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 Efficient acquisition of channel state information (CSI) is quite complicated 

process but immensely essential to exploit probable benefits of massive 

multiple input multiple output (MIMO) systems. Therefore, a deep learning-

based model is utilized to estimate channel feedback in a massive MIMO 

system. The proposed improvised deep learning-based channel estimation 

(IDLCE) model enhances channel reconstruction efficiency by using 

multiple convolutional layers and residual blocks. The proposed IDLCE 

model utilizes encoder network to compress CSI matrices where decoder 

network is used to downlink reconstruct CSI matrices. Here, an additional 

quantization block is incorporated to improve feedback reconstruction 

accuracy by reducing channel errors. A COST 2,100 model is adopted to 

analyse performance efficiency for both indoor and outdoor scenarios. 

Further, deep learning-based model is used to train thousands of parameter 

and correlation coefficients much faster and to minimize computational 

complexity. The proposed IDLCE model evaluate performance in terms of 

normalized mean square error (NMSE), correlation efficiency and 

reconstruction accuracy and compared against varied state-of-art-channel 

estimation techniques. Excellent performance results are obtained with large 

improvement in channel reconstruction accuracy. 
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1. INTRODUCTION 

Wireless communication networks have provided massive benefits to the society in the last few 

decades by persistently developing systems with higher throughput, higher flexibility, reliability, low latency 

and better coverage capacity. Additionally, tremendous efforts are given for the advancement of techniques 

like channel estimation, encoding, decoding, modulation, and demodulation. Thus, massive multiple input 

multiple output (MIMO) is one of the most promising and significant technology in a wireless 

communication network which is mainly utilized in fifth-generation (5G) cellular applications to enhance 

spectral efficiency and link capacity. Here, massive MIMO systems consists of multiple number of antennas 

at the base station (BS) and information obtained from the user equipment (UE) is reconstructed and serve 

multiple users [1]-[3] at low signal to noise ratio. Higher spectral efficiency is mainly depending on channel 

state information (CSI), which is acquired at BS by feedback back from UE. Thus, the potential benefits of 

massive MIMO systems are exploited by efficient acquisition of CSI and to improve bandwidth resource 

utilization. Moreover, high accuracy of CSI acquisition enhances performance efficiency. 

https://creativecommons.org/licenses/by-sa/4.0/
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Furthermore, another promising technique is cloud computing, which has massive impact on varied 

applications like communication, healthcare, manufacturing, banking, education and entertainment since last 

three decades. The utilization of cloud computing technology can provide maximum yield with its unique and 

highly beneficial features such as availability of numerous resources with on-demand and low-cost 

capabilities. The cloud computing technique mainly works on the principle of pay-per-use model and on-

demand resource access. Another advantage of cloud computing technology is minimum management 

problems with multi-tasking abilities. Thus, the functionalities of cloud computing technology can help in 

finding novel technological solutions for mobile communication network in a communication and 

information technology field [4]. Thus, use of cloud computing technique and massive MIMO system can 

ensure efficiency enhancement of high bandwidth 5G mobile cellular network. Furthermore, these techniques 

can enhance flexibility and scalability of mobile cellular networks to fulfil the market expectations. 

Furthermore, in case of uplink CSI medium, the estimation of CSI at BS is quite efficient due to the 

accurate transmission of pilot code words from the UE. However, current cellular systems mostly utilize 

uplink CSI estimation. Besides, the estimation of CSI in downlink CSI medium is quite challenging task, 

specifically in case of frequency division duplex (FDD) multiplexing. Whereas, downlink CSI estimation is 

achieved with the help of uplink CSI medium in time division duplex multiplexing using reciprocity [5]. 

However, downlink CSI estimation in FDD multiplexing using uplink CSI medium is quite complex task due 

to weak reciprocity. Furthermore, the approach utilized in classical MIMO systems produces massive 

overhead in which downlink CSI is estimated at UE with the help of pilot code words in FDD systems and 

after estimated CSI is fed back to the BS. However, in this approach, massive overhead is induced due to 

utilization of multiple antennas enhances dimensions of CSI matrices. Thus, this approach is infeasible in 

massive MIMO systems. Furthermore, channel overhead can be mitigated by efficient compression of CSI 

matrices. This can be achieved using compression sensing methods or deep learning techniques [6], [7]. 

