
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 13, No. 2, July 2024, pp. 360~371

ISSN: 2089-4864, DOI: 10.11591/ijres.v13.i2.pp360-371  360

Journal homepage: http://ijres.iaescore.com

An exhaustive review of the stream ciphers and their

performance analysis

Raghavendra Ananth1, Narayana Swamy Ramaiah2

1Department of Electronics and Communications, JAIN Deemed to be University, Bangalore, India
2Department of Computer Science Engineering, JAIN Deemed to be University, Bangalore, India

Article Info ABSTRACT

Article history:

Received Dec 14, 2022

Revised Sep 17, 2023

Accepted Sep 25, 2023

 The number of internet of things (IoT) applications has increased, which has

increased the demand for low-resource gadgets. The data produced by these

devices must be protected to guarantee security. The devices operate in

conditions with limited space, computational power, memory, and energy.

High-security standards are difficult to achieve with limited resources. The

detailed analysis of various stream ciphers and their performance metrics is

reviewed in this manuscript. The functionality of the stream ciphers is

categorized and thoroughly discussed based on both the hardware and

software viewpoints. The security attacks and their countermeasure methods

using stream ciphers are discussed. The performance metrics of most

hardware-based stream ciphers, including the ECRYPT stream cipher project

(eSTREAM) ciphers, are discussed. Each hardware stream cipher design

highlights the hardware constraints such as chip area, frequency, throughput,

and hardware efficiency. The work also highlights the various applications

using these stream ciphers. The current trends using these stream ciphers are

discussed with futuristic goals.

Keywords:

Field programmable gate array

Internet of things

Lightweight

Security

Stream ciphers

This is an open access article under the CC BY-SA license.

Corresponding Author:

Raghavendra Ananth

Department of Electronics and Communications, JAIN Deemed to be University

Bangalore 560069, Karnataka, India

Email: araghavendra.research@gmail.com

1. INTRODUCTION

Widely used applications like big data, cloud computing, and e-commerce have resulted in a growing

demand for efficiency and security in data processing. The cryptography core and information security create

lots of opportunities with real-time challenges. Providing high-level security with high-speed architecture at a

low-cost implementation while considering low-resource constraints became a prominent demand for most

applications. Wireless networks, device authentication, and radio-frequency identification (RFID) systems

have low-resource constraints with low-cost implementation requirements. The lightweight block and stream

ciphers protect attackers' information and provide data integrity and confidentiality [1], [2]. Block ciphers are

the primary choice in lightweight cryptography (LWC) and are easily designed with functionality. However,

block ciphers use further as communication protocols, and they can't be designed using stream ciphers. The

necessity of the initialization phase before the communications happen has significant drawbacks for the stream

ciphers. The stream ciphers are suited to most application requirements where the input text is continuous or

unknown. Stream ciphers are compact, easy to design, fast, less-power utilization, and suitable for low-

constrained devices [3], [4].

Stream ciphers have received more attention in recent years due to various research initiatives to

develop secure stream ciphers. Research activities and competitions have been conducted in past decades to

find novel architectures. As an effort, ECRYPT stream cipher project (eSTREAM) completion is among them

https://creativecommons.org/licenses/by-sa/4.0/

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An exhaustive review of the stream ciphers and their performance analysis (Raghavendra Ananth)

361

and was held by the european network of excellence for cryptology (ENEC) from 2004 to 2008. This

competition promotes to finds of compact and novel stream ciphers for a wide range of usage. Later, the

international organization for standardization and the international electrotechnical commission (ISO/IEC)

standardized stream ciphers formed for LWC in the ISO/IEC 29192-3:2012 standard. Many stream ciphers

proposals and concepts have been proposed [5], [6]. Authentication is one of the prime security features to be

considered in most applications, apart from confidentiality, and data integrity. Competition for authenticated

encryption (AE): security, applicability, and robustness (CAESAR) conducts the cryptographic research

community competition to find suitable cipher algorithms and should be advantaged over advanced encryption

standards (AES) [7]. The hardware-based stream ciphers are well-suited to low-resource-constrained devices

and use direct cryptographic functions and basic operations without additional components [8]. The stream

ciphers have constructed software and hardware acceleration using cryptographic functions, feedback shift

registers, and basic operations [9], [10]. The cryptographic functions are categorized into either Boolean or

vectorial functions with different cryptographic properties. The shift registers like divided into the linear

feedback shift register (LFSR) and non-linear feedback shift register (NFSR) based on feedback mechanisms.

In addition, XOR and rotation operations commonly used essential functions while constructing the stream

ciphers.

The performance characteristics of various stream ciphers are examined in this paper, both from a

hardware and software perspective. The approach of the stream cipher is described in section 2, as well as an

overview of its design with tabulation. In section 3, we'll go over security attacks and countermeasures. In

section 4, the performance realization and its application usage are listed. The future trends of current stream

ciphers are highlighted in section 5. Finally, the overall work in section 6 concludes.

2. STREAM CIPHERS

The stream ciphers are an alternative branch of the symmetric cryptosystem, which provides better

speed and scalability for hardware-based approaches. The stream ciphers are classified based on functionality,

represented in Figure 1. The LFSR based Stream ciphers are bit-oriented types. The key generation units are

designed using a more significant number of LFSR units. An example of a combiner generator with non-linear

features in E0 is represented in Figure 2.

The E0 is Bluetooth encryption that supports point-to-point communications in wireless networks.

The E0 mainly contains four LFSRs with 4-bit memory. The memory bits are updated using C functions. The

E0 uses a 128-bit key with a 74-bit initialization vector (IV). The keystream receives the composite output with

a feedback mechanism. The E0 is used mainly in Bluetooth combiner with alternative mapping correlation

analysis [11], [12]. With an irregular clock control mechanism, the clock controller generator introduces non-

linear properties. In Figure 3, the clock controller generator is depicted. Two LFSR sets and a feedback

controller are the key components. An example of a clock-controlled generator is A5/1 based stream cipher.

This encryption technique is used in most global systems for mobile communications (GSM) based phones for

air transmission encryption.

Stream Ciphers Classification

LFSR Based

Word-oriented

PANAMA based

Random Shuffled

ARX based

Sponge structural

Authetication based

OthersNFSR based

Figure 1. Classification of the stream ciphers

Register-

1

Register-

2

Feedback

Controller z

Figure 2. E0-based stream cipher

Figure 3. Clock controlled generator

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 2, July 2024: 360-371

362

The A1/5 cipher uses a 54-bit or 64-bit secret key for keystream generation and avoids the reduction

of output efficiency [11]. Mutual irregular clocking keystream generator is also called MICKEY stream cipher,

which provides low complexity and fewer resource constraints with high security on the hardware platform.

The MICKEY cipher uses an irregular clocking mechanism of shift registers with an optimization mechanism

against the attacks. The MICKEY cipher generally uses an 80-bit key, whereas the MICKEY 2.0 cipher uses a

128-bit secret key with an IV of 80/128-bit [13]–[15]. The MICKEY cipher uses two registers (R and S) with

a feedback control mechanism to generate the keystream bit.

The word-orient stream ciphers work on 8-bit to 32-bit with LFSR with finite state machine (FSM) or

non-linear filter generation combinations. SNOW series (1.0, 2.0, and 3.0). The SNOW 1.0 cipher uses a 128-

bit secret key with a 32-bit word size. The SNOW-based stream cipher representation is shown in Figure 4. It

contains two registers, finite field operation with a feedback mechanism, non-linear FSM with two memory

units, and XOR operation as output to generate the running key [16], [17]. SNOW 2.0 cipher uses a 128/512-

bit secret key with an IV of 128-bit. The ZUC is a stream cipher used as a 3rd generation partnership project

(3GPP) encryption standard and developed for Chinese studies for inclusion in the 4th generation (4G) or long

term evolution (LTE) project. The ZUC cipher uses a 128-bit secret key size with an IV of 128-bit, and it is

built with LFSR-based architecture. The ZUC architecture mainly includes LFSR layers, a Bit recognition

layer, and non-linear function and key loading. The ZUC cipher mainly focuses more on timing attacks [18].

The SOSEMANUK is one of the software-based eSTREAM projects, which uses a 128/256-bit secret key with

an IV of 128-bit for a 32-bit word length. The stream cipher uses most of the features and working principles

of SNOW 2.0 with SERPENT-based transformations. The efficiency and security analysis is improved than

the SNOW 2.0 stream cipher [19].

The LFSR and NFSR combination is constructed using the GRAIN family to enhance the

cryptographic properties. The GRAIN family targets hardware-based constrained environments to improve the

gate count, memory, and power consumption features. The GRAIN family has three stream ciphers: GRAIN-

v1, GRAIN-128, and GRAIN-128a. The GRAIN-v1 considers 80-key with 80-bit IV using NFSR and

LFSR [20]. The GRAIN-128 considers a 128-bit key with 1V of 96-bit [21]. The GRAIN stream cipher mainly

has two shift registers, LFSR and NFSR, and output functions are represented in Figure 5. The key initialization

mechanism is crucial for realizing the attack scenarios in the GRAIN cipher using IV and XOR operations.

The small-state-based stream cipher is introduced with continuous key use to solve the hardware complexity,

illustrated in Figure 6.

Figure 4. SNOW-based stream cipher Figure 5. GRAIN-based stream cipher

The TRIVIUM series [22] stream ciphers are hardware featured with simple architecture and are

interconnected with three NFSRs with low-degree feedback mechanisms, and quadratic filter functions are

represented in Figure 7. The TriviA cipher [23] generates the keys for ciphertext and tags and provides

independent hash pairs to calculate the tag. The "encode-hash combine" or ECH hash creates distinct hash

pairs. The TriviA provides a 124-bit security key for authentication and a 128-bit key for privacy. The

TRIVIUM is one of the eSTREAM finalist hardware stream ciphers and uses an 80-bit secret key size with an

IV of 80-bit [24]. The TRIVIUM cipher can generate up to 264 keystream bits with a 288-bit internal state.

The cipher can solve bit-oriented issues with strong security and performance efficiency. The hardware based

fast and secured AE is introduced as TriviA, which uses a 128-bit secret key size with an IV of 80-bit. Fruit-

2.0 is a stream cipher that is ultra-lightweight and has a more straightforward internal state system [25]. The

Fruit 2.0 cipher has an 80-bit secret key and a 70-bit IV. Fruit 2.0 is used to strengthen against related-key

attacks with a modified initialization process.

The Platelet stream cipher is well suited for lower-constraint devices and does not rely on non-volatile

memory (NVM) [26]. The Platelet cipher improves the security weakness by storing the key in non-rewritable

NVM and rewritable NVM. Platelet cipher uses a 128-bit secret key size with an IV of 40-bit. The Platelet uses

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An exhaustive review of the stream ciphers and their performance analysis (Raghavendra Ananth)

363

double-layer LFSRs with NLFSR combination as an internal mechanism for key storing. The adaptation of the

new stream from the TRIVIUM is the QUAVIUM cipher [27] to improve the performance. QUAVIUM cipher

uses a 128-bit secret key size with an IV of 80-bit. The QUAVIUM uses shift registers and k-order primitive

polynomials with three round structures for keystream generation. The Kreyvium is a low-depth stream cipher

like TRIVIUM and is used for homomorphic compression evaluation [28]. Kreyvium cipher uses a 128-bit

secret key size with an IV of 80-bit. The Kreyvium cipher added a 288-bit internal state without increasing the

multiplicative depth corresponding to key and IV than the original TRIVIUM cipher.

NFSR LFSR

h(x)

g(x)

f(x)

Initialization

Counter

Key

Round Key function

z

B1 B2 B3

A1 A2 A3

C1 C2 C3

f
z

Figure 6. Small state-based stream cipher

Figure 7. TRIVIUM-based stream cipher

The PANAMA is a combination of fast hashing and stream cipher cryptographic modules, and it

achieves high performance with low operation with a high degree of parallelism [29]. The module reaches 4.7

bits/cycle at stream cipher mode and 5.1 bits/cycle at hashing mode. The PANAMA performs high-end parallel

tasks and is suitable for very long-instruction word (VLIW) based processors. PANAMA cipher uses a 256-bit

secret key size without an IV process. The Enocoro and MUGI are two typical examples of PANAMA-like

stream ciphers suitable for software and hardware implementations. The Enocoro uses an 80/128-bit secret key

size with an IV of 64-bit. The MUGI uses a 128-bit secret key size with an IV of 128-bit.

The random-shuffled stream ciphers use random-shuffled tables to generate random permutations to

achieve higher efficiency using software environments. The RC4 stream cipher [30] is byte-oriented and used

against state recovery attacks. The RC4 uses a random table containing 0 to 255 with permutation mode to

calculate the two-bytes index-pointer replacements. RC4 cipher uses 8 to 2048-bit secret key size without an

IV process. The typical RC4-based keystream generation is illustrated in Figure 8. The numerical table

initializes key mixing, followed by the keystream generation phase. The table will be modified in each iteration

and generates the output keystream. However, RC4 is still weak against distinguishing attacks. The RC4 is

adopted with the new version as an RC4 hardware acceleration suite (RC4-A) [31] to speed up the cipher

process in ASIC environments. The RC4-A provides better flexibility, performance, and resource minimization

in hardware environments. The performance of the RC4-A will be enhanced using multiported static random

access memory (RAM), loop unrolling, state replication, and splitting. The HC-128 is a simple, secure, and

software-efficient stream cipher and uses a 128-bit secret key size with an IV of 128-bit [32]. It can generate

up to 264 keystream bits from each IV/key pair. In contrast, HC-256 [33] uses a 128-bit secret key size with

an IV of 256-bit. The HC-128/256 is suitable for modern superscalar microprocessors and supports a high level

of parallelism.

The addition rotation XOR (ARX) based ciphers are one of the modern stream ciphers, and their round

function contains hybrid operations like modulo addition, interworld rotation, and XOR operation. The ARX

ciphers are simple, fast, easy software implementation, and run constantly. Salsa20 and Chacha ciphers use

32-bit module addition, rotation, and XOR operations with the help of the hash function. The Salsa20 is the

first eSTREAM based software project, and the Chacha cipher is a modified version of Salsa20 with a new

round function that creates more diffusion. Salsa20 cipher uses a 128/256-bit secret key with an IV of 64-bit.

Chacha cipher uses a 256-bit secret key with an IV of 32-bit. The Salsa20 cipher is typically faster than the

AES cipher. Chacha is a new variant of salsa20, designed to improve the diffusion per round and also used to

improve the cryptoanalysis resistance [34], [35]. The ARX-based round function for Chacha is illustrated in

Figure 9. The Rabbit stream cipher was one of the fast encryption standards in 2003 and an eSTREAM-based

software project finalist [36]. It uses a 128-bit secret key size with an IV of 64-bit as an input to generate the

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 2, July 2024: 360-371

364

128-bit random output data in each iteration. The Rabbit examines the security for algebraic and correlation

attacks by arranging the key/IV setup parameters. The MORUS is an authenticated stream cipher with 128/256

bits of secret keys and a 128-bit IV [37]. MORUS v1 uses the status update function to avoid collisions during

the initialization and encryption/decryption stages.

The sponge structural-based stream ciphers are designed based on sponge structure with LFSR or

permutations, and one of its internal state outputs is directly considered a keystream sequence. The KECCAK

and ASCON are examples of sponge structural-based stream ciphers. The KECCAK is a sponge construction

type cipher that uses more random permutations, allows multiple inputs, and provides any amount of data

outputs [38]. The KECCAK cipher uses a 128-bit secret key without an IV process. The KECCAK cipher

provides better authentication features without using any additional authentication module. The ASCON is one

of the CAESAR finalists' ciphers and known AE modules [39]. The ASCON cipher uses a 128-bit secret key

with an IV of 128-bit. The ASCON uses a substitution permutation network (SPN) structure with a fixed

permutation of an iterative process. It performs both software and hardware implementations with better

performance and cost. The ASCON is best known for cube and key recovery attacks.

S[0] S[i] S[j] S[t] S[255]

j:= j+S[i]

t:= S[i]+S[j]

z

<<<12

<<<7

<<<16

<<<8

Figure 8. RC4-based keystream generation

Figure 9. ARX-based round function for Chacha

The A2U2 is one of the AE ciphers commonly used in printed electronics-based RFID tags [40]. The

A2U2 uses two NFSRs followed by a key-bit mixing mechanism with a shrinking filter to generate the

ciphertext. A2U2 cipher uses a 56-bit secret key without an IV process. The welch gong (WG)-7 is a

lightweight stream cipher used for RFID authentication and encryption [41]. WG-7 cipher uses an 80-bit secret

key with an IV of 81-bit. The WG-7 consists of 23-stage LFSRs for keystream generation. The WG-7 is secure

against time/data/memory trade-off attacks. The WG-8 is a lightweight stream cipher used for low resource

constraints smart devices [42]. To generate the ciphertext, the WG-8 uses 20-stage LFSRs with feedback

polynomial and transformation modules. The WG-8 cipher uses an 80-bit secret key with an IV of 80-bit. The

WG-8 is capable of resisting the most common security attacks. The hummingbird (HB) is an ultra-lightweight

stream cipher commonly used in high-volume consumer devices like smart cards, RFID tags, and wireless

devices [43]. HB cipher uses a 16-bit block size, 64/256-bit secret key with an IV of 64-bit. The HB encryption

mainly contains four 16-bit block ciphers, followed by an internal state register updation unit and a 16-bit

LFSR module. The 16-bit block cipher is constructed using a typical substitution permutation (SP) network.

The HB-2 is a lightweight authentication encryption module targeted at low-constrained devices [44]. HB 2.0

cipher uses a 128-bit secret key with an IV of 64-bit. GRAIN-128a is a new version of GRAIN-128 with

authentication features [45]. GRAIN-128a cipher uses a 128-bit secret key with an IV of 96-bit. GRAIN-128a

was used to strengthen all known attacks. The Rabbit-MAC is a lightweight AE module commonly used in

wireless sensor networks (WSNs) [46]. The Rabbit-MAC cipher uses a 128-bit secret key without an IV process

and generates the 128-bit random data at the output side for each iteration. The pseudo-random data is XOR'ed

with plaintext/ciphertext to generate the encryption/decryption process in Rabbit-MAC. ACRON is a

lightweight authenticated cipher and uses a 128-bit secret key with an IV of 128-bit [47]. The authentication

tag length must be less than or equal to 128 bits. The six LFSRs are concatenated, followed by feedback bits

in the ACRON structure. The ACRON is capable of resisting traditional and statistical attacks. The Sablier is

one of the hardware-based stream ciphers built with authentication features [48]. The Sablier v1 cipher uses an

80-bit secret key with an IV of 80-bit. The Sablier performs the authentication mechanism using shift registers

and accumulators in keystream generation.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An exhaustive review of the stream ciphers and their performance analysis (Raghavendra Ananth)

365

The BEAN is a lightweight stream cipher module designed based on the GRAIN cipher [49]. The

BEAN cipher uses two FCSRs followed by an S-Box and filtering. The BEAN cipher uses an 80-bit secret key

with an IV of 64-bit. The BEAN cipher utilizes fewer hardware resources than the GRAIN cipher. The BEAN

cipher can be resistant to most traditional attacks. The new scalable stream cipher with rule 30 is CAR30. The

CAR30 cipher is constructed using the cellular automata (CA) rule 30 with maximum length CA followed by

XOR operation to generate the ciphertext. The CAR30 is implemented both on software and hardware platform.

In general, the CAR30 can scale up to any key size and IV. Most current works on CAR30 use a 128-bit secret

key with an IV of 120-bit [50]. The CAR30 provides better throughput than other GRAIN and TRIVIUM

ciphers. TinyStream is a new lightweight stream cipher algorithm for WSNs. TinyStream cipher uses a 128-

bit secret key without an IV process [51]. The TinyStream cipher is constructed using tree parity machine

(TPM) with a loop system mechanism. The summary of the stream cipher types and their algorithms is

tabulated in Table 1. The list of the stream ciphers with functionality is tabulated in Table 2. The stream cipher

type, secret key size, and IV size are mentioned in the ciphers tabulation.

Table 1. Types of the stream ciphers and their algorithms
Stream cipher type Stream cipher algorithms

LFSR A5/1 [11], E0 [11], [12], and MICKEY 2.0 [13]–[15]

Word-oriented SNOW series [16], [17], ZUC Series [18], and Sosemanuk [19]

NFSR GRAIN [20], [21], TRIVIUM [22], [24], TriviA [23], Fruit V2 [25], Platelet [26], Quivium [27], and

Kreyvium [28]

PANAMA Enocoro and MUGI [29]
Random shuffed RC4 [30], RC4-A [32], HC-128 [32], and HC-256 [33]

ARX based Salsa20 and Chacha [34], [35], Rabbit [34], [36], and MORUS [37]

Sponge Structural KECCAK [38] and ASCON [39]
Authentication A2U2 [40], WG7 [41], WG8 [42], HB-1 [43], HB-2 [44], GRAIN-128a [45], RabbitMAC [46],

ACORN [47], and Sablier [48]

Other Bean [49], CAR30 [50], and TinyStream [51]

Table 2. List of stream ciphers and their approaches
Stream ciphers Key size IV Type Stream ciphers Key size IV Type

A5/1 [11] 54,64 0 LFSR Chacha, Salsa-20 [35] 256 32 ARX

E0 [11], [12] 128 74 LFSR Rabbit [36] 128 128 ARX
MICKEY [13], [15] 80/128 80/128 LFSR MORUS V1. [37] 128/256 128 ARX

SNOW [16], [17] 128/512 128 LSFR+FSM KECCAK [38] 128 NA ARK+LFSR

ZUC [18] 128 128 LFSR+XOR. ASCON [39] 128 128 ARK+SPN
SOSEMANUK [19] 128/256 128 LFSR+FSM A2U2 [40] 56 NA LFSR+2 NFSR

GRAIN [20], [21] 80/128 64/96 LFSR+NFSR WG-7 [41] 80 81 LFSR+WG

TRIVIUM [22], [24] 80 80 Three SR WG-8 [42] 80 80 LFSR+WG
TriviA [23] 128 80 Three SR Hummingbird [43] 256 64 Hybrid

Fruit -V2 [25] 80 70 LFSR+NFSR Hummingbird -2 [44] 128 64 Hybrid

Platelet [26] 128 40 LFSR+NFSR GRAIN-128a [45] 128 96 LFSR+NFSR
QUAVIUM [27] 128 80 Three SR Rabbit-MAC [46] 128 NA Chaotic tables+XOR

Kreyvium [28] 128 80 Three SR ACORN [47] 128 128 Six LFSR's

PANAMA [29] 256 NA Hash+Stream Sablier [48] 80 80 ARX
RC4 [30] 8 to 2048 NA ARX BEAN [49] 80 64 FCSR+S-Box

HC-128 [32] 128 128 Large tables CAR30 [50] 128 120 CA

HC-256 [33] 256 256 Large tables TinyStream [51] 128 NA TPM

Rabbit [34] 128 64 Chaotic tables

3. SECURITY ATTACKS AND COUNTERMEASURE METHODS

This section analyzes different types of security attacks and their countermeasure methods. The

attacker's main aim is to use cipher designs to find the secret key used in the encryption or decryption process.

Two attacks happen: passive attacks and active attacks. Passive attacks occur in the initialization or output

phases. The attacker retrieves the information, copies them, and uses it for harmful or malicious purposes.

Whereas active attacks, the attackers are trying to recreate the original data in the form of an insert, replay or

delete. These two attacks will modify the key information, or system resources will be damaged.

Furthermore, these attacks are extensively classified based on cryptography usage. Exhaustive key

search is an attack (brute force) where attackers try to find all the possible core combinations to find the primary

secret key. This type of attack's computational complexity remains lower and possesses more on plaintext and

ciphertexts. The exhaustive key search is analyzed in detail using the TRIVIUM cipher [22], [24] with key

recovery. Correlation attacks realize the cipher's linear function and calculate the keystream based on output

observation. Algebraic attacks use the algebraic equations of the main cipher and are used further to generate

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 2, July 2024: 360-371

366

the key bits. Similarly, linear attacks are also correlated with the linear functions of the defined keystream bits

and initialization bits.

Distinguishing attacks are a type of attack in which attackers try to differentiate the keystream

information from a random sequence feature. These attacks may recover the complete key details in the future.

The side-channel attack is a type in which the attacker retrieves the data information from the cipher while

calculating the power consumption or electromagnetic emission process. In this attack, the attacker hacks the

complete information from the internal operations of the cipher technique. The related-key attack is a type of

target attack happening during the re-initialization process of the cipher design operation. The attacker will

generate the related keys only if the cipher technique does not use the non-linearity feature and is directly

related to plain text and new-key generation. Similarly, the chosen-plain text or IV attacks use the key

scheduling weakness and retrieve the useful initial state information from the main memory. The basic structure

of the cipher realizes the time, memory-data trade-off attacks, and summarization of the related results in a

larger table.

Divide and conquer attacks are attacks in which the cipher operation is divided into essential

components. The very few bits of information are calculated in each state operation, and the most harmed

components are attacked first in this conquer attack. The new type of attack that is applied to any cryptosystem

is cube-attacks. The output bit is a function of the plain text bits and key bits. So, the attacker used to sum up

the possible combination of the plaintext bits and detect linear equations with the help of key bits. Collision

attacks or internal state collisions happen when the two keystream bits are generated from the same colliding

state. The collision state finding requires the number of keystream bits using plaintext or IV. Guess and

determine attack is a type of attack. The attacker will guess the few unknown variables of the stream cipher

and determine or deduce the remaining unknown variables using guessed ones. The fault attack allows the

conflict to introduce flipping faults into one of the LFSRs. It is more difficult to find or trace the fault in NFSR

than in LFSR-based ciphers. The summary of the different types of attacks and countermeasure methods using

stream ciphers is tabulated in Table 3. These stream cipher approaches are used as a countermeasure method

with detailed analysis to recover the data or key from attackers.

Table 3. Summary of the different types of attacks and countermeasure methods using stream ciphers
Analysis/attacks Countermeasure method using stream ciphers

Classical cryptanalysis,

differential cryptanalysis

MICKEY [13], [15], GRAIN [20], [21], HC-256 [33], Rabbit [34], Salsa 20 [34], [35], ASCON

[39], WG-7 [41], WG-8 [42], Hummingbird [43], Hummingbird-2 [44], ACORN [47], Sablier [48]
Exhaustive key search TRIVIUM [22], [24]

Time memory-data trade-off

attacks, timing attacks

ZUC [18], SOSEMANUK [19], Fruit -V2 [25] Platelet [26], WG-7 [41], WG-8 [42], GRAIN-128a

[45], CAR30 [50]
Collision analysis/attacks,

internal-state collision

E0 [11], [12], SOSEMANUK [19], QUAVIUM [27], Kreyvium [28], ASCON [39]

Divide and conquer attack E0 [11], [12], Rabbit [36]
Side channel attacks MICKEY [13], [15], KECCAK [38], GRAIN-128a [45], CAR30 [50]

Key recovery attacks,

related-key attacks

MICKEY [13]–[15], Platelet [26], Rabbit [36], Hummingbird [43], GRAIN-128a [45], BEAN [49]

Distinguishing attacks, SOSEMANUK [19], Platelet [26], HC-128 [32], WG-8 [42], Sablier [48]

Algebraic attacks SOSEMANUK [19], Fruit -V2 [25], Rabbit [34], WG-7 [41], WG-8 [42], Hummingbird [43],
Hummingbird -2 [44], GRAIN-128a [45], CAR30 [50]

Fault attacks GRAIN [20], [21], Fruit -V2 [25], GRAIN-128a [45], CAR30 [50]

Cube-attacks TriviA [23], Fruit -V2 [25], WG-7 [41], Hummingbird [43], ACORN [47], Sablier [48]
Guess and determine attack Fruit -V2 [25], Rabbit [36], ACORN [47], Sablier [48], CAR30 [50]

Correlation attacks A5/1 [11], RC4 [30], Rabbit [34], [36], MORUS v1 [37], WG-7 [41], WG-8 [42], Rabbit-MAC [46]

Chosen-plain text attacks A2U2 [40]
Side resynchronization attack MICKEY [13]–[15], CAR30 [50]

Bitstream modification attack SNOW [17]

Polynomial density analysis TriviA [23]
Exhaustive key search TRIVIUM [22,24], HC-128 [32], Rabbit [36]

Clock fault Injection TRIVIUM [22], [24]

Discrete fourier transform
attack

WG-7 [41], WG-8 [42]

4. PERFORMANCE ANALYSIS AND APPLICATIONS

This section discusses the hardware realization of the stream ciphers and their performance analysis.

Most of the authors implemented the stream ciphers using the field programmable gate array (FPGA) platform.

The stream ciphers are constructed with macroblocks using hardware description language (HDL) and later

implemented on FPGA. The performance metrics include area in terms of slices, maximum operating

frequency (Fmax) in terms of MHz, latency in terms of clock cycles (CC), throughput (Mbps), and efficiency

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An exhaustive review of the stream ciphers and their performance analysis (Raghavendra Ananth)

367

(Mbps/Slice). The design module uses program logic blocks, and programmable interconnects on FPGA. The

FPGA contains configurable logic blocks (CLBs), input-output blocks (IOBs), dedicated multipliers, a digital

clock manager (DCM), and block RAMs. The CLBs are constructed using slices and lookup tables (LUTs).

The slice definition is varied based on FPGA device selection.

For example, one slice contains a minimum of two 4-input LUT, Flip-flops, adder tree, and

multiplexors on Spartan-3 FPGA. The LUT holds the design information in the Boolean equations and Truth

table. The maximum operating frequency is obtained after synthesis operation based on design architecture

using the Xilinx tool. The latency is analyzed based on the execution of the design to generate the first output

in the simulation process. The latency is calculated regarding CC in hardware realization. The throughput is

measured based on input data width, frequency, and latency parameters. So, throughput = (input width ∗
Fmax)/latency. The hardware efficiency is measured in terms of throughput per slice. The summary of the

performance analysis of the other stream ciphers is listed in Table 4.

The performance analysis of MICKEY, GRAIN, and TRIVIUM-based stream ciphers is summarized

in Table 5. Vendors like Xilinx (Spartan-3, Virtex-Series, and Artix-7) or Intel (Cyclone- 4) based FPGA

devices implement these stream ciphers. Ciphers like Fruit-V2, Platelet, and RC4A are implemented on an

ASIC-based platform using complementary metal–oxide–semiconductor (CMOS) technology. The stream

ciphers like A5/1, E0, Fruit-V2, and Platelet offer low-latency designs than others.

Table 4. Performance analysis of stream ciphers

Authors Year
Stream

cipher
FPGA

Area

(slices)

Fmax

(MHz)

Latency

(CC)

Throughput

(Mbps)

Efficiency

(Mbps/slices)

Galanis et al. [11] 2005 A5/1 Virtex-2 32 188.3 1 188.3 5.88
Gaj et al. [52] 2008 A5/1 Spartan-3 287 79 47 316 1.1

Galanis et al. [11] 2005 E0 Virtex-2 895 189 1 189 0.21

Kitsos et al. [53] 2012 E0 Spartan-3 140 187 1 187 1.335
Kitsos et al. [53] 2012 SNOW-3G Spartan-3 3359 104 4 3328 0.99

Tsavos et al. [54] 2020 SNOW 2.0 Artix-7 3297 64 5 2040 0.618

Kitsos et al. [53] 2012 ZUC Spartan-3 1147 38 4 1216 1.06
Wang et al. [55] 2020 ZUC-256 Cyclone-4 2300 115 4 3680 1.6

Ghafari et al.[25] 2016 Fruit -V2 90-nm 990 100 1 100 0.101

Mikhalev et al. [26] 2016 Platelet 18-nm 928 100 1 100 0.107
Pyrgas and Kitsos [56] 2020 Enocoro4 Artix-7 83 204 4 181 2.18

Pyrgas and Kitsos [56] 2020 Enocoro8 Artix-7 78 189 9 302 3.87

Galanis et al. [11] 2005 RC4 Virtex-2 140 60.8 2 120.8 0.86
Khalid et al. [31] 2016 RC4A 65-nm 37770 1300 512 10400 0.28

Bertoni et al. [38] 2012 KECCAK Virtex-5 448 265 5160 52 0.12

Galanis et al. [11] 2005 W7 Virtex-2 608 96 8 768 1.26
Das et al. [50] 2013 CAR-30 Spartan-3 499 185.05 32 744 1.49

Table 5. Performance analysis of MICKEY, GRAIN, and TRIVIUM-based stream ciphers

Authors Year Stream cipher FPGA
Area

(Slices)
Fmax
(MHz)

Latency
(CC)

Throughput
(Mbps)

Efficiency
(Mbps/Slices)

Hwang et al. [57] 2008 MICKEY-2.0 Spartan-3 115 233 1 233 2.03

Li et al. [58] 2020 MICKEY 2.0 Spartan-7 78 250 1 250 3.21

Alharbi et al. [59] 2020 MICKEY 2.0 Spartan-6 225 370 1 370 1.64
Kitsos [14] 2006 MICKEY-128 Virtex-2 167 170 1 170 1.011

Hwang et al. [57] 2008 MICKEY-128 Spartan-3 176 223 1 223 1.27

Bulens et al. [60] 2007 MICKEY-128 Virtex-2 190 200 1 200 1.05
Kitsos et al. [53] 2012 MICKEY-128 Spartan-3 98 250 1 250 2.55

Alharbi et al. [59] 2020 MICKEY-128 Spartan-6 317 370 1 370 1.17

Hell et al. [20] 2007 GRAIN-80 Cyclone-2 1450 282 1 282 0.195
Hwang et al. [57] 2008 GRAIN-80 Spartan-3 348 130 16 2080 5.98

Gaj et al. [52] 2008 GRAIN-80 Spartan-3 356 155 19 2480 6.97
Kitsos et al. [53] 2012 GRAIN-80 Spartan-3 318 177 1 177 0.556

Li et al. [58] 2020 GRAIN-80 Spartan-7 62 333 1 333 5.37

Alharbi et al. [59] 2020 GRAIN-80 Virtex-7 133 693 161 693 5.24
Hwang et al. [57] 2008 GRAIN-128 Spartan-3 534 133 32 4256 7.97

Bulens et al. [60] 2007 GRAIN-128 Virtex-2 48 181 1 181 3.77

Alharbi et al [59] 2020 GRAIN-128 Virtex-7 198 769 257 769 3.73
Chakraborti et al. [23] 2015 TRIVIA Virtex-7 714 NA NA 16000.89 23.65

Hwang et al. [57] 2008 TRIVIUM Spartan-3 50 240 1 240 4.8

Gaj et al. [52] 2008 TRIVIUM Spartan-3 388 190 21 12160 31.34
Bulens et al. [60] 2007 TRIVIUM Virtex-2 41 207 1 207 5.05

Kitsos et al. [53] 2012 TRIVIUM Spartan-3 149 326 1 326 2.18

Li et al. [58] 2020 TRIVIUM Spartan-7 71 416 1 416 5.86

Alharbi et al. [59] 2020 TRIVIUM Spartan-6 510 100 1 100 0.19

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 2, July 2024: 360-371

368

The A5/1 and Enocoro4/8 utilize less chip area, and SNOW-3G, ZUC-256, and RC4A utilize more

chip area on FPGA. The ciphers like SNOW 2.0, SNOW-3G, ZUC, ZUC-256, and RC4A provide Gigabit

speed more than other ciphers. The stream ciphers like MICKEY 2.0, MICKEY-128, GRAIN-80 [20], [53],

[58], GRAIN-128 [60], and TRIVIUM [53], [57]–[60] offer low-latency (single clock cycle) designs than other

designs. The ciphers like GRAIN-80 [52], [57], GRAIN-128 [57], TRIVIA [23], and TRIVIUM [52] provide

Gigabit speed more than other ciphers. The throughput varies in each stream cipher based on Latency and

Fmax.

