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 In this paper, a load balancing system is designed to balance the secondary 

phase currents of 11 kV/380 V, 50 Hz, 100 kVA power transformer in a 

three phase 4-wire, distribution network. The load balancing system is built 

of six identical modified static synchronous compensators (M-STATCOMs). 

Each M-STATCOM is constructed of a voltage source converter-based  

H-bridge controlled in capacitive and inductive modes as a linear 

compensating susceptance. The M-STATCOM current is controlled by 

varying its angle such that it exchanges pure reactive current with the utility 

grid. Three identical M-STATCOMs are connected in delta-form to balance 

the active phase currents of the power transformer, whereas the other three 

identical M-STATCOMs are connected in star-form to compensate for 

reactive currents. The M-STATCOMs in the delta-connected compensator 

are driven by 380 V line-to-line voltages, whilst, those connected in star-

form are driven by 220 V phase voltages. The results of the 220 V and 380 

V M-STATCOMs have exhibited linear and continuous control in capacitive 

and inductive regions of operation without steady-state harmonics. The 

proposed load balancing system has offered high flexibility during treating 

moderate and severe load unbalance conditions. It can involve any load 

unbalance within the power transformer current rating and even unbalance 

cases beyond the power transformer current rating. 
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1. INTRODUCTION  

Static Var compensators (SVCs) and static synchronous compensators (STATCOMs) are usually 

exploited in the treatment of many issues concerning power quality like harmonic’s association, voltage 

unbalance and unbalanced loads [1]-[26]. Unbalanced loads and poor power factor usually lead to significant 

losses in both generation station and transmission system. This may restrict or decrease the capability of 

transmission systems. Power transmission efficiency can be increased by reducing losses through power 

factor treatment and load compensation techniques [7], [9]. In addition, compensation techniques play 

significant roles in the management of other challenging issues facing power quality achievement like 

voltage unbalance and harmonic association. Balancing of loads characterized by large fluctuations is of 

great importance because it is not economical to supply the required Var from the alternating current (AC) 

source and the power system is not capable to maintain its terminal voltage within its desirable range [19]. 

Load balancing systems are usually built of compensating susceptances to accomplish two main 

functions, which are reactive current compensation and balancing of active currents [9], [15], [26]. The 

https://creativecommons.org/licenses/by-sa/4.0/
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compensating susceptances are required to be linearly controlled in both capacitive and inductive modes in 

order to accomplish reliable load current compensation [6], [24]. Distribution STATCOMs are widely used to 

apply load compensation for 4-wire systems [2], [7], [25]. Other technologies approached power converter-

based shunt SVCs for achieving minimization of harmonics, current balancing, and voltage compensation 

[2], [3], [5], [8], [11], [12], [22]. Separate delta and star-connected susceptances are more efficient in 

accomplishing compensation for current and voltage imbalances than lumped systems [1], [3], [4], [7], [9], 

[10], [13]-[17], [20]-[23]. Conditions of current imbalance and harmonic issues can be treated using series 

compensation systems [14].  

In this paper, a load current balancing system built of two static compensators is proposed. Both 

compensators are built of linearized H-bridge STATCOMs as compensating susceptances. The first 

compensator is built of three identical susceptances connected in delta-form, whereas the second one is built of 

another three susceptances connected in star-form. Each susceptance is designed such that it has wide range of 

linearity, control continuity, very low operating losses, fast response, and negligible harmonic’s association.  
 

 

2. LOAD BALANCING OF 4-WIRE SYSTEMS 

Two static compensators are required to accomplish current balancing of 4-wire loads [9], [15], 

[26]. The first compensator is built using three similar susceptances connected in delta-form, whereas the 

second one is built of three identical susceptances connected in star-form. All susceptances are assumed to be 

linearly controlled in capacitive and inductive modes [6], [24]. The first compensator is designed to balance 

active components of the phase currents, while the second one is dealt with cancelling the reactive current 

components. Figure 1 reveals the proposed balancing mechanism of a 4-wire load energized by the balanced 

phase voltages VA, VB, and VC. BS1AB, BS1BC, and BS1CA are the susceptances of the delta-connected 

compensator, whereas BS2A, BS2B, and BS2C are the susceptances of the star-connected compensator. IS1A, IS1B, 

and IS1C are the line currents of delta-connected compensator, whereas IS2A, IS2B, and IS2C are the phase 

currents of the star-connected one. ILA, ILB, and ILC represent phase currents of the 4-wire load. IA, IB, and IC 

are the AC source phase currents, which are intended to be balanced and in phase with their corresponding 

phase voltages.  
 

