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 This paper demonstrates a framework that entails a bottom-up approach to 

accelerate research, development, and verification of neuro-inspired sensing 

devices for real-life applications. Previous work in neuromorphic 

engineering mostly considered application-specific designs which is a strong 

limitation for researchers to develop novel applications and emulate the true 

behaviour of neuro-inspired systems. Hence to enable the fully parallel 

brain-like computations, this paper proposes a methodology where a spiking 

neuron model was emulated in software and electronic circuits were then 

implemented and characterized. The proposed approach offers a unique 

perspective whereby experimental measurements taken from a fabricated 

device allowing empirical models to be developed. This technique acts as a 

bridge between the theoretical and practical aspects of neuro-inspired 

devices. It is shown through software simulations and empirical modelling 

that the proposed technique is capable of replicating neural dynamics and 

post-synaptic potentials. Retrospectively, the proposed framework offers a 

first step towards open-source neuro-inspired hardware for a range of 

applications such as healthcare, applied machine learning and the internet of 

things (IoT). 
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1. INTRODUCTION 

With silicon pushed to its limits, we must look beyond conventional computing platforms. The brain 

realizes a huge number of tasks through flexible and power-efficient networks of neurons. To enable brain-

like computations, a power-efficient neural fabric is needed to emulate the basic functionality of the human 

brain. The task of neural hardware implementation is challenging due to a large number of processing nodes 

(roughly 1011) and rich interconnectivity (roughly 1015) [1], [2]. Research work has recently focused on 

models which exhibit more plausibility to the human neural system. Similarly, wearable devices and sensors 

are commonly used for detecting abnormalities such as detection of seizures, patterns of movement, and 

behaviour [1]. However, continuous sampling of input signals requires power, hence neuro-inspired 

paradigms offer an alternative to the existing limitation of continuous signal measurement. The power aspect 

becomes even more important when it comes to applications based on lightweight portable devices. 

Biologically plausible spiking neural models such as the spike response model (SRM) are 

particularly suitable in computational neuroscience because it is compute-efficient and captures most of the 

https://creativecommons.org/licenses/by-sa/4.0/
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biological dynamics [2]-[4]. Nonetheless, to efficiently emulate thousands of such neural entities on 

hardware/software platforms is challenging. As one of the main features of the human neural system is its 

parallel processing capability, during the past few years, significant advances have been made in techniques, 

methodologies, and applications of neural-based hardware [5]-[12]. The brain realizes a huge number of tasks 

such as adaptation, vision and recognition through flexible and power-efficient networks of neurons. It is 

challenging to investigate an unconventional multidisciplinary area of neural engineering because of the 

background knowledge required to understand biological principles and then apply them in computing-

related applications. Growing research in the area of low-power neural engineering and related areas has 

triggered the interest to model such systems on electronic platforms [13]. The task of neural hardware 

implementation requires an extremely large number of processing nodes, rich interconnectivity, and 

adaptation mechanisms [14]. It is well understood that low-power devices with particular applications in 

environmental sensing, healthcare and internet of things (IoTs) represent unprecedented challenges with the 

growing need for trillions of interconnected devices, ubiquitous sensors, and actuators that are expected to be 

interconnected. There are several challenges that the scientific community faces today such as compatible 

architectures and platforms for such devices to talk to each other and actual hardware with battery-less 

energy scavenging techniques, to name a few.  

This paper offers a novel neuro-inspired platform that could potentially be used for research as well 

as integrating several neuro-inspired applications such as healthcare electronics and integrated low-power 

sensors. Hence, IoT-based devices are particularly promising for applications in medicine and healthcare 

[15]-[18]. Such devices have greater potential to reduce the ever-increasing cost of care in developed as well 

as developing countries. To provide quality of care and remote healthcare monitoring facilities, it is 

imperative to have an open-source hardware platform for modelling, analysis, and prototyping. In this paper, 

results are reported from experiments conducted in both software and hardware. The hardware chip is 

fabricated with a 0.35 um complementary metal-oxide-semiconducto (CMOS) process [19], [20]. This paper 

offers a systematic approach to building a platform from software prototyping, silicon implementation, 

electrical characterization, and empirical modelling. Section 2 details the research method where spiking 

neural model was investigated in software domain. Section 3 presents the hardware circuits to capture neural 

responses akin to the biological neurons. The hardware structures were fabricated and characterized whereas 

the data extracted through the fabricated device was empirically modelled in the form of mathematical 

equations and embedded into software domain for benchmarking applications. It is envisaged that this work 

will offer an open-source platform where generic neural fabric is available to researchers and practitioners for 

prototyping applications in the domain of neuromorphic hardware. Our long-term objective is to offer the 

very first, an open-source neuromorphic hardware platform for artificial intelligence (AI) enabled healthcare 

devices and related industrial applications. 