Nevertheless, the sparsity of CSI feedback medium is exploited of a massive MIMO system using 

compression sensing based methods in a fixed domain [8]. Generally, compression sensing based approaches 

utilizes spatial-frequency domain to acquire CSI efficiently and CSI estimation is done based on the 

exploitation of spatial CSI correlation. Besides, spatial correlation is achieved by placing antennas closer to 

each other at BS in a massive MIMO system. However, in some literatures [9], joint sparsity of channel 

matrices is exploited based on the common local scatters. As a result, efficient compression of CSI matrices 

is achieved. However, optimization problem occurs at the time of decompression with computational 

complexity [7]. Thus, implementation of compression sensing based methods in real time and varied practical 

communication systems is quite challenging and difficult. However, deep learning-based approaches have 

observed tremendous growth in varied fields like wireless communication, computing, and signal processing 

[10], [11]. Furthermore, deep learning based approaches have shown tremendous performance in the field of 

image compression as well as better suited for CSI feedback mechanism. Further, the optimization problem 

of image reconstruction is efficiently handled using convolutional layers in deep learning based approaches. 

Besides, a mapping mechanism with residual network is utilized to refine estimated CSI matrices at the 

decoder side. Furthermore, high reconstruction accuracy is achieved using deep learning based approaches in 

terms of CSI feedback estimation. However, traditional approaches overlook the effect of quantization 

process. As a result, considerable errors can be generated in a practical communication system. 

Therefore, in this article, an improvised deep learning-based channel estimation (IDLCE) model is 

proposed to estimate channel feedback and to mitigate CSI feedback overhead in a massive MIMO system. 

Further, CSI estimation and channel overhead reduction are done efficiently using proposed IDLCE model. 

The proposed model efficiently estimates CSI at UE and then fed back to BS. Moreover, a cloud platform is 

utilized to estimate CSI matrices and their accuracy in terms of normalized mean square error (NMSE) and 

correlation results between uplink and downlink channels. The proposed IDLCE model provide massive 

strength towards implementation of 5G wireless mobile network. The proposed IDLCE model improves 

bandwidth utilization as well as spectral efficiency. The proposed IDLCE model is utilized to exploit 

downlink CSI feedback medium based on the CSI estimated at the uplink medium at source and UE, 

respectively. Further, large training database is utilized to study channel feedback matrices using deep 

learning-based approach. The proposed IDLCE model provides better reconstruction accuracy and error 

reduction and compared against different CSI feedback approaches based on varied performance matrices 

such as NMSE and cosine similarity. 

This paper is organised in following style. Section 2, describes about the related work demonstrated 

regarding massive MIMO system and the problems associate to it and solutions to sort those problems with 

the help of proposed IDLCE model. Section 3, discusses about the mathematical modelling utilized in 

proposed IDLCE for CSI feedback estimation. Section 4 describes about experimental results and their 

comparison against traditional CSI feedback approaches and section 5 concludes the paper. 
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2. RELATED WORK 

Massive MIMO system is mainly utilized in 5G mobile cellular system and beyond applications. 

Here, BS in the massive MIMO system is equipped with multiple antennas and CSI reconstruction is 

acquired at UE and fed back to the BS. Thus, deep learning-based model is the best suitable approach for 

efficient CSI reconstruction. As a result, several researchers have provided their massive efforts to ensure an 

efficient CSI reconstruction technique using machine learning, cloud computing or deep learning methods. 

However, due to presence of channel errors, the reconstruction accuracy gets affected as well as traditional 

channel estimation techniques have high channel overhead. Thus, several researchers have provided their 

efforts in this domain to study the mentioned challenges and provide solutions to counter those problems. 

According to Wei et al. [12], a low rank approximation-based compression model is presented to 

enhance CSI estimation accuracy in massive MIMO systems. Here, a CSI feedback method is adopted to 

improve CSI precision and channel overhead reduction efficiency. Furthermore, channel matrix 

characteristics are utilized to reconstruct CSI feedback and compression results are heavily improved. 

According to Choi et al. [13], a detailed investigation on channel matrices is conducted in Zero-Feedback 

FDD systems. The feasibility of frequency domain channel matrices is utilized to estimate parameters. Here, 

vector spatial signature (VSS) model is utilized to acquire channel data and to improve spectral efficiency by 

reducing NMSE errors. The performance is measured in terms of beamforming efficiency and NMSE. 