 

 
 

Figure 1. The power circuit of the proposed load current balancing system  

 

 

The phase voltages VA, VB, and VC are assumed to be balanced in magnitude and phase; thus, they 

can be expressed as: 

 

𝑉𝐴 = 𝑉 (1) 
 

Star-connected compensatorDelta-connected compensator

u
n
b
a
l
a
n
c
e
d
 
t
h
r
e
e
-
p
h
a
s
e
 
 
l
o
a
d

B
a
l
a
n
c
e
d
 
t
h
r
e
e
-
p
h
a
s
e
 
A
C
 
s
u
p
p
l
y LAI

LBI

LCI

AI

BI

CI

ASI 1BSI 1 CSI 1 ASI 2BSI 2CSI 2

AV

BV

CV

N

N

N

ABSjB 1

BCSjB 1

CASjB 1

ASjB 2

BSjB 2 CSjB 2

AZ

BZ
CZ



                ISSN: 2089-4864 

Int J Reconfigurable & Embedded Syst, Vol. 12, No. 3, November 2023: 462-477 

464 

𝑉𝐵 = 𝑉𝑒𝑗
−2𝜋

3  (2) 
 

𝑉𝐶 = 𝑉𝑒𝑗
−4𝜋

3  (3) 

 

where, V is the rms magnitude of the balanced phase voltage. The phase currents of the unbalanced load can 

be given by: 

 

𝐼𝐿𝐴 = |𝐼𝐿𝐴|𝑒
𝑗𝜙𝐿𝐴 = |𝐼𝐿𝐴| 𝑐𝑜𝑠 𝜙𝐿𝐴 + 𝑗|𝐼𝐿𝐴| 𝑠𝑖𝑛 𝜙𝐿𝐴 (4) 

 

𝐼𝐿𝐵 = |𝐼𝐿𝐵|𝑒
𝑗(−

2𝜋

3
+𝜙𝐿𝐵) = (|𝐼𝐿𝐵| 𝑐𝑜𝑠 𝜙𝐿𝐵 + 𝑗|𝐼𝐿𝐵| 𝑠𝑖𝑛 𝜙𝐿𝐵)𝑒

𝑗
−2𝜋

3  (5) 

 

𝐼𝐿𝐶 = |𝐼𝐿𝐶|𝑒
𝑗(−

4𝜋

3
+𝜙𝐿𝐵) = (|𝐼𝐿𝐶| 𝑐𝑜𝑠 𝜙𝐿𝐶 + 𝑗|𝐼𝐿𝐵| 𝑠𝑖𝑛 𝜙𝐿𝐶)𝑒

𝑗
−4𝜋

3  (6) 

 

where, φLA, φLB, and φLC are the load current angles of phases A, B, and C respectively. |ILA|, |ILB|, and |ILC|, are 

the rms magnitudes of ILA, ILB, and ILC respectively. According to this work objectives, the AC source 

currents IA, IB, and IC should be active and balanced. Thus, they can be defined by: 

 

𝐼𝐴 = 𝐼 (7) 

 

𝐼𝐵 = 𝐼𝑒𝑗
−2𝜋

3  (8) 

 

𝐼𝐶 = 𝐼𝑒𝑗
−4𝜋

3  (9) 

 

where, I is the rms value of each phase current. The real power PL delivered to the load is the same real 

power P fed by the AC source. Thus, it can be written (10). 

 

𝑃𝐿 = 𝑉(|𝐼𝐿𝐴| 𝑐𝑜𝑠 𝜙𝐿𝐴 + |𝐼𝐿𝐵| 𝑐𝑜𝑠 𝜙𝐿𝐵 + |𝐼𝐿𝐶| 𝑐𝑜𝑠 𝜙𝐿𝐶) = 𝑃 = 3𝐼 (10) 

 

Therefore, the active I can be equated to (11). 

