $57.891, respectively. In addition, the comparative analysis 

states that the proposed model performs better in comparison with the existing model. 

 

 

5. CONCLUSION 

This research work develops HCFT mechanism for cost reduction; HCFT comprises novel clustering 

and optimal resource utilization mechanism for fault tolerance, which tends to reduce workflow cost. HCFT 

mechanism is evaluated considering various scientific workflow with its various variant. Furthermore, 

considering cost as an evaluation parameter, HCFT observes marginal improvisation over the existing model. 

In case of CyberShake_30, CyberShake_50, CyberShake_100, and CyberShake_1000, HCFT-mechanism 

observes 23.83%, 25.77%, and 28.26% respectively. Furthermore, considering the Inspiral workflow, HCFT-

mechanism observes improvisation of 57.704%, 57.713%, 57.692%, and 57.707% for Inspiral_30, Inspiral_50, 
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and Inspiral_1000, respectively. At last, HCFT-mechanism observes improvisation of 57.872%, 57.885%, 

57.883%, and 57.891% for SIPHT_30, SIPHT _60, SIPHT_100, and SIPHT _1000. HCFT observes marginal 

improvisation; however, considering the complexity of scientific workflow, future work should be focused on 

the implementation of a machine learning approach to predict the resources efficiently. 
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