According to Ma et al. [14], a channel estimation and feedback mechanism is introduced using deep learning-

based model to reduce the uplink pilot overhead in a millimetre-wave (mm-Wave) systems. This mechanism 

is utilized to jointly train the phase shift network and structured sparsity of channel is exploited to improve 

downlink channel estimation efficiency. According to Lee et al. [15], a downlink channel reconstruction 

technique is presented to handle Spatial Multiplexing in a massive MIMO system to improve uplink and 

downlink channel reciprocity. Here, downlink-based CSI reference signals are utilized to spectral efficiency 

and complexity issues. Simulation results are demonstrated in terms of spectral efficiency and channel 

reconstruction accuracy. According to Kim and Choi [16], a channel estimation technique is presented to 

counter channel errors in the mm-Wave massive MIMO systems. Here, analog-to-digital converters (ADCs) 

are used to estimate wide-band channel efficiency. Here, inter-user and inter-frame interference is mitigated 

based on the channel parameters and maximum a posteriori (MAP) criterion. According to Guo et al. [17], a 

compression sensing based model is introduced to compress and quantize CSI matrices in a convolutional 

neural network (CNN) based architecture in a massive MIMO system. Here, a novel training approach is 

adopted to reduce parameters by 38.0% and 46.7% and improve reconstruction accuracy. This technique 

outperforms traditional approaches in terms of parameter reduction and compression efficiency. According to 

Ye et al. [18], a deep learning-based model is adopted to de-noise channel matrices and improve 

reconstruction accuracy in massive MIMO systems. This technique enhances CSI feedback efficiency in a 

FDD domain. A perfect CSI feedback mechanism is adopted to compress CSI into a code word. According to 

Gkonis et al. [19], a detailed survey is presented on the challenges and feasibility of 5G wireless mobile 

networks by estimating CSI matrices in a massive MIMO system. This survey provides knowledge of hybrid 

analog-digital precoding mechanism, multiple access system, and wireless information. 

Different views are presented in the mentioned literatures from various researchers about CSI 

feedback reconstruction using varied techniques like deep learning; CNN based model and massive MIMO 

and mm-Wave systems. However, still massive improvement is needed in terms of spectrum throughput, 

interference reduction, channel overhead and reconstruction accuracy. Thus, IDLCE model is introduced in 

this article to estimate CSI feedback reconstruction accuracy and channel overhead reduction. Further, cloud-

computing technology is utilized to provide high channel accuracy results. Next section discusses about the 

mathematical modelling of IDLCE model. 

 

 

3. MODELLING OF IDLCE 

This section describes about the system modelling of proposed IDLCE model to estimate CSI 

feedback matrices in the massive MIMO system based on the improvised deep learning model with a 

quantization block. This technique enhances CSI feedback accuracy in a FDD multiplexing domain. Deep 

learning model is utilized to acquire channel data and to improve spectral efficiency by reducing NMSE 

errors. Previous work shows that a definite correlation present between uplink and downlink medium. Thus, 

utilization of uplink CSI matrices acquired in a FDD domain can possibly enhance the estimation efficiency 

of downlink CSI matrices. Here, Figure 1 demonstrates block diagram of proposed IDLCE model. Further, a 

detailed mathematical representation of proposed IDLCE model is presented in a following paragraph.  
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Figure 1. Block diagram of proposed IDLCE model 

 

 

A massive MIMO system with a unitary cell is considered in which BS is equipped with several 

transmit antennas as Rb ≫ 1 whereas UE is equipped with a single receiver antenna. Here, orthogonal 

frequency division multiplexing (OFDM) is applied in a massive MIMO system using proposed IDLCE 

model over Rg subcarriers. Then, the code-word received in a downlink channel considering the r − th 

subcarrier is given by following (1). 

 

𝑙𝑞
(𝑟)

=  𝑛𝑞
(𝑟)𝑁

𝑑𝑀
(𝑟)

𝑧𝑞
(𝑟)

+  𝑥𝑞
(𝑟)

 (1) 

 

Where, frequency response vector of a channel considering r − th subcarrier is denoted by nq
(r)

and 

channel vector nq
(r)

 is proportional to 𝕂Rb×1 and transmitted data code-word is denoted by zq
(r)

∈ 𝕂. Further, 

precoding vector considering r − th subcarrier is expressed by dM
(r)

∈ 𝕂Rb×1 whereas xq
(r)

and (∙)N is 

expressed as additive interference or noise and conjugate transpose, respectively. Here, BS can evaluate 

precoding vector dM
(r)

 with the help of channel vectors nq
(r)

. Then, the code-word received in an uplink 

channel considering the r − th subcarrier is given by following (2). 