 

𝐼 =
|𝐼𝐿𝐴| 𝑐𝑜𝑠 𝜙𝐿𝐴+|𝐼𝐿𝐵| 𝑐𝑜𝑠 𝜙𝐿𝐵+|𝐼𝐿𝐶| 𝑐𝑜𝑠 𝜙𝐿𝐶

3
 (11) 

 

The compensating susceptances are equated by [9], [15], [26] as follows:  

 

𝐵𝑆1𝐴𝐵 =
2(|𝐼𝐿𝐴| 𝑐𝑜𝑠 𝜙𝐿𝐴−|𝐼𝐿𝐵| 𝑐𝑜𝑠 𝜙𝐿𝐵)

3√3𝑉
 (12) 

 

𝐵𝑆1𝐵𝐶 =
2(|𝐼𝐿𝐵| 𝑐𝑜𝑠 𝜙𝐿𝐵−|𝐼𝐿𝐶| 𝑐𝑜𝑠 𝜙𝐿𝐶)

3√3𝑉
 (13) 

 

𝐵𝑆1𝐶𝐴 =
2(|𝐼𝐿𝐶| 𝑐𝑜𝑠 𝜙𝐿𝐶−|𝐼𝐿𝐴| 𝑐𝑜𝑠 𝜙𝐿𝐴)

3√3𝑉
 (14) 

 

𝐵𝑆2𝐴 =
|𝐼𝐿𝐵| 𝑐𝑜𝑠 𝜙𝐿𝐵−|𝐼𝐿𝐶| 𝑐𝑜𝑠 𝜙𝐿𝐶−√3|𝐼𝐿𝐴| 𝑠𝑖𝑛 𝜙𝐿𝐴

√3𝑉
 (15) 

 

𝐵𝑆2𝐵 =
|𝐼𝐿𝐶| 𝑐𝑜𝑠 𝜙𝐿𝐶−|𝐼𝐿𝐴| 𝑐𝑜𝑠 𝜙𝐿𝐴−√3|𝐼𝐿𝐵| 𝑠𝑖𝑛 𝜙𝐿𝐵

√3𝑉
 (16) 

 

𝐵𝑆2𝐶 =
|𝐼𝐿𝐴| 𝑐𝑜𝑠 𝜙𝐿𝐴−|𝐼𝐿𝐵| 𝑐𝑜𝑠 𝜙𝐿𝐵−√3|𝐼𝐿𝐶| 𝑠𝑖𝑛 𝜙𝐿𝐶

√3𝑉
 (17) 

 

the values of the above susceptances are polar Quantities. Positive values mean capacitive susceptances. The 

negative values refer to inductive susceptances.  

 

2.1.  The modified STATCOM (M-STATCOM) 

Figure 2 shows the power circuit of the proposed H-bridge STATCOM. It is a voltage source 

converter (VSC) based type. In this circuit, the STATCOM reactor LST is partitioned into two identical series 
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reactors LST1 and LST2. The small capacitor CSH is used to reduce the effects of voltage spikes. The 

STATCOM DC voltage VDC, which appears across CDC is smoothed by the series filter formed by CF, LF, and 

RF. RST1, RST2, and RF are the self or ohmic resistances of the reactors LST1, LST2, and LF, respectively. 

The AC source voltage vac is stepped down and shifted by an angle β to produce the modulating 

signal vMOD, which is expressed by (18).  

 

𝑣𝑀𝑂𝐷 = 𝐴𝑀𝑂𝐷 𝑠𝑖𝑛(𝜔𝑡 + 𝛽) (18) 

 

Where, AMOD (5V) is its amplitude and ω (2πf) is the angular frequency of the AC source. The angle β is the 

STATCOM angle. 

 

 

 
 

Figure 2. The proposed modified STATCOM 

 

 

The sinusoidal pulse width modulation shown in Figure 3 is used to trigger the proposed 

STATCOM. The signal vMOD is compared with a triangular voltage vTRI to produce the triggering signal VZ1 of 

the IGBT Z1, whereas –vMOD is compared with vTRI to produce the triggering signal VZ3 of Z3. The voltage vi 

shown in Figures 2 and 3 can be given by (19) [24].  

 

𝑣𝑖 =
𝑉𝐷𝐶

5
(𝑉𝑍1 − 𝑉𝑍3) (19) 

 

The fundamental component of vi is v1 and it can be given by (20) [24].  

