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 Scientific workload execution on a distributed computing platform such as a 

cloud environment is time-consuming and expensive. The scientific workload 

has task dependencies with different service level agreement (SLA) 

prerequisites at different levels. Existing workload scheduling (WS) designs 

are not efficient in assuring SLA at the task level. Alongside, induces higher 

costs as the majority of scheduling mechanisms reduce either time or energy. 

In reducing, cost both energy and makespan must be optimized together for 

allocating resources. No prior work has considered optimizing energy and 

processing time together in meeting task level SLA requirements. This paper 

presents task level energy and performance assurance-workload scheduling 

(TLEPA-WS) algorithm for the distributed computing environment. The 

TLEPA-WS guarantees energy minimization with the performance 

requirement of the parallel application under a distributed computational 

environment. Experiment results show a significant reduction in using energy 

and makespan; thereby reducing the cost of workload execution in comparison 

with various standard workload execution models. 
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1. INTRODUCTION 

Recently, the big data framework is being emphasized in wide-range of complex scientific 

applications. For example, scientific complex workloads such as Montage (Figure 1) which are widely used 

for the scientific and business investigation [1]. The significant growth has led to some serious challenges such 

as low-latency and cost effectiveness for storing, communication, and processing [2]. In addressing such 

problem, cloud computing such as Amazon EC2, Pegasus, and MapReduce [3], [4] are being used. Cloud 

platforms provide high quality storage and computing resources like networks, services, and applications. for 

the execution of the scientific complex workloads [5]. The scientific workload generally represented as a 

directed acyclic graph (DAG) where there exist dependencies among task as shown in Figure 1. This makes 

scheduling of cloud resource for workload execution a challenges task [6]. 

Recently, the researchers are using the cloud services to schedule the workload [7]–[10]. The  

Figure 2 depicts a simple architecture for the workload scheduling (WS) in a cloud environment. However, to 

design an efficient workload-scheduling model by reviewing the existing models presents various challenges 

like executing larger and more complex scientific workloads, which requires more execution time and increases 

the energy usage for the execution. It becomes more challenging when the tasks have to be executed in a given 

deadline. Moreover, the scheduling of workload is deemed an NP-hard problem [11]–[14]. In fact, optimizing 

both time and cost is a very challenging task in WS [15]. For an instance, if a scheduling model seeks to reduce 
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the energy usage, the time required to complete a given task increases. This is because both the energy and 

time are linked. Since many existing models do not consider task level service level agreement (SLA) into 

account while creating schedules, the energy and makespan optimization problem persists [16]. To address the 

above problem, this paper presents a task level energy and performance assurance-workload scheduling 

(TLEPA-WS) technique. The TLEPA-WS assures SLA at task level [17], [18]. Research contribution for this 

research is mentioned as: i) the TLEPA-WS is efficient in minimizing energy with performance assurance of 

workload task level SLA prerequisite. No prior work has considered such scheduling mechanism and ii) the 

TLEPA-WS model reduces energy consumption, makespan, and computational cost in comparison with 

energy-min scheduling.  

The paper organization: in section 2, study various existing WS design for distributed computational 

environment. In section 3, the TLEPA workload-scheduling model is explained. The simulation study is given 

in section 4. In last section, the research is concluded and future research enhancement is given. 

 

 

 
 

Figure 1. Sample representation of Montage workload [2] 

 

 

 
 

Figure 2. The standard resource-scheduling framework 
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2. LITERATURE SURVEY 

This section studies various workload-scheduling model to leveraging distributed computing platform 

such as cloud environment. Table 1 comprises of several survey regarding this research. Here the advantage as 

well as limitation is mentioned of all the survey. In addressing aforementioned limitation in next section, 

presents task level performance and energy assurance WS technique for cloud environment. 

 

 

Table 1. Survey table 
Method Advantage and limitation Metrics and workload used 

Hu et al. [19] proposed an algorithm, which 
reduces the scheduling length by providing 

proper reliability and also another 

algorithm for the processor has been 
proposed which reduces the execution time 

using the dynamic voltage and frequency 

scaling (DVFS) method to minimize the 

energy consumption. 

This model has performed better in terms of 
energy and computation time. Furthermore, this 

model has also addressed the issue of reliability 

during the execution of the tasks. However, the 
given model consumes more cost for the 

execution of the task of the workflow, hence is 

not cost efficient. 

Energy consumption and 
computation time are metric used. 

Montage, cybershake, laser 

interferometer gravitational wave 
observatory (LIGO) and some 

synthetic workflows are used. 