 

𝑙𝑤
(𝑟)

=  𝑑𝑃
(𝑟)𝑁

𝑛𝑤
(𝑟)

𝑧𝑤
(𝑟)

+ 𝑑𝑃
(𝑟)𝑁

𝑥𝑤
(𝑟)

 (2) 

 

Where, frequency response vector of a channel considering r − th subcarrier is denoted by nw
(r)

and 

channel vector nw
(r)

 is proportional to 𝕂Rb×1 and received data code-word is denoted by zw
(r)

∈ 𝕂. Further, 

received beam-former considering r − th subcarrier in an uplink medium is expressed by dP
(r)

∈ 𝕂Rb×1 

whereas xw
(r)

 is expressed as added noise and (∙)Nis a conjugate transpose, respectively. Here, BS can 

evaluate precoding vector dP
(r)

 with the help of channel vectors nw
(r)

 in an uplink medium. The downlink CSI 

matrices are represented in the matrix form in a spatial frequency domain using following (3). 

 

𝑁𝑞 =  [𝑛𝑞
(1)

, … … . , 𝑛𝑞

(𝑅𝑔)
]

𝑁

 (3) 

 

The uplink CSI matrices are represented in the matrix form in a spatial frequency domain using 

following (4). 
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𝑁𝑤 =  [𝑛𝑤
(1)

, … … . , 𝑛𝑤

(𝑅𝑔)
]

𝑁

 (4) 

 

Here, (3) and (4) is proportional to 𝕂Rg×Rb , respectively. Here, downlink channel is estimated at UE 

in a FDD system and the estimated CSI is fed back to BS. Then, BS evaluates precoding vector dM
(r)

∈

𝕂Rb×1 with the help of this estimated downlink CSI feedback at BS. The feedback parameters utilized in a 

proposed massive MIMO system in numbers are given by 2RbRg. However, these feedback parameters are 

directly proportional to the number of antennas. The utilization of excessive feedback parameters utilizes 

large bandwidth spectrum in a massive MIMO system. As a result, channel feedback overhead is greatly 

enhanced. Thus, channel overhead reduction is achieved by utilizing CSI sparsity in the delay domain. 

Furthermore, inverse discrete Fourier transform (IDFT) is used to get CSI matrices in angular-delay domain 

from the CSI matrices of spatial frequency domain, which can be expressed using following (5). 

 

𝑁𝑔𝐺𝑁 =  𝑁𝑚 (5) 

 

Where, G is a DFT matrix with a singular row and is proportional to G ∈  Rg × Rg whereas GN is an 

Rg × Rg IDFT unitary matrix, respectively. After IDFT applied in (3), most of the elements have almost 

zero-value due to the high sparsity of massive MIMO system in Rb × Rg channel matrix matrix Nm of the 

angular delay domain except first row Vg elements. Here, the elements of first row Vg has unique non-zero 

values. Thus, channel matrix rows get truncated into a single-row matrix directly. Thus, the downlink 

channel matrix Nq and uplink channel matrix Nw are denoted as Ñq and Ñw after IDFT process with a single 

row Vg distinct non-zero values, respectively. Furthermore, the code words are encoded to compress 

dimensions of downlink CSI matrices and low-bit encoding is performed. As a result, redundancy can be 

mitigated. Besides, the classical CSI methods utilizes only encoder-decoder mechanism, encoder is used to 

compress code words, and decoder is utilized to recover those code words, respectively. Thus, a quantizer 

block is added to the encoder system to jointly compress and quantize code words efficiently. Therefore, 

downlink CSI feedback medium in FDD system contains three blocks to reconstruct channel matrices such as 

encoder block, quantizer block and decoder block. Exactly, a DL-based channel estimation framework is 

designed to jointly compress dimensions efficiently and quantize CSI matrices at the receiver side. The 

reconstruction of code words is performed at the transmitter side to optimize CSI channel matrix 

reconstruction. Therefore, joint optimization of compression and quantization is performed using proposed 

IDLCE model in a massive MIMO system. Here, recovered downlink channel matrix is expressed by N̂q and 

gi(∙) denotes quantization function. Then, encoder block, quantizer block and decoder block using a 

proposed IDLCE model are expressed by following (6) to (8). 

 

𝑏1 =  𝑔𝑗,1(𝑁𝑞) (6) 

 

𝑏̂1 =  𝑔𝑖,1(𝑏1) (7) 

 

𝑁̂𝑞 =  𝑔𝑝,1(𝑏̂1) (8) 

 

Similarly, encoder block, quantizer block and decoder block using a proposed IDLCE model considering 

DualNet − IMag architecture is expressed by following (9) to (11). 