 

𝑣1 = 𝑚𝑉𝐷𝐶 𝑠𝑖𝑛(𝜔𝑡 + 𝛽) (20) 

 

Where, m represents the modulation index which can be given by (21).  

 

𝑚 =
𝐴𝑀𝑂𝐷

𝐴𝑇𝑅𝐼
 (21) 

 

Where, ATRI is the amplitude of vTRI. The STATCOM rms current IS can be given by (22).  

 

𝐼𝑆 =
𝑉𝐴.𝐶−𝑉1∠𝛽

𝑅𝑆𝑇1+𝑗𝜔𝐿𝑆𝑇1+𝑅𝑆𝑇2+𝑗𝜔𝐿𝑆𝑇2
 (22) 

 

If the reactances of the STATCOM reactors are very much greater than their ohmic resistances, then 

(22) can be approximated to: 

 

𝐼𝑆 =
𝑉𝐴.𝐶−𝑉1∠𝛽

𝑗𝜔𝐿𝑆𝑇1+𝑗𝜔𝐿𝑆𝑇2
 (23) 
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if β is controlled in the range of ±0.1rad, then vac and v1 are approximately in phase and IS is purely reactive. 

Negative values of β make V1 greater than VAC and IS will be capacitive, while small positive values of β 

make V1 smaller than VAC and subsequently, IS will be inductive.  

 

 

 
 

Figure 3. The STATCOM triggering mechanism 

 

 

2.2.  Design of the 380 V M-STATCOM 

The proposed system is required to balance the phase currents at the secondary side of an 11 kV/ 

380 V power transformer having an apparent power rating of 100 kVA in a 380 V, 50 Hz, 4-wire system. At 

the secondary side, the peak value of the phase rated current is 214 A. The consumer power factor is assumed 

to be 0.8 lagging as an average value. In this work, the delta-connected compensator is designed to balance 

the load active currents when one phase current is zero and the other two phases are running at their rated 

currents with unity power factor. According to (11), the active current I of the AC source is 142.67 A (peak 

value). If phase C of the load carries the zero current, then according to (12)-(14) the compensating 

susceptances are calculated as: BS1AB=0, BS1BC=0.265 Ʊ, and BS1CA=-0.265 Ʊ. In this work, the delta-

connected compensator is built of three identical 380 V, 50 Hz modified STATCOMs. According to the 

calculated susceptances, the 380 V modified STATCOM should be designed such that it responds equally to 

both capacitive and inductive current demands. The maximum capacitive current is BS1BC×VAC =0.265 Ʊ×537 

V=142.67 A (peak value). The maximum inductive current is BS1CA×VCA=-0.265 Ʊ×537 V=142.67 A=-

142.67 A (peak value).  

Figure 4 shows the PSpice design of the 380 V modified STATCOM. The controller of the 

modulating signal is a built-in library in PSpice [24]. It is denoted by the part “M-STATCOM VMOD 

controller”, which is excited by three analog signals. These signals are k4BS, k3VL, and kSiS. The line-to-line 

voltage VL is stepped down to 5 V (peak value) to form k3VL, which represents the modulating signal vMOD. 

The signal k4BS is proportional to the required 380 V STATCOM susceptance. The susceptance current iS is 

detected by the current transformer (CT) and converted to the analog voltage kSiS, which has a maximum 

amplitude of 10 V. The signal voltage k4BS governs the STATCOM current iS via shifting vMOD by small 

angle β proportional to the required compensating susceptance BS. The generated vMOD is compared with vTRI 

in the PSpice part “M-STATCOM TRIGGERING CCT” to produce the triggering signal VZ1 and -vMOD is 

compared with vTRI to produce VZ2. The triangular voltage vTRI has an amplitude of 5 V and a carrier 

frequency of 2.5 kHz. 