 

 

2. RESEARCH METHOD  

Recent advances in machine learning necessitate computation-efficient paradigms on both software 

and hardware platforms. When spike-based computation models, such as spiking neural networks (SNNs), 

are run on neuromorphic hardware, they have a huge potential to reduce energy usage. Nonetheless, due to 

the large number of neurons and synapses required at a biological scale, simulating and mapping SNN 

architectures on a hardware platform is a daunting task. The proposed method takes a novel approach by 

simulating neuronal entities in software before capturing and replicating their dynamics. Rather than 

designing and fabricating custom hardware circuits and architectures for a specific application, generic 

customised neural cells are investigated and developed. Empirical models developed from the data extracted 

through the fabricated structures. This approach offers true replication of the neuromorphic hardware which 

is cost-effective and saves time and effort to develop neuro-inspired applications. As spiking neurons are 

considered more biologically plausible, they use spikes as the communication mechanism between different 

entities. Depending on the model, each spike can be defined as a binary event where the actual timestamp of 

the spike carries information. Spiking neuron communication behaviour is shown in Figure 1 where In are the 

input currents, s synapses and n the neuron membrane which connects with following synapses and outputs 

are generated, as denoted by On.  

 

2.1.  Neuron circuit simulations 

In this work, an SRM model is considered for investigation and implementation. The membrane 

potential of the model can be represented by (1), whereas postsynaptic potential is represented by (2).  

 

𝑉𝑚(𝑡) = ∑ 𝜂𝑖(𝑡 − 𝑡𝑖
(𝑓)

) + 
𝑡

𝑖
(𝑓)

 ∈ 𝐹𝑖
∑ ∑ 𝑤𝑖𝑗𝜀𝑖𝑗 (𝑡−𝑡(𝑓))𝑡

𝑗
(𝑓)

𝜖𝐹𝑗
𝑗 𝜖 Γ𝑖

 (1) 
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𝜀𝑖𝑗(𝑡 − 𝑡(𝑓)) =
𝑡

𝜏
exp (−

𝑡

𝜏
) (2) 

 

As shown in (1), the expressions represent as follows: Vm is the membrane potential, 𝜂𝑖 (action 

potential), 𝑡𝑖
(𝑓)

 (the last firing time of neuron I), 𝑡𝑗
(𝑓)

 pre-synaptic input spike from neuron j), 𝜀𝑖𝑗 (𝑡−𝑡(𝑓)) (the 

PSP of neuron i caused by a spike from neuron j), 𝑤𝑖𝑗 (synaptic strength),  𝐹𝑖 (the set of all firing times of 

neuron I, and Γi represents the set of all presynaptic neurons. Whereas in (2), tau represents the rise and fall 

time of the postsynaptic response.  

In order to replicate and capture the neural dynamics, the simulated neural circuit is shown in  

Figure 2. As shown in the Figure 2, input stimuli (I1 and I2) are connected with two SRM neurons (N1 and 

N2) respectively where N1 is considered excitatory and N2 inhibitory. The neurons are connected via static 

synapses. The parameters used for simulating this circuit are shown in Table 1. To have insight into the 

biological domain, different papers were surveyed to collect realistic biological data sets. We need to know 

our limitations in terms of hardware implementation and the values required to develop a biologically 

plausible SNN platform. These parameters have also been widely used in computing-related tasks. For the 

neuron model and related parameters used for simulations, we refer the reader to [21] and [2].  

 

 

 
 

Figure 1. Standard spiking neuron with synaptic connections 

 

 

 
 

Figure 2. SRM circuit diagram 

 

 

Table 1. Simulation parameters [9] 
Parameters Units 

Membrane time constant 30 ms 

Absolute refractory period 3 ms 

Reset voltage 13.5 mV 
Resting voltage 0 mV 

Threshold voltage 15 mV 

Background noise 13.5 nA 
Input resistance 1 MOhms 

Synaptic delay 1 ms 

 

 

The software simulation results are shown in Figure 3 where the top plot shows the input stimuli 

(analogue and digital) and the second plot from the top shows the output spike times at different time steps. 

Plot 3 from the top shows the membrane potential of both neurons and the bottom plot shows the 

postsynaptic potentials for all four synapses. As shown in the figure, two inputs (analogue and spiking) were 
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connected with two neurons (excitatory and inhibitory) via synapses. Whereas the main difference between 

excitatory and inhibitory neurons is that the excitatory neurons fire an action potential in the postsynaptic 

neuron and inhibitory neurons inhibit the firing of an action potential. For further details on synaptic 

potentials and membrane dynamics, we refer the reader to [2].  