 

𝑏2 =  𝑔𝑗,2(𝑁𝑞) (9) 

 

𝑏̂2 =  𝑔𝑖,2(𝑏2) (10) 

 

𝑁̂𝑞 =  𝑔𝑝,2(𝑏̂2, 𝑁𝑤) (11) 

 

Furthermore, the downlink CSI feedback channel matrix is optimized by minimizing ‖Nq − N̂q‖
2
 and 

function ‖∙‖ is represented as Frobenius normalization. 

 

3.1.  Deep learning-based channel state information feedback model 

The proposed deep learning-based CSI feedback model achieves considerable performance gain and 

yield by reducing channel feedback overhead and enhancement of downlink CSI feedback reconstruction 
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accuracy. Furthermore, potential benefits of encoder block are exploited to compress channel matrices and 

along with that, a quantization block is adopted to observe a drastic improvement in terms of compression 

accuracy in a massive MIMO system. Therefore, firstly, analysis of quantization effect on the length of code 

word is done to achieve high CSI reconstruction accuracy by using a generalized uniform quantizer. Further, 

a uniform quantizer is added with the compression block and the quantized CSI matrices are transmitted to 

the decoder block to observe quantization effect. Here, Figure 2 demonstrates a proposed deep learning-based 

CSI feedback model with a quantization block. The proposed deep learning-based CSI feedback architecture 

contains convolution layers and fully linked layers in an encoder network to compress dimensions of CSI 

matrices whereas decoder network contains fully linked layers and residual blocks to decompress code words 

and reconstruct downlink CSI channel matrices, respectively. Further, every residual block contains total 

number of three convolutional layers. Here, proposed multilayer (MLNet) architecture exploits the 

correlation of magnitude coefficients evaluated between uplink and downlink medium to enhance downlink 

CSI feedback accuracy as demonstrated in Figure 3. Furthermore, the proposed MLNet architecture perform 

phase and magnitude separation distinctly. Once phase and magnitude separation are performed, then 

correlated magnitude coefficients are transmitted to the encoder network at UE, which contains convolutional 

layers and fully linked layers. Then, the decoder network is utilized to receive compressed code words at the 

BS and CSI magnitude coefficients of uplink medium is utilized together with these received compressed 

code words. Then, fully linked layer is utilized to convert compressed code words into the original length of 

code words. Then, both CSI magnitude coefficients of uplink medium and downlink CSI coefficients are 

combined together using convolutional layers to compute output. Then, the obtained output is reformed into 

feature maps. Thus, the resultant feature maps are fed into the residual blocks to reconstruct downlink CSI 

matrices. Furthermore, a magnitude-phase quantization method is introduced to minimize bandwidth 

utilization with least quantization errors. Thus, the CSI magnitude coefficients with higher values provide 

greater phase quantization. Similarly, higher phase coefficients receive larger CSI magnitude values. 

Furthermore, uniform quantization process is a simple and generalized rounding procedure and 

utilized in varied environments. Here, every value of channel coefficient is rounded to closest one using the 

rounding method with varied quantization levels. Then, the magnitude of CSI coefficients is normalized 

between are normalized between the intervals [bmax , bmin]. Consider that, number of bits are denoted as d in 

the process of magnitude normalization. Every magnitude value of CSI coefficient is quantized into 2d levels 

in uniform manner using following (12) and (13). 

 

𝑏̂ =  ∆ . ⌊
𝑏

∆
⌉  (12) 

 

Where, 

 

∆ =  (bmax − bmin). (2d − 1)
−1

 (13) 

 

In this way, the uniform quantizer is integrated into the proposed deep learning-based CSI feedback 

model. In varied state-of-art-channel, estimation techniques provide channel feedback mechanism without 

any quantization approach. However, proposed IDLCE model obtain compressed CSI coefficients and then 

transmit the compressed and quantized CSI coefficients to the decoder network after quantization. Thus, the 

proposed IDLCE model is comparatively more robust than traditional channel estimation methods in terms of 

quantization errors. Finally, accuracy of CSI reconstruction process is much higher with quantization. As a 

result, feedback bandwidth efficiency gets enhanced. 