Int J Reconfigurable & Embedded Syst  ISSN: 2089-4864  

 

Balancing of four wire loads using linearized H-bridge static synchronous … (Abdulkareem Mokif Obais) 

467 

 
 

Figure 4. The 380 V, 50 Hz M-STATCOM  

 

 

2.3.  Design of the 220 V M-STATCOM 

The circuit design of the 220 V, 50Hz M-STATCOM is shown in Figure 5. It is similar to the  

380 V, 50 Hz M-STATCOM. It is operated by the phase voltage. The capacitive and inductive ratings for this 

STATCOM can be calculated by considering an unbalance case occuring during the open circuit of one phase 

of a load carrying the rated current with 0.8 lagging power factor. Assumining that phase A is open circuited, 

then the real or active current components of phases B and C are 214×0.8=171.2 A (peak value). Note that in 

this unbalance case, the power factor angles of phases B and C are φLB=-370 and φLC=-370, respectively. Their 

inductive reactive currents are 214×sinφLB =-0.6×214= -128.4 A (peak value) and 214×sinφLC =-0.6×214= -

128.4 A (peak value). According to these calculated active and reactive current components and (15)-(17), 

the calculated susceptances of the star-connected static compensator are BS2A=0, BS2B=0.73 Ʊ, and BS2C=-

0.07945 Ʊ. The maximum capacitive current expected to be provided by the 220 V STATCOM is VB×BS2B 

=311 V×0.73 Ʊ=227 A (peak value).  
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Figure 5. The 220 V, 50 Hz M-STATCOM  

 

 

2.4.  The PSpice design of the proposed load current balancing system 

Figure 6 shows the circuit diagram of the proposed load current balancing system for a three-phase 

grounded load in 380 V, 50 Hz distribution network. The AC voltages detection circuit and current 

transformer used in this system have the same PSpice implementation of those shown in Figures 4 and 5, 

except that the resistance values of the AC voltages detection circuit in this system are chosen such that k*3 

and k3 are 0.016 and 0.0093, respectively. The delta-connected static compensator is built of three identical 

380 V M-STATCOMs. Each STATCOM is capable of supplying a linear reactive current controlled in both 

capacitive and inductive modes of operation. The maximum rating of each STATCOM is about ±150 A 

(peak value). The star-connected static compensator is built of three identical 220 V M-STATCOMs. Each 

STATCOM is capable of supplying a linear reactive current controlled in both capacitive and inductive 

modes of operation. The maximum capacitive current rating of each STATCOM is 227 A (peak value).  
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Figure 6. Circuit design of the proposed load current balancing system  

 

 

The computation circuit of this system is shown in Figure 7. In this circuit, the load current signals 

are sampled at the positive peaks and negative slope zero-crossing points of their corresponding phase 

voltages to obtain the active and reactive components of load phase currents, respectively. The delta-

connected compensator susceptances are computed using (12)-(14), while the star-connected compensator 

susceptances are computed by using (15)-(17).  
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Figure 7. Computation circuit of the load current balancing system  

 

 

3. RESULTS AND DISCUSSION 

The circuits of Figures 4-6 were tested on PSpice to investigate their performances at different 

loading conditions. The targeted parameters are STATCOM currents, load phase currents, static 

compensators currents, and AC source phase currents. Different unbalance cases are treated by the proposed 

balancing system. 

 

3.1.  Performance results of 380 V M-STATCOM 
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was tested on PSpice for the investigation of harmonic contents, control continuity, and linearity. The 

parameters measured through PSpice tests were the STATCOM current iS, the DC capacitor voltage VDC, and 

the AC voltage vL. The basic controlling signal of the compensator is k4BS. Figure 8 shows responses to 
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maximum inductive reactive current demand, whereas Figure 8(b) shows vL, iS, and VDC of this STATCOM 

during its response to maximum capacitive reactive current demand. These responses corresponded to k4BS of 

±6.6 V. 6.6 V corresponds to a capacitive reactive current demand of 150 A (peak value), whereas -6.6V 

corresponds to an inductive current demand of -150 A (peak value). The figure states that the response settled 

within 5 cycles of the power system fundamental voltage without any harmonic association.  

The potency of the M-STATCOM controller is realized during it response to sudden change in 

reactive current demand from maximum inductive to maximum capacitive. Figure 9 shows the performance 

of the 380 V M-STATCOM during a sudden change in reactive current demand from maximum inductive to 

maximum capacitive. The change from inductive to capacitive reactive current demand had occurred at t=200 

ms and the STATCOM changed the nature of its current from inductive to capacitive within a time less than 

20 ms. It acquired it steady state current within 40 ms since the instant of reactive current demand change.  