Most stream ciphers are used in wireless applications, including wireless communication, Wi-Fi,

wired equivalent privacy (WEP), and WSN. The stream cipher's applications are summarized and tabulated in

Table 6. An A5/1 [11], MICKEY-128 [14], RC4 [30], WG-8 [42], Rabbit-MAC [46], and CAR30 [50] offer

low-latency and lower power consumption and are suitable to use in wireless applications. The E0 cipher [11],

[12] is specially designed to use in Bluetooth applications. The SNOW series ciphers are preferred in 3rd

generation (3G) and 3GPP wireless standards. The SNOW-3G [17] provides better integrity and confidentiality

in many 3G and 3GPP standards.

Table 6. Applications of the stream ciphers
Applications Stream ciphers

Wireless communications, 802.11b, WEP, and WSN A5/1 [11], MICKEY-128 [14], RC4 [30], WG-8 [42], Rabbit-MAC [46],

and CAR30 [50]
Bluetooth E0 [11], [12]

3G, 3GPP SNOW [17]

LTE/4G ZUC [18]
NVM Platelet [26]

Homomorphic cryptography and compression Kreyvium [28]

VLIW microprocessor and CPU PANAMA [29], HC-128 [32], HC-256 [33], Rabbit [36], KECCAK [38],
and ASCON [39]

Printed electronics, RFID tags, passive RFID system A2U2 [40], WG-8 [42], Hummingbird -2 [44], and BEAN [49]

RFID authentications and low-power applications WG-7 [41], Hummingbird [43], GRAIN-128a [45], Rabbit-MAC [46],
ACORN [47], and Sablier [48]

In contrast, The ZUC series [18] ciphers are a modified version of the SNOW series and are preferred

to use in 4G and LTE wireless standards. Platelet ciphers [26] are used in NVM for continuous key access. The

Platelet cipher provides string security against attacks using double-layer LFSR and NLFSR. The Kreyvium

cipher [28] is a new variant of Trivium that provides efficient real-time solutions to homomorphic-ciphertext-

based compression applications. The general processor and VLIW based processors use PANAMA [29],

HC-128 [32], HC-256 [33], Rabbit [36], KECCAK [38], and ASCON [39] stream ciphers. The encryption

speed of these ciphers is commonly tested on Pentium series processors. The stream ciphers like A2U2 [40],

WG-7 [41], WG-8 [42], Hummingbird [43], Hummingbird-2 [44], GRAIN-128a [45], Rabbit-MAC [46],

ACORN [47], Sablier [48], and BEAN [49] are implemented to use for authentication of two or more devices.

The RFID system, passive tags, internet of things (IoT), and low-power devices are commonly used in those

ciphers to strengthen the data.

5. FUTURE TRENDS

The keystream generation is an essential part of the stream ciphers and the main functional

requirement for most application domains. The stream ciphers' preamble remains the same, with their high

performance and efficiency as the block ciphers. The recent trends towards IoT indicate that the millions of

embedded devices are interconnected with resource constraints capabilities and interaction mechanisms with

corresponding users. Social mobility and smart city applications need to include a distributed framework to

transmit high amounts of cipher data securely. Most of the present industries, like 5th generation wireless

networks, vehicular adhoc-networks, smart camera-based Urban-surveillance, and green networking, will

focus more on security to secure their data from attackers.

Stream ciphers are the best option rather than block ciphers for streaming applications. However,

research is still improving cipher usage in a well-organized manner. Currently, parallel computing systems are

widely used in most embedded system applications. So, incorporating a lightweight stream cipher with high-

degree parallelism is challenging in maintaining desired performance. Most current stream ciphers focus more

on basic operations with cipher structures and can resist most of the existing attacks. However, these ciphers

must incorporate most cryptographic properties for further security evaluation and performance analysis. Focus

on internal state architecture resource utilization and power consumption while implementing the lightweight

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An exhaustive review of the stream ciphers and their performance analysis (Raghavendra Ananth)

369

ciphers. Implementing the AE methods using stream ciphers is still in demand because of the current trends in

IoT usage. Security feature improvements using stream ciphers on cloud computing applications remain an

open research spot.

6. CONCLUSION

As embedded or IoT gadgets increase in our daily lives, pervasive computing becomes a reality.

Networked computers have undergone a significant change in their architecture, usage, and number to protect

the security of those sources and the data kept on or transmitted to them. This manuscript presents an exhaustive

review of the stream ciphers for low-constrained devices. The traditional and benchmarked stream cipher's

design and authenticated ciphers are analyzed. The resistive streams ciphers for corresponding attacks are

highlighted. The implemented results of these stream ciphers are examined in detail using the FPGA platform.

From this, GRAIN-128. GRAIN-128A, TRIVIUM, and MICKEY stream ciphers provide better security and

performance results than other ciphers. The most appropriate stream ciphers for corresponding application

requirements are highlighted based on cryptographic functionalities. The requirements and systematic plans

for future designs are highlighted.

REFERENCES
[1] M. A. Philip and Vaithiyanathan, “A survey on lightweight ciphers for IoT devices,” in 2017 International Conference on

Technological Advancements in Power and Energy (TAP Energy), IEEE, Dec. 2017, pp. 1–4. doi:

10.1109/TAPENERGY.2017.8397271.
[2] L. Jiao, Y. Hao, and D. Feng, “Stream cipher designs: a review,” Science China Information Sciences, vol. 63, no. 3, pp. 1–25, Mar.

2020, doi: 10.1007/s11432-018-9929-x.

[3] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and Y. Papaefstathiou, “A survey of lightweight stream ciphers for embedded systems,”
Security and Communication Networks, vol. 9, no. 10, pp. 1226–1246, Jul. 2016, doi: 10.1002/sec.1399.

[4] A. Perez-Resa, M. Garcia-Bosque, C. Sanchez-Azqueta, and S. Celma, “A new method for format preserving encryption in high-

data rate communications,” IEEE Access, vol. 8, pp. 21003–21016, 2020, doi: 10.1109/ACCESS.2020.2968816.
[5] S. Gnatyuk, M. Iavich, V. Kinzeryavyy, T. Okhrimenko, Y. Burmak, and I. Goncharenko, “Improved secure stream cipher for cloud

computing,” CEUR Workshop Proceedings, vol. 2732, pp. 183–197, 2020.

[6] R. Chatterjee, R. Chakraborty, and J. K. Mandal, “Design of cryptographic model for end-to-end encryption in fpga based systems,”

in 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), IEEE, Mar. 2019, pp. 459–465.

doi: 10.1109/ICCMC.2019.8819761.

[7] A. Babaei and G. Schiele, “Physical unclonable functions in the internet of things: state of the art and open challenges,” Sensors,
vol. 19, no. 14, pp. 1–18, Jul. 2019, doi: 10.3390/s19143208.

[8] A. Mars and W. Adi, “New family of stream ciphers as physically clone-resistant VLSI-structures,” Cryptography, vol. 3, no. 2,

pp. 1–22, Apr. 2019, doi: 10.3390/cryptography3020011.
[9] T. Good, W. Chelton, and M. Benaissa, “Review of stream cipher candidates from a low resource hardware perspective,” SASC

2006 - Stream Ciphers Revisited, pp. 125–148, 2006.