 

 

 
 

Figure 2. Quantization based proposed deep learning-based CSI feedback model 
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Figure 3. Architecture of proposed MLNET model 

 

 

3.2.  Correlation estimation using proposed improvised deep learning-based channel estimation model 

The downlink CSI feedback matrices are estimated and channel feedback overhead is efficiently 

reduced using proposed IDLCE model. Here, deep learning-based model is introduced to enhance processing 

speed and parameter reduction. Here, real and imaginary parameters acquired from the correlation of 

downstream and upstream CSI matrices are controlled using proposed deep learning model. Further, the 

correlation coefficients are acquired in angular delay domain with the help of channel feedback matrices. 

Besides, due to the complex nature of correlation coefficients, they are separated into real and imaginary 

coefficients. However, obtained correlation coefficients are erratic for downlink and uplink channel matrices. 

Consider that phase exhibit lower correlation results than compare to the magnitude in angular-delay domain. 

Therefore, separate correlation of magnitude and phase coefficients are acquired. 

Thus, the proposed IDLCE model fed back real and imaginary coefficients separately along with 

their signs. Further, proposed deep learning framework efficiently reduce channel overhead by sending 

uncorrelated data with their signs for uplink and downlink medium. An essential feature of the proposed 

IDLCE model is adoption of fully linker layers, residual blocks, convolutional layers and conversion into the 

feature maps. However, due to lesser values of correlated phase coefficients, compression of phase 

coefficients with their signs are performed at UE whereas magnitude coefficients of downlink medium and 

uplink CSI matrices are jointly optimized at the BS. This shows that the proposed IDLCE model ensure high 

performance accuracy and signal restoration efficiency. 
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4. PERFORMANCE EVALUATION 

In this section, performance of proposed improvised deep learning-based channel estimation model 

is analyzed in a massive MIMO system to estimate high CSI feedback reconstruction and mitigate channel 

overhead. Here, deep learning model is adopted to train thousands of channel parameters and correlation 

coefficients efficiently. The proposed IDLE model lowers computational complexity by reduction in 

utilization of channel parameters. The acquired correlation coefficients are exploited by separating them into 

real and imaginary parts considering CSI matrices of uplink and downlink medium. Furthermore, Figure 3 

demonstrates the architecture diagram of proposed MLNet model. It is clearly visible from the Figure 3 that 

CSI matrices are complex in nature in which phase and magnitude both parameters are separately fed and 

convolutional layers are utilized at encoder side to compress magnitude coefficients of CSI matrices as well 

as dimensions are reshaped using dimension reshape at encoder as well as decoder side. Further, both CSI 

matrices of uplink medium and magnitude coefficients of CSI matrices are concatenated after dimensions are 

reshaped. Then, convolutional layers and residual blocks are utilized to get output at the decoder side. 

Furthermore, magnitude-phase-quantization method is utilized to optimize phase coefficients into an output. 

Then, both the outputs are transformed into the reconstructed CSI matrices and these reconstructed output 

remains complex in nature. In this way, MLNet model is proposed to reconstruct CSI matrices. Also, 

correlation coefficients are evaluated by separating real and imaginary coefficients with their signs in angular 

delay domain. Furthermore, performance is evaluated in terms of NMSE in dB and correlation efficiency 

against compression ratio. 

 

4.1.  Dataset details 

Here, a COST 2,100 model is utilized to assess performance efficiency of proposed IDLCE model 

in the massive MIMO system [20]. Furthermore, downlink CSI feedback reconstruction accuracy and 

correlation between uplink and downlink medium is also evaluated based on the data extracted for indoor and 

outdoor environments. Here, data of COST 2,100 model is segregated into indoor and outdoor environment. 

Further, indoor and outdoor environments are considered to evaluate performance of proposed CSI feedback 

model. Here, frequency is fixed at 5.1 GHz and 5.3 GHz for uplink medium and downlink medium 

considering indoor environment. Whereas, frequency is fixed at 260 MHz and 300 MHz for uplink medium 

and downlink medium considering outdoor environment. Here, multiple uniform linear array antennas are 

utilized in the massive MIMO system. Furthermore, BS is equipped with uniform linear array antennas Rb =
 32 and number of subcarriers used are Rg = 1,024. Training of proposed IDLCE model is efficiently done 

using varied system parameters. Here, epoch size is 700 whereas batch size is 200. Rest of the simulation 

parameters are retained same as [20], [21]. Here, the performance of COST 2100 channel model is compared 

against varied classical CSI estimation techniques. The proposed deep learning model shows excellent 

performance in terms of channel parameter reduction as well as reconstruction efficiency. Furthermore, code-

word reconstruction accuracy is evaluated in terms of NMSE and correlation similarity. The proposed 

IDLCE model enhances bandwidth utilization in the massive MIMO system to implement 5G cellular 

network efficiently. 