 

 

 
 

Figure 3. SRM circuit response in terms of membrane voltages and synaptic potentials 

 

 

2.2.  Postsynaptic response and membrane potential 

As information in spiking neurons is conveyed through spikes where postsynaptic response plays an 

important role in neural dynamics. By increasing or decreasing the rise and fall times of the postsynaptic 

potential, the output firing patterns change to a greater extent [3]. To further examine the impact of input 

spike train on postsynaptic responses and membrane potentials, a rather simple model is emulated in 

software. This model includes a threshold voltage which is compared with the membrane potential. An 

output spike is generated if the membrane potential exceeds the threshold value, whereas a spike threshold is 

calculated for each time step. Figure 4 elaborates an input spike train, postsynaptic responses, corresponding 

membrane potentials, and output spike train. It is observed that during the rise and fall time of the 

postsynaptic potentials, the dynamics of a neuron change. The impact of 𝜏 was observed on the neural 

membrane accordingly.  

The top plot in Figure 4 shows an input spike train whereas the middle plot shows the postsynaptic 

response and the bottom plot shows the membrane potential and output spikes. It can be seen that each input 

spike creates a postsynaptic response at a specific time step which is accumulated into the neuron’s 

membrane. Once the membrane potential exceeds a certain threshold, output spikes are generated at a 

specific time interval. It can be inferred from these simulations that the spike times play an important role in 

neural signal processing where the output spikes translate the input spike frequency. The main purpose of 

simulating these circuits was to capture some of the neural dynamics and translate them into hardware 

structures for large-scale implementations.  
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Figure 4. This figure shows the input spike train, postsynaptic responses and corresponding membrane 

potentials 

 

 

2.3.  Hardware modelling of postsynaptic potentials 

Once the basic functionality of neural entities was examined through software simulations, hardware 

fabric was designed, fabricated, and characterized. The chip was fabricated by Europractice with the 0.35 um 

AMS n-well process. The basic circuits of synapses and neurons are shown in Figure 5. Further details are 

provided in [19], [20], [22].  

To benchmark the characteristics of neural cells, several synapse/neuron blocks were implemented 

where each circuit on the chip comprised a synapse cell connected to a neuron circuit. As shown in Figure 5, 

in the absence of synaptic activity, the VIN node sits at a voltage slightly lower than VDD, due to the leakage 

current at that point and the need for this to be sourced by M1. When a pre-synaptic neuron fires (VPRES), 

electronic charge is transferred onto the output node of the synapse, reducing the value of VIN. This transient 

reduction in voltage is fed through a buffer and measured on an oscilloscope. The PSP is formed by the 

charging and discharging of the capacitance, C present at the drain of M5. A current passing through M4, IM4 

will charge the capacitor to a value VPSP, and it is subsequently discharged by the current flowing through 

M5, IM5, which defines the fall time of the PSP. Ideally, IM4 >> IM5, so that the leakage current has  

no discernable effect on the charging of the capacitor. Once VPSP reaches the switching threshold for the 

inverter M6/M7, the neuron ‘fires’, producing a voltage pulse at the VOUT node, before VPSP is discharged 

through M10. The layout of the chip is shown in Figure 6 which implements the circuits shown in Figure 5, 

alongside structures/circuits for characterisation and testing. An XOR benchmark was implemented on the  

chip and characterized. Further details on hardware implementation and benchmark applications are provided 

in [19], [23]. 

 

2.4.  Hardware measurements 

VW, VPRES, VLEAK, and VDD were supplied to the IC input using a semiconductor parameter analyzer, 

providing independent control over each voltage. The measurements were taken from the chip by direct 

probing. The outputs from the probe station were recorded using a Tektronix oscilloscope. Whereas voltage 

VW sets the level of synaptic charge and VLEAK controls the fall time of the PSP. Charge transfer through the 

synapse is initiated by the application of a single pulse to the VPRES terminal of the synapse. The magnitude 

of the pulse is set to VDD, the 10-90% rise/fall times are 5 ns and the 50-50% pulse width is 20 ns. To 

analyze PSP response from the fabricated chip, extracted data is plotted and to further investigate the 

computational capability of fabricated structures, an empirical model was developed based on the data 

extracted from the chip. Figure 7 shows the PSPs which are sampled for 0<VW<3.3 V in 50 mV increments 

and VLEAK is set to 0.24 V. 
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To provide a generic neural fabric to benchmark neuro-inspired applications, an empirical model 

was developed by Gaussian curve fitting. The data extracted from the fabricated chip was used to develop the 

empirical model as a function of weight. This model replicates neural dynamics and postsynaptic potential 

measured through a chip with a similar time scale (Figure 7 (a) and Figure 7(b)). The mathematical equation 

is shown in (3), where the response model is the product of three parts.  

 

𝑦 = [𝑦0 + 𝐴𝑒
−

𝑥.(𝑥−𝑥𝑐)2

2𝑤2 ] . (1 − 𝑒−𝑏𝑥). 𝜀(𝑥 − 𝑡𝑠𝑝𝑖𝑘𝑒) (3) 

 
These three parts are an amplitude version of the Gaussian peak function, a Box Lucas function, