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 The proposed method involves the fault analysis of the inverter switches 

present in the multi-level inverter (MLI) circuitry. The decision tree machine 

learning algorithm is incorporated for the fault analysis of the inverter 

switches. The multi-level inverter utilized in this work is a 7-level switched 

ladder multi-level inverter. There is 4 number of switches in the design of a 

7-level inverter driven by the non-carrier digital pulse width modulation 

signals. The non-carried-based digital pulse-width modulator (DPWM) 

generation is generated using the event angle for the 7-level of the switched 

ladder inverter. The proposed method investigates the stuck-at-fault 

occurrences of the 4 switches in the inverter by manipulating the decision 

tree parameters such as entropy, information gain, and decision tree. Based 

on the decision tree, the very high-speed integrated circuit hardware 

description language (VHDL) code is developed by making use of the 

behavioral modeling and validated for the power, area in the Xilinx Vivado 

tool. The real-time feasibility is verified for the proposed method by 

synthesizing the developed VHDL code in the field programmable gate 

array (FPGA) device. 
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1. INTRODUCTION 

The multi-level inverter is a power converter that converts DC to AC voltage and is used in many 

industrial applications. Conventionally, the multi-level inverter (MLI) circuits were driven by the static DC 

source with its performance based on the topology, driving sources, switch types, pulse width modulation 

(PWM) generation, and control algorithm. In real-time, the advent of renewable resources provided the 

opportunity to prominently use power inverters. Though the power inverters were used, the fault occurrence 

in the circuitry is a major issue that affects the performance of the power applications. To overcome these 

faulty circuits, several soft computing techniques and bio-inspired algorithms were utilized, but the accuracy 

of the fault identification was low and demanded enhancement for real applications. 

Artificial intelligence techniques such as deep learning and machine learning algorithms are used in 

recent times to precisely detect faults in power systems. The fault analysis for photovoltaic (PV) systems can 

be achieved by using the machine learning algorithm [1]. Machine learning algorithms are used to find the 

faults of switching devices in the PV system with fewer computations [2], [3]. To fasten the error detection in 

the PV system, deep learning can be considered that includes the equilibrium optimizer algorithm and long 

short-term memory (LSTM) in real-time implementation [4]. The decision tree is suitable for the fault 

analysis of the non-linear behavior of the PV modules [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Ensemble learning is utilized for the feature extraction and phase selection for grid-connected PV 

systems [6]. The performance of the grid-connected PV systems is enhanced by developing the ensemble 

learning-based fault identification algorithm considering the dynamic nature of the solar panel [7]. The full 

processing system that consists of a photovoltaic power station can identify the fault occurrence on the run 

using machine learning algorithms [8]. The output voltage timing waveforms of the closed-loop PV grid-

connected inverters are monitored for faults in working conditions using the insulated gate bipolar transistor 

(IGBT) open-circuit fault diagnosis [9]. 

To optimize the open circuit faults in the inverter topology design, machine learning techniques are 

tried rather than extracting the fault harmonic of the switch [10]. By utilizing the supervised machine 

learning algorithm, the fault occurrence can be identified using the k-nearest neighbors (KNN) algorithm, and 

prediction for the next step in the inverter input voltage can be achieved through the LSTM algorithm [11]. 

The power system parameters are forecasted by artificial intelligence to eradicate the sudden flow of current, 

power failure, and current leakage in industrial drives [12]. The line location and variable impedance faults 

happening in the transmission line connected inverter-generator can be diagnosed using the machine 

learning-based technique [13]. The faulty phases are extracted by the Pearson correlation coefficient-based 

technique for the micro-grid fed inverter based generator [14]. The classification and regression tree (CART) 

method can be utilized for the fault location of a single-phase grounding in real-time power converters [15]. 

The DC faults can be analyzed using the teager-kaiser energy operator algorithm which has low computation 

time and complexity [16]. 

The fault detection in power electronics systems is fused with short-time fourier transform to 

examine the three-phase inverters [17]. The switching faults are tested for tolerance to affirm the durability of 

the multi-level inverter [18]. The fault identification is performed with the cascaded H-bridge multilevel 

inverter (CHMLI) circuit using the deep convolutional neural network through imaging [19]. The 7-level 

multi-level inverter is diagnosed for faults using the cuckoo search algorithm with radial basis function is 

advantageous for prediction [20]. The AC/DC interleaved boost converter is checked for output ripple faults 

using the artificial neural network (ANN) model [21]. The open-circuit faults of IGBT can be located using 

the accuracy-weighted random forest algorithm [22]. 