 

4.2.  Comparative study 

The proposed IDLCE model evaluate performance in terms of NMSE, correlation efficiency and 

reconstruction accuracy and compared against varied state-of-art-channel estimation techniques. Table 1 

demonstrates NMSE (dB) performance using proposed IDLCE model against varied state-of-art-channel 

estimation techniques such as CsiNet [22], BCsiNet [23], BACRNet-1, BACRNet-10, BACRNet-1 and 

BACRNet-10 [24] to estimate CSI feedback reconstruction accuracy. Table 1 results demonstrates 

superiority of proposed IDLCE model for indoor scenarios and outdoor scenarios. The proposed IDLCE 

model outperforms all the CsiNet and their versions in terms of error reduction efficiency against varied 

compression ratios. It is evident from Table 1 results that lower the compression ratio, the error reduction 

efficiency becomes higher. That means error reduction efficiency is inversely proportional to the 

compression ratio. However, channel estimation efficiency is significantly improved using proposed IDLCE 

model in a massive MIMO system. Furthermore, average improvement in channel reconstruction accuracy 

considering indoor scenario is observed as 34.90% against previous best CSI feedback method (BACRNet-

10). Similarly, for outdoor scenarios, reconstruction accuracy improvement is observed as 53.90% against 

previous best CSI feedback method (BACRNet-10). As demonstrated in Table 1, the better performance 

results are highlighted in bold font. 

Figure 4 shows a graphical representation of correlation performance using proposed IDLCE Model 

against varied compression ratios as 4, 8, 16, 32 and 64 to estimate correlation between CSI matrices of 

uplink and downlink medium considering indoor and outdoor scenarios. The proposed IDLCE model shows 

better results in terms of correlation efficiency against varied compression ratios such as 4, 8, 16, 32 and 64. 
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Figure 4 results shows that correlation results provide reasonably better performance for lower compression 

ratio.  

 

 

Table 1. CSI reconstruction accuracy results against varied traditional channel estimation techniques 
CR Classical CSI methods INDOOR OUTDOOR 

1/4 CsiNet -17.36 -8.75 

BCsiNet -17.25 -8.35 
BACRNet-1 -20.46 -9.3 

BACRNet-10 -23.36 -10.41 

BACRNet-1 -14.2 -7.03 
BACRNet-10 -17.27 -8.78 

Proposed IDLCE model -28.98 -17.59 

1/8 CsiNet -12.7 -7.61 
BCsiNet -12.39 -6.26 

BACRNet-1 -14.09 -6.82 

BACRNet-10 -17.47 -8.15 
BACRNet-1 -11.52 -5.52 

BACRNet-10 -14.96 -6.63 

Proposed IDLCE model -19.47 -10.54 
1/16 CsiNet -8.65 -4.51 

BCsiNet -8.99 -4.17 

BACRNet-1 -10.64 -4.65 
BACRNet-10 -12.88 -5.45 

BACRNet-1 -8.83 -2.92 

BACRNet-10 -11.7 -4.63 
Proposed IDLCE model -16.47 -7.41 

 

 

 
 

Figure 4. Correlation performance of proposed IDLCE model considering varied indoor and outdoor 

scenarios 

 

 

Figure 5 demonstrates a graphical representation of channel feedback reconstruction accuracy using 

proposed IDLCE model against varied state-of-art-channel estimation techniques like LASSO [25], CSINet 

[22], CRNet-const [26], CRNet-cosine [26], DS-NLCsiNet [27], CLNet [28] and CsiFormer [21] to estimate 

downlink CSI feedback restoration efficiency considering indoor scenarios. The proposed IDLCE model 

outperforms all the channel estimation techniques in terms of channel feedback reconstruction efficiency 

against varied compression ratios such as 32 and 64. It is evident from Figure 5 results that NMSE results 

shows comparatively smoother performance when compression ratio is lower in indoor scenarios. 
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Figure 5. NMSE performance of proposed IDLCE model against varied state-of-art-channel estimation 

techniques considering indoor scenarios 

 

 

Similarly, Figure 6 demonstrates a graphical representation of NMSE results for proposed IDLCE 

Model against different classical channel estimation techniques such as LASSO [25], CSINet [22], CRNet-

const [26], CRNet-cosine [26], DS-NLCsiNet [27], CLNet [28] and CsiFormer [21] to estimate downlink 

CSI feedback reconstruction accuracy considering outdoor scenarios. The proposed IDLCE model 

outperforms all the classical CSI feedback methods in terms of channel reconstruction efficiency against 

varied compression ratios such as 32 and 64. It is evident from Figure 6 results that NMSE results shows 

comparatively smoother performance when compression ratio is lower considering outdoor scenarios. 