Pham and Fahringer [20] proposed a multi-

objective workflow scheduling method 
which provides a trade-off solution to 

reduce the cost and increase the makespan. 

This method performs better in terms of 

makespan and cost. However, this model has 
not addressed the issue of energy consumption 

during the execution of the workflow in the 

clouds. 

Makespan, cost, deadline, and 

budget are metric used. 
cybershake, epigenomics, inspiral, 

Montage and sipht are workload 

used. 
Zhou et al. [21] used two method deadline-

constrained cost optimization for hybrid 
clouds (DCOH) and multi-objective 

optimization for hybrid clouds (MOH) 

which optimizes the makespan and reduces 
the cost. 

This method has reduced the execution cost by 

100% when compared with the deadline 
constraint models. However, in order to reduce 

the cost this model has consumed more energy 

and this model is good for hybrid clouds, not 
good for edge cloud platforms. 

Energy, cost, and makespan are 

metric used. Cybershake, 
epigenomics, inspiral, Montage, 

and sipht are workload used. 

Wang et al. [22] presented an algorithm, 

deadline and budget constrained 
heterogenous scheduling (DMW-HDBS) to 

select the task, check the priority of the task 

so that the resources should be allocated to 
the most priority task first and then to the 

least priority tasks. 

This model has showed good performance and 

has increased the success rate for the execution 
of the task in the multi-workflow scheduling 

platforms using their method. However, this 

model has not addressed the issue of energy 
consumption by each of the task during the 

execution of the workflow. 

Cost, deadline, and makespan are 

metric used. Lille, Sophia, and 
Rennes are workflows used. 

Tang [23] proposed a strategy to provide a 
cost-efficient and reliability method for the 

multi-cloud network. In this model, they 

have developed a fault-tolerant workflow-
scheduling framework, which increase the 

reliability and reduces the cost during the 

execution of the task. 

The results show that the model has 
outperformed when compared with the existing 

methods in terms of reliability and cost. 

However, the model has failed to address the 
issue of energy consumption in their model. 

Execution time, cost and 
reliability are metrics used. LIGO 

and epigenomics are workload 

used. 

Malik et al. [24] proposed an algorithm 

based on the classification of the task and 

the threshold in order to provide better 
resources for the execution of the task. 

This model has used particle swarm 

optimization (PSO) to increase the performance 

of the model and reduce the energy 
consumption, makespan and load balancing. 

However, this model consume more time to 

execute as it has to run the algorithm first and 
then run the PSO algorithm to get its result, 

hence, is not time-efficient method. 

Makespan, energy consumption, 

load balance are metric used. 

Cybershake, epigenomics, LIGO, 
Montage, and sipht are workflows 

used. 

 

 

3. ENERGY EFFICIENT MULTI-SENSORY TARGET TRACKING METHOD FOR WIRELESS 

SENSOR NETWORK 

This section present TLEPA-WS algorithm in cloud computing environment as shown in Figure 3. 

The TLEPA provide ideal performance considering varying SLA condition at task level in parallel 

computational framework. In this section, we design and task-level SLA-based WS algorithm for monitoring 

the process and solves the various attributes and constraints; in here various constraint is considered such as 

priority, task dependency, parallel computation and various attribute such as energy and makespan is 

considered for minimization. 

 

3.1.  Algorithm 

This section presents the TLEPA algorithm for execution of complex workload in distribute 

computing platform in Algorithm 1. In this section, we design and task-level SLA-based WS algorithm for 

monitoring the process and solves the various attributes and constraints; in here various constraint is considered 

such as priority, task dependency, parallel computation and various attribute such as energy and makespan is 

considered for minimization. 
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Figure 3. The workload-scheduling framework 

 

 

Algorithm 1. The algorithm of adaptive workload scheduling assuring SLA at task level 

Step 1. Design a task and power model. 

Step 2. Compute the given lower performance constraint limits. 

Step 3. Mechanism for adaptive task scheduling in which tasks that have not been scheduled are tested to see 

if the necessary resources are available for their execution. 

Step 4. Design the tasks in DAG. The number of levels in the DAG is w, where w is the number of levels with 

varying energy and makespan SLA constraint in the DAG.  

Step 5. Non-urgent tasks fall under the category of level 1. 

Step 6. TLEPA organizes tasks into levels 1, 2, 3, 4, etc., and keeps track of all of them. 

Step 7. Furthermore, unless the task in level m is finished, m+1 level cannot be executed. The monitoring 

process is the same for each level m. 

Step 8. As tasks are independent and have different levels as a result, they are scheduled using an adaptive task 

scheduling technique. 