To implement the fault analysis method, several digital controllers are available, but the field 

programmable gate array (FPGA) is used for the real-time control of the power inverters. The very high 

speed integrated circuit hardware description language (VHDL) code is developed for the digital pulse-width 

modulator (DPWM) generation and its control of the DC-DC voltage regulator and implemented in the 

FPGA for real-time validation [23] The FPGA-based control for the PV-fed DC-DC-AC converter gives 

accuracy and low total harmonic distortion (THD)% in the implementation of 81-level MLI [24]. The FPGA-

based neuro-genetic algorithm for backward propagation of neural networks can be used for fault detection in 

induction motor drives [25]. This paper deals with the analysis of the fault that occurs in the switches of the 

switched ladder type MLI circuit using the decision tree algorithm implemented in the FPGA device. The 

next section discusses the working of the proposed algorithm in detail. 

 

 

2. PROPOSED METHOD: DECISION TREE-BASED FAULT ANALYSIS FOR MLI 

The proposed method identifies the fault in the level-7 switched ladder multi-level inverter using the 

decision tree machine learning algorithm. Level 7 consists of 3 levels each in a positive and negative cycle 

and a zero level in the AC output. The switched ladder inverter uses the trinary pattern for the inputs of the 

DC voltages. For the level-7 starter lightning and ignition (SLI), the switching voltages are 1 V, 3 V, -1 V, 

and -3 V which constitute the four switches namely SW1, SW3, SWb1, and SWb3 respectively. The switch 

patterns are generated for the four switches based on the 12 switching angles that are generated by the half 

height-switching angle method (HH-SAM) algorithm. The four switch patterns for the 7-level SLM are given 

in Table 1. The topology of the 7-level switch ladder multilevel inverter (SLMLI) utilized for this work is 

depicted in Figure 1. The voltage pattern is given in trinary form for each ladder stage of the inverter. The 

proposed 7-level SLMLI utilizes only 8 switches to attain the required output of the MLI circuit. Also, there 

is no need for carriers for the generation of PWM signals as compared to the cascaded based reversing 

voltage inverter circuit [26]. Though the reverse voltage inverter uses 10 switches for the 15-levels, the 

proposed Switched Ladder Trinary Multi-Level Inverter (SLTMLI) uses only 8 switches and is more precise 

in the generation of the 15-levels [27]. 

The four switch patterns are represented by the decimal equivalent considering the SW1 as the most 

significant bit (MSB) and SWb3 as the least significant bit (LSB). Thus the switches SW1, SW3, SWb1, and 

SWb3 are manipulated for the used states namely 0, 1, 2, 4, 6, 8, and 9. The remaining equivalent values such 

as 3, 5, 7, 10, 11, 12, 13, 14, and 15 are destinated as unused states. The data set for identifying the switching 

table is developed as per the used and unused states. The used states are considered to be valid with the 
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decision of “YES” designated as ‘Y’ and the unused states are taken as invalid with the decision of “NO” 

designated as ‘N’. The decision tree algorithm is utilized in this work to identify the switching faults of the 7-

level switched ladder multi-level inverter (SLM). The entropy is manipulated for the switches of the SLM 

from SW1 to SWb3. The formulation for the entropy for the SW1 is given by (1). 
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Similarly, the entropy for the number of “1s” and number of “0s” in the SW1 is depicted in (2) and (3) 

respectively. 
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The gain of the SW1 is given by (4). 
 

𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑆𝑊1 −
10

22
(𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 "1s" in SW1) −  

10

22
(𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 "0s" in SW1) (4) 

 

The calculation of entropy and gain for the SW3 are evaluated as depicted in (5). 
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Similarly, the entropy for the number of “1s” and number of “0s” in the SW3 is depicted in (6) and (7) 

respectively. 
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The gain of the SW3 is given by (8). 
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Table 1. Switching pattern for the fault identification in the 7-level SLM 
Levels SW1 SW3 SWB1 SWB3 Decision Equivalent 

0 0 0 0 0 Y 0 
1 1 0 0 0 Y 8 

2 0 1 1 0 Y 6 

3 0 1 0 0 Y 4 
2 0 1 1 0 Y 6 

1 1 0 0 0 Y 8 

0 0 0 0 0 Y 0 
-1 0 0 1 0 Y 2 

-2 1 0 0 1 Y 9 

-3 0 0 0 1 Y 1 
-2 1 0 0 1 Y 9 

-1 0 0 1 0 Y 2 

0 0 0 0 0 Y 0 
Unused states 0 0 1 1 N 3 

0 1 0 1 N 5 

0 1 1 1 N 7 
1 0 1 0 N 10 

1 0 1 1 N 11 

1 1 0 0 N 12 
1 1 0 1 N 13 

1 1 1 0 N 14 

1 1 1 1 N 15 
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Figure 1. Circuit topology for the proposed 7-level switched ladder multi-level inverter 

 

 

Due to the symmetricity of the switch patterns, the number of 1’s and 0’s for the negative switches 

are the same which leads to the same value of the entropy and gain as in positive switches. Thus the negative 

switches are not considered for the evaluation in the decision tree algorithm. Table 2 consolidates the entropy 

and gain for the two switches SW1 and SW3. The gain of SW3 is 0.13976 and higher than SW1 with 

0.09217. Now comparing the two switches, the SW3 is the root node for the decision tree of the proposed 

fault identification in 7-level SLM. The flowchart for the proposed method is depicted in Figure 2. The 

VHDL code is used to develop the proposed decision tree algorithm for the identification of the faults in the 

7-level SLM. 