 

 

 
 

Figure 6. NMSE performance of proposed IDLCE model against varied state-of-art-channel estimation 

techniques considering outdoor scenarios 

 

 

Table 2 demonstrates CSI reconstruction accuracy results in terms of NMSE reduction using 

proposed IDLCE model against classical CSI feedback estimation methods such as DS-NLCSiNet [27], 

CsiNetPlus [17] and ACRNet-1× [24] to estimate channel estimation accuracy. Table 2 results demonstrates 

superiority of proposed IDLCE model for both indoor and outdoor scenarios. The proposed IDLCE model 
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outperforms both DS-NLCSiNet [27], CsiNetPlus [17] and ACRNet-1× [24] techniques in terms of error 

reduction results considering different compression ratios as 4, 8, and 16. It is evident from Table 2 results 

that lower the compression ratio, the error reduction efficiency becomes higher in both indoor and outdoor 

scenarios. However, a significant improvement is observed in terms of channel estimation efficiency using 

proposed IDLCE model in a massive MIMO system for both the scenarios. Furthermore, average 

improvement in terms of channel reconstruction accuracy considering indoor scenario is observed as 9.60% 

against previous best CSI feedback method (CsiNetPlus). Similarly, for outdoor scenarios, reconstruction 

accuracy improvement is observed as 47.09% against previous best CSI feedback method (CsiNetPlus). As 

demonstrated in Table 2, the better performance results are highlighted in bold font. 

 

 

Table 2. NMSE performance of proposed IDLCE model considering varied state-of-art-channel estimation 

techniques considering indoor scenarios 
 CR DS-NLCsiNet  CsiNetPlus  ACRNet-1× IDLCE 

INDOOR 4 -24.99 -27.37 -27.16 -28.98 
8 -17 -18.29 -15.34 -19.47 

16 -12.93 -14.14 -10.36 -16.47 
 

OUTDOOR 
4 -12.09 -12.4 -10.71 -17.59 
8 -7.96 -8.72 -7.85 -10.54 

16 -4.98 -5.73 -5.19 -7.41 

 

 

Similarly, Figure 7 shows channel reconstruction performance results evaluated using proposed 

IDLCE model against varied traditional CSI feedback methods such as CsiNet and CRNet [24] to estimate 

channel reconstruction efficiency and CSI feedback reduction considering both indoor and outdoor scenarios. 

The proposed IDLCE model provide superior results compare to classical channel estimation techniques 

against varied compression ratios such as 4, 8 and 16. It is evident from Figure 7 results that NMSE results 

shows comparatively better performance than any other state-of-art-CSI feedback estimation techniques. 

 

 

 
 

Figure 7. NMSE performance of proposed IDLCE Model considering indoor and outdoor scenarios 

 

 

5. CONCLUSION 

Massive MIMO has multiple potential benefits, which can improve bandwidth utilization and 

spectral efficiency of any wireless network. Thus, massive MIMO is a promising technology to efficiently 

implement fifth generation wireless cellular networks. Therefore, in this article, an IDLCE model is 

proposed. Here, the focus remains on an efficient extraction and reconstruction of downlink CSI feedback. A 

detailed mathematical modelling to estimate channel feedback and to reduce channel interference is 

discussed. Further, an encoder-quantizer-decoder model is presented to enhance spectral efficiency of 
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massive MIMO systems. Additionally, the MLNet architecture is also presented to reconstruct CSI matrices 

and those obtained matrices remain complex in nature, which are further segregated into phase and 

magnitude coefficients. A COST 2,100 model is utilized to assess performance efficiency of proposed 

IDLCE model in the massive MIMO system. Performance results are carried out in terms of NMSE results 

and correlation efficiency against varied compression ratios. Here, average improvement in terms of channel 

reconstruction accuracy considering indoor and outdoor scenario is observed as 9.60% and 47.09% against 

CsiNet+method. Simulation results outperforms all the traditional channel estimation techniques for indoor 

and outdoor scenarios. 
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