 

3.2.  Service level agreement optimization 

In this given section, we calculate the lower bound. Assume a parameter X which represents the 

amount of work done for a given parallel task o, this can be represented using as (1). 

 

X = x1 + x2 + ⋯ + xo = ℙ1 s1 + ℙ1 s2 + ⋯ + ℙoso (1) 

 

The minimal energy and optimal length required for an optimal scheduling is represented using F′ and 

U′ respectively. By considering, all these parameters, the lower bound can be evaluated which help to reduce 

the makespan in a multi-level workload-scheduling model. In (2) represent that the lower bound reduces the 

makespan and the given (3) represents the lower bound to reduce the consumption of energy. 

 

U′  ≥ (
n

F̃
(

X

n
)

b

)
1/(b−1)

 (2) 

 

F′ ≥ n (
X

n
)

b

 (Ũb−1)
−1

 (3) 

 

Both the (2) and (3) can be used for any dependent, independent and parallel task. 

Method first considers uc as the time required for the execution of task Okd. In this section the tasks 

which are not scheduled are tested and monitored just to understand whether the task is free for the execution 

or not, i.e., it means to check whether the resources required for the execution of the task are available or not. 

Hence, this results in including a greater number of tasks than the previous methods [19], [25]. Furthermore, 

the scheduling of the task helps to improve the utilization of the processor. The scheduling of the task can be 

represented using the equation, i.e., when the task O=1 then: 
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Q∗(O, N) = ∑ nsn
N
n=1  (4) 

 

suppose the task O is more than 1 then it is represented using the (5). 

 

Q∗(O, N) = ∑ sn(n + Q∗(O − 1, N − n))N
n=1 + (∑ sn

 
n>N )Q∗(O − 1, N) (5) 

 

If the size of the first task is large, then the resources, which are available, are used and all the other 

tasks are terminated. After this all the other remaining task 0 − 1 are scheduled. Further average scheduling 

after the above situations is Q∗(O − 1, N). The proposed model resource utilization efficiency is studied 

through experiment analysis in next section. 

 

 

4. EXPERIMENT RESULT AND ANALYSIS 

This section studies the performance in terms of makespan, energy efficiency and cost efficiency 

achieved using proposed Amazon web services-transport layer security (AWS-TLS) over existing energy-

minimized scheduling of real-time parallel workflows (EMS-RTPW) [19] model. The AWS-TLS and EMS is 

implemented using Java programing language using cloudsim [2], [3]. The memory intensive nature inspiral 

is used for validating workload-scheduling models. Makespan, energy, and cost efficiency are metrics used for 

validating workload-scheduling models. 

 

4.1.  Makespan performance 

Here the makespan efficiency of TLEPA and EMS is measured by varying the inspiral workload task 

size from 30 (small), 50 (large), and 100 (large) as shown in Figure 4. An average makespan reduction of 

80.33% is achieved using TLEPA-WS over EMS-WS. All the observation can be obtained from the graph. 

 

 

 
 

Figure 4. Makespan efficiency with different inspiral workload size 

 

 

4.2.  Energy efficiency 

Here the energy efficiency of TLEPA and EMS is measured by varying the inspiral workload task 

size from 30 (small), 50 (large), and 100 (large) as shown in Figure 5. An average energy consumption 

reduction of 44.96% is achieved using TLEPA-WS over EMS-WS. All the observation can be obtained from 

the graph. 

 

 

 
 

Figure 5. Energy efficiency with different inspiral workload size 
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4.3.  Cost efficiency 

Here the cost efficiency of TLEPA and EMS is measured by varying the inspiral workload task size 

from 30 (small), 50 (large), and 100 (large) as shown in Figure 6. An average cost reduction of 80.1% is 

achieved using TLEPA-WS over EMS-WS. All the observation can be obtained from the graph. 

 

 

 
 

Figure 6. Cost efficiency with different inspiral workload size 

 

 

5. CONCLUSION 

This paper presented an efficient WS that assures task level SLA. No prior work has considered 

scheduling workload considering task-level SLA. The model can reduce energy and maintain high-level of 

performance; thereby significantly reducing overall execution cost. Experiment outcome shows the TLEPA-

WS is very efficient in terms of energy efficiency i.e., an improvement of 44.96% is experienced by TLEPA-

WS over EMS-WS. The makespan for execution of workload is reduced by 83.33% by TLEPA-WS over EMS-

WS. Similarly, cost for execution of workload is reduced by 80.1% by TLEPA-WS over EMS-WS. The future 

work would test the model considering different resource intensive workload such as central processing unit 

(CPU), I/O and memory. Alongside, improve scheduling considering much larger complex task. 
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