 

 

 
(a) 

 

 
(b) 

 

Figure 8. The AC voltage vL, the current iS, and the capacitor DC voltage VDC of the 380 V M-STATCOM 

during response to maximum (a) inductive reactive current demand and (b) capacitive reactive current 

demand 

 

 

 
 

Figure 9. Performance of the 380 V M-STATCOM during sudden change in reactive current demand from 

maximum inductive to maximum capacitive 
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Figure 10 shows the current of the 380 V M-STATCOM against reactive current demand. The 

linearity the M-STATCOM as a compensating susceptance is verified by the graph of this figure. The graph 

is obtained by plotting the actual STATCOM reactive current against current demand.  

 

 

 
 

Figure 10. The 380 V M-STATCOM current against reactive current demand 

 

 

3.2.  Performance results of 220 V M-STATCOM 

The circuit diagram of 220 V M-STATCOM shown in Figure 5 was tested on PSpice. The AC 

voltage used during PSpice tests was a zero-phase sinusoidal voltage having a frequency of 50 Hz and 

amplitude of 311 V (corresponding to an rms value of 220 V). The basic controlling signal of this 

STATCOM is k5BS. The linearity of this STATCOM is shown in Figure 11. Overall, Figure 11 verifies the 

linearity and continuous control of the 220 V M-STATCOM as a compensating susceptance in capacitive and 

inductive modes of operation.  

 

 

 
 

Figure 11. 220 V M-STATCOM current against reactive current demand 

 

 

3.3.  Performance results of the proposed load current balancing system  

This system shown in Figure 6 was investigated under different unbalance conditions. The basic 

parameters measured were the AC source voltages vA, vB, and vC; the AC source currents iA, iB, and iC; the 

load currents iLA, iLB, and iLC; first compensator currents iS1A, iS1B, and iS1C; second compensator currents iS2A, 

iS2B, and iS2C. Figure 12 shows the treatment of a load unbalance resulted from the disconnection of one phase 

of a balanced three-phase rated load at 0.8 lagging power factor. 
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Figure 12. Load balancing system treatment to a load unbalance resulted from the disconnection of one phase 

of a balanced three-phase rated load at 0.8 lagging power factor 

 

 

The treatment of the above unbalance condition had resulted in balanced real currents drawn from 

the AC source (power transformer). Figure 13 shows the treatment of a load unbalance in which one of the 

phase currents of an unbalanced three-phase load was exceeding the power transformer rated current. The 
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treatment of this load unbalance had resulted in driving the phase currents of the power transformer below 

their rating values as balanced real currents associated with significant reductions in their magnitudes. 

 

 

 
 

Figure 13. Load balancing system treatment to a load unbalance in which one phase current was exceeding 

the power transformer rating 
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Figure 14 shows the treatment a load unbalance in which all the phase currents of an unbalanced 

three-phase load were exceeding the power transformer current rating. The treatment had driven all the phase 

currents drawn from the power transformer below their rated values as balanced real currents. This load 

unbalance was due a somewhat significant phase unbalance.  

 

 

 
 

Figure 14. Load balancing system treatment to a load unbalance in which all the phase currents were 

exceeding the power transformer rating 
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4. CONCLUSION 

In this work, a load balancing system is designed to balance the phase currents of a three-phase, 380 

V, 50 Hz, 100 kVA power transformer in 4-wire distribution network using six identical linearized H-bridge 

STATCOMs. These STATCOMs are exploited as continuously and linearly controlled compensating 

susceptances in both capacitive and inductive modes. They are controlled in such a manner that they never 

lose synchronization with grid. The performance results of the 220 V and 380 V M-STATCOMs have 

revealed the potency of their linearities and control continuities. Each M-STATCOM approximately sticks to 

steady-state reactive current demand within a period of less 5 cycle of the power system network 

fundamental. In addition, it satisfies the reactive current demand despite the AC voltage status (below or 

above its rated value). The steady-state portion of the STATCOM reactive current exhibits pure sinusoidal 

envelope, which certifies the the absence of harmonic’s association. The proposed load balancing system had 

reflected high flexibility during managing different load unbalances. It can involve any load unbalance within 

or below the power transformer current rating which was designed for compensating its phase currents. In 

addition, the system showed efficient performance during treating unbalance cases beyond the power 

transformer current rating. It showed excellent performance in comparison with other four-wire load 

compensation systems. 
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