[10] P. R. Hridya and J. Jose, “Cryptanalysis of the grain family of ciphers: a review,” in 2019 International Conference on
Communication and Signal Processing (ICCSP), IEEE, Apr. 2019, pp. 0892–0897. doi: 10.1109/ICCSP.2019.8697972.

[11] M. D. Galanis, P. Kitsos, G. Kostopoulos, N. Sklavos, and C. E. Goutis, “Comparison of the hardware implementation of stream

ciphers,” International Conference on Electronics, Circuits and Systems, vol. 2, no. 4, pp. 267–274, 2005.
[12] M. Hermelin and K. Nyberg, “Correlation properties of the bluetooth combiner,” ICISC 1999: Information Security and Cryptology

- ICISC’99, 2000, pp. 17–29. doi: 10.1007/10719994_2.

[13] S. Babbage and M. Dodd, “The stream cipher MICKEY 2.0,” ECRYPT Stream Cipher Project, Report, pp. 191–209, 2006.
[14] P. Kitsos, “On the hardware implementation of the MICKEY-128 stream cipher,” Cryptology ePrint Archive, 2005.

[15] L. Ding and J. Guan, “Cryptanalysis of MICKEY family of stream ciphers,” Security and Communication Networks, vol. 6, no. 8,

pp. 936–941, Aug. 2013, doi: 10.1002/sec.637.
[16] P. Ekdahl and T. Johansson, “A new version of the stream cipher SNOW,” In SAC 2002: Selected Areas in Cryptography, 2003,

pp. 47–61. doi: 10.1007/3-540-36492-7_5.

[17] M. Moraitis and E. Dubrova, “Bitstream modification attack on SNOW 3G,” in 2020 Design, Automation and Test in Europe
Conference and Exhibition (DATE), IEEE, Mar. 2020, pp. 1275–1278. doi: 10.23919/DATE48585.2020.9116222.

[18] G. Sekar, “The stream cipher core of the 3GPP encryption standard 128-EEA3: timing attacks and countermeasures,” In Information

Security and Cryptology: 7th International Conference, Inscrypt 2011, 2012, pp. 269–288. doi: 10.1007/978-3-642-34704-7_20.
[19] C. Berbain et al., “Sosemanuk, a fast software-oriented stream cipher,” In New stream cipher designs, 2008, pp. 98–118. doi:

10.1007/978-3-540-68351-3_9.

[20] M. Hell, T. Johansson, and W. Meier, “Grain: a stream cipher for constrained environments,” International Journal of Wireless and
Mobile Computing, vol. 2, no. 1, pp. 86–93, 2007, doi: 10.1504/IJWMC.2007.013798.

[21] M. Hell, T. Johansson, A. Maximov, and W. Meier, “A stream cipher proposal: grain-128,” in 2006 IEEE International Symposium

on Information Theory, IEEE, Jul. 2006, pp. 1614–1618. doi: 10.1109/ISIT.2006.261549.
[22] C. D. Cannière, “Trivium: a stream cipher construction inspired by block cipher design principles,” in International Conference on

Information Security, Springer, Berlin, Heidelberg, 2006, pp. 171–186. doi: 10.1007/11836810_13.

[23] A. Chakraborti, A. Chattopadhyay, M. Hassan, and M. Nandi, “TriviA: a fast and secure authenticated encryption scheme,” In
International Workshop on Cryptographic Hardware and Embedded Systems, Springer, Berlin, Heidelberg, 2015, pp. 330–353.

doi: 10.1007/978-3-662-48324-4_17.

[24] F. E. Potestad-Ordonez, C. J. Jimenez-Fernandez, and M. Valencia-Barrero, “Experimental and timing analysis comparison of
FPGA trivium implementations and their vulnerability to clock fault injection,” in 2016 Conference on Design of Circuits and

Integrated Systems (DCIS), IEEE, Nov. 2016, pp. 1–6. doi: 10.1109/DCIS.2016.7845270.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 13, No. 2, July 2024: 360-371

370

[25] V. Ghafari, H. Amin, and Y. Hu, “Fruit-v2: ultra-lightweight stream cipher with shorter internal state,” Cryptology ePrint Archive,

2016.
[26] V. Mikhalev, F. Armknecht, and C. Müller, “On ciphers that continuously access the non-volatile key,” IACR Transactions on

Symmetric Cryptology, pp. 52–79, Feb. 2017, doi: 10.46586/tosc.v2016.i2.52-79.

[27] Y. Tian, G. Chen, and J. Li, “Quavium - a new stream cipher inspired by trivium,” Journal of Computers, vol. 7, no. 5, pp. 1278–
1283, May 2012, doi: 10.4304/jcp.7.5.1278-1283.

[28] A. Canteaut et al., “Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression,” Journal of Cryptology,

vol. 31, no. 3, pp. 885–916, Jul. 2018, doi: 10.1007/s00145-017-9273-9.
[29] J. Daemen and C. Clapp, “Fast hashing and stream encryption with panama,” In International Workshop on Fast Software

Encryption, Springer, Berlin, Heidelberg, 1998, pp. 60–74. doi: 10.1007/3-540-69710-1_5.

[30] R. L. Rivest, “The RC4 encryption algorithm,” RSA data security Inc., Mar. 1992.
[31] A. Khalid, G. Paul, and A. Chattopadhyay, “RC4-accsuite: a hardware acceleration suite for rc4-like stream ciphers,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 1072–1084, Mar. 2017, doi:

10.1109/TVLSI.2016.2606554.
[32] H. Wu, “The stream cipher HC-128,” in New Stream Cipher Designs, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 39–47.

doi: 10.1007/978-3-540-68351-3_4.

[33] H. Wu, “A new stream cipher HC-256,” In Fast Software Encryption: 11th International Workshop, FSE 2004, Delhi, India:
Springer, Berlin, Heidelberg, 2004, pp. 226–244. doi: 10.1007/978-3-540-25937-4_15.

[34] M. Robshaw, O. Billet, and (Eds.), New stream cipher designs - the eSTREAM finalists, vol. 4986. in Lecture Notes in Computer

Science, vol. 4986. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-68351-3.
[35] D. J. Bernstein, “ChaCha, a variant of salsa20,” Workshop Record of SASC, pp. 1–6, 2008.

[36] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius, “Rabbit: a new high-performance stream cipher,” In

International Workshop on Fast Software Encryption: Springer, Berlin, Heidelberg, 2003, pp. 307–329. doi: 10.1007/978-3-540-
39887-5_23.

[37] A. Mileva, V. Dimitrova, and V. Velichkov, “Analysis of the authenticated cipher MORUS (v1),” in In International Conference
on Cryptography and Information Security in the Balkans, Cham: Springer International Publishing, 2015, pp. 45–59. doi:

10.1007/978-3-319-29172-7_4.

[38] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, “1001 ways to implement keccak,” Third SHA-3 candidate
conference, Washington DC, pp. 4–8, 2012.

[39] Dobraunig, Christop, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon lightweight authenticated encryption and hashing,”

Submission to the CAESAR competition, Accessed date: Jan. 15, 2023, [Online] Available at: https://ascon.iaik.tugraz.at/.
[40] M. David, D. C. Ranasinghe, and T. Larsen, “A2U2: A stream cipher for printed electronics RFID tags,” 2011 IEEE International

Conference on RFID, RFID 2011, pp. 176–183, 2011, doi: 10.1109/RFID.2011.5764619.