 

 

Table 2. Entropy and gain calculation for the switches using the decision tree algorithm 
Sl.No Parameters SW1 SW3 

1 Entropy total 0.97603 0.97603 

2 The entropy of only 1’s 0.97095 0.91849 

3 The entropy of only 0’s 0.81128 0.77934 
4 Gain 0.09217 0.13976 

 

 

 
 

Figure 2. Flowchart for the proposed decision tree algorithm based fault analysis of 7-level SLM 

 

 

3. RESULTS AND DISCUSSION 

The proposed fault analysis of switches in the ladder MLI is evaluated using the decision tree 

algorithm using the VHDL code. The decision tree parameters namely entropy and gains are manipulated for 



Int J Reconfigurable & Embedded Syst  ISSN: 2089-4864  

 

FPGA-based fault analysis for 7-level switched ladder multi-level inverter … (Nithya Ramalingam) 

161 

deriving the splitting tree. Initially, the positive side switches are considered for the decision tree and the gain 

value is maximum for the SW3 as compared to the remaining switches, thus, the SW3 is considered the root 

node for the tree. With the SW3 as the root node, there are 13 combinations for fault free decision and 9 

combinations for faulty decision as depicted by (13,9). The decision tree (DT) checks for the value of SW3 

and based on the value of either “0” or “1”, the next node SW1 is evaluated with 3 positive decisions and 6 

negative decisions as given (3,6) for SW3=0. For SW3=1, the SW1 node is evaluated for (10,3). Similarly, 

the next nodes of SWB3 are evaluated as (3,2) with SW3=1 and SW1=1. For SW3=0 and SW1=X, the nodes 

of SWB3 and SWB1 are utilized for the decision of fault and fault free switches in the inverter. Figure 3 

shows the complete decision tree for the proposed fault analysis for the switching combination of the 

multilevel inverter. 

The VHDL code is developed for the derived decision tree using the nested-if-else loop in 

behavioral style. The simulation for the developed VHDL is verified using the ModelSim compiler as shown 

in Figure 4. The Xilinx Vivado tool is used for the validation of the synthesizable code of the proposed 

switching fault analysis. The register transfer level (RTL) schematic for the proposed method is given in 

Figure 5. The proposed method is evaluated for power consumption using the Xilinx Vivado tool as given in 

Figure 6. Figure 7 depicts the AC output for the 7-level switched ladder trinary multi-level inverter with the 

THD% value. The dynamic power manipulated for the proposed switching fault analysis is 1.134 W and the 

static power is 0.095 W. The device utilization chart for the proposed method using the Xilinx Vivado tool is 

given in Table 3. Table 4 depicts the comparison of the proposed method with THD% and proves to be low 

at 12.52% compared to multi-carrier sinusoidal pulse width modulation (MCSPWM) and multi-carrier space 

vector pulse width modulation (MCSVPWM) in [28] and since no carrier is used, the modulation index (M) 

is not assigned. 
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Figure 3. Decision tree for the proposed switching fault identification in SLM 

 

 

 
 

Figure 4. Simulation output for the proposed decision tree based switching fault identification in SLM 
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Figure 5. RTL schematic for the proposed decision tree based switching fault identification in SLM 

 

 

 
 

Figure 6. Power dissipation for the proposed decision tree based switching fault identification in SLM 

 

 

 
 

Figure 7. THD% evaluation for the proposed 7-level SLTLI using the MATLAB Simulink tool 

 

 

Table 3. Device utilization for the proposed decision tree-based switching fault identification in SLM 
Resource Utilization Available Utilization (%) 

Look up table (LUT) 25 63,400 0.04 
Flip-flops (FF) 8 126,800 0.01 

Input/output (IO) 10 170 5.88 

Clock buffer (BUFG) 1 32 3.13 
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Table 4. Comparison of THD% for the 7-level MLI AC OUTPUT 
Methods THD% for the simulation AC output 

MCSPWM [28] MCSVPWM [28] Proposed 

7-level with M=0.8 24.33 21.84 12.52 

7-level with M=0.7 25.31 24.27 

 

 

4. CONCLUSION 

The proposed switching fault analysis using the decision tree algorithm is validated using VHDL 

code. The developed VHDL code identifies the stuck-at faults of the inverter switches using the decision tree 

algorithm. The parametric evaluation for the proposed method seems to be satisfactory and feasible for the 

real-time fault analysis of the multi-level inverter. The proposed algorithm can be utilized for identifying 

faults in the switches of the higher resolution inverter level design and can direct towards the use of neural 

network-based fault identification in multi-level inverter switches. 
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