[41] Y. Luo, Q. Chai, G. Gong, and X. Lai, “A lightweight stream cipher WG-7 for RFID encryption and authentication,” in 2010 IEEE
Global Telecommunications Conference GLOBECOM 2010, Dec. 2010, pp. 1–6. doi: 10.1109/GLOCOM.2010.5684215.

[42] X. Fan, K. Mandal, and G. Gong, “WG-8: a lightweight stream cipher for resource-constrained smart devices,” Greader Noida,

India: Springer, Berlin, Heidelberg, 2013, pp. 617–632. doi: 10.1007/978-3-642-37949-9_54.
[43] D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith, “Hummingbird: ultra-lightweight cryptography for resource-constrained

devices,” in In International Conference on Heterogeneous Networking for Quality, Reliability, Security, and Robustness, Springer,

Berlin, Heidelberg, 2010, pp. 3–18. doi: 10.1007/978-3-642-14992-4_2.
[44] D. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith, “The Hummingbird-2 lightweight authenticated encryption

algorithm,” in International workshop on radio frequency identification: security and privacy issues, Springer Berlin Heidelberg,

2012, pp. 19–31. doi: 10.1007/978-3-642-25286-0_2.
[45] M. Ågren, M. Hell, T. Johansson, and W. Meier, “Grain-128a: a new version of Grain-128 with optional authentication,”

International Journal of Wireless and Mobile Computing, vol. 5, no. 1, pp. 48–59, 2011, doi: 10.1504/IJWMC.2011.044106.

[46] R. Tahir, M. Y. Javed, and A. R. Cheema, “Rabbit-MAC: lightweight authenticated encryption in wireless sensor networks,” in
2008 International Conference on Information and Automation, Jun. 2008, pp. 573–577. doi: 10.1109/ICINFA.2008.4608065.

[47] H. Wu, “ACORN: a lightweight authenticated cipher (v3).,” CAESAR: Competition for authenticated encryption: Security,

applicability, and robustness, 2016.
[48] B. Zhang, Z. Shi, C. Xu, Y. Yao, and Z. Li, “Sablier v1,” Candidate forthe CAESAR Competition, 2014, pp. 1-38.

[49] N. Kumar, S. Ojha, K. Jain, and S. Lal, “BEAN: a lightweight stream cipher,” in Proceedings of the 2nd international conference

on Security of information and networks - SIN ’09, New York, USA: ACM Press, 2009, p. 168. doi: 10.1145/1626195.1626238.
[50] S. Das and D. RoyChowdhury, “CAR30: A new scalable stream cipher with rule 30,” Cryptography and Communications, vol. 5,

no. 2, pp. 137–162, Jun. 2013, doi: 10.1007/s12095-012-0079-1.

[51] T. Chen, L. Ge, X. Wang, and J. Cai, “TinyStream: a lightweight and novel stream cipher scheme for wireless sensor networks,” in
2010 International Conference on Computational Intelligence and Security, Dec. 2010, pp. 528–532. doi: 10.1109/CIS.2010.121.

[52] K. Gaj, G. Southern, and R. Bachimanchi, “Comparison of hardware performance of selected phase II eSTREAM candidates,” State

of the Art of Stream Ciphers Workshop (SASC), pp. 1–11, 2007.
[53] P. Kitsos, N. Sklavos, G. Provelengios, and A. N. Skodras, “FPGA-based performance analysis of stream ciphers ZUC, Snow3g,

Grain V1, Mickey V2, Trivium and E0,” Microprocessors and Microsystems, vol. 37, no. 2, pp. 235–245, Mar. 2013, doi:

10.1016/j.micpro.2012.09.007.
[54] M. Tsavos, N. Sklavos, and G. P. Alexiou, “Lightweight security data streaming, based on reconfigurable logic, for FPGA platform,”

in 2020 23rd Euromicro Conference on Digital System Design (DSD), IEEE, Aug. 2020, pp. 277–280. doi:

10.1109/DSD51259.2020.00052.
[55] Y. Wang, L. Wu, X. Zhang, K. Xu, and W. Yang, “A hardware implementation of ZUC-256 stream cipher,” in Proceedings of the

International Conference on Anti-Counterfeiting, Security and Identification, ASID, IEEE, Oct. 2020, pp. 94–97. doi:

10.1109/ASID50160.2020.9271719.
[56] L. Pyrgas and P. Kitsos, “Compact hardware architectures of enocoro-128v2 stream cipher for constrained embedded devices,”

Electronics (Switzerland), vol. 9, no. 9, pp. 1–14, 2020, doi: 10.3390/electronics9091505.

[57] D. Hwang, M. Chaney, S. Karanam, N. Ton, and K. Gaj, “Comparison of FPGA-targeted hardware implementations of (eSTREAM)
stream cipher candidates,” State of the Art of Stream Ciphers Workshop, {SASC} 2008, Lausanne, Switzerland, pp. 151–162, 2008.

[58] B. Li, M. Liu, and D. Lin, “FPGA implementations of grain v1, mickey 2.0, trivium, lizard and plantlet,” Microprocessors and

Microsystems, vol. 78, pp. 1–13, Oct. 2020, doi: 10.1016/j.micpro.2020.103210.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

An exhaustive review of the stream ciphers and their performance analysis (Raghavendra Ananth)

371

[59] F. Alharbi, M. K. Hameed, A. Chowdhury, A. Khalid, A. Chattopadhyay, and I. T. Javed, “Analysis of area-efficiency vs. unrolling
for eSTREAM hardware portfolio stream ciphers,” Electronics, vol. 9, no. 11, pp. 1–17, Nov. 2020, doi:

10.3390/electronics9111935.

[60] P. Bulens, K. Kalach, F.-X. Standaert, and J.-J. Quisquater, “FPGA implementations of eSTREAM phase-2 focus candidates with
hardware profile,” In-State of the Art of Stream Ciphers Workshop (SASC 2007), Jan. 2007.

BIOGRAPHIES OF AUTHORS

Raghavendra Ananth holds a bachelor's degree in electronics and communication

engineering from HMSIT college, Tumkur, and a master's degree in VLSI design and embedded

system from REVA ITM College, Bangalore, Karnataka. Presently he is a research scholar in

the Department of Electronics and Communications, JAIN Deemed to be University, Bangalore.

His research areas include IoT security, VLSI Frontend design, and FPGA. He can be contacted

at email: araghavendra.research@gmail.com.

Narayana Swamy Ramaiah received Ph.D. from PRIST University, Tamil Nadu,

in the year 2016, M.Tech. in the year 2004 from Visvesvaraya Technological University,

Karnataka and B.E. in the year 2002 from Bangalore University, Karnataka. He has over 16

years of experience in teaching, research, and industry. He has published over 45 papers in peer-

reviewed journals. His research areas include IoT (agriculture), blockchain, AI and machine

learning, and cloud computing. He is currently working as a professor at Jain, deemed University

Bangalore. He can be contacted at email: r.narayanaswamy@jainuniversity.ac.in.

mailto:araghavendra.research@gmail.com
mailto:r.narayanaswamy@jainuniversity.ac.in
https://orcid.org/0000-0001-8076-2838
https://orcid.org/0000-0002-1293-3567
https://scholar.google.co.in/citations?user=07JNIyUAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57211219618
https://www.webofscience.com/wos/author/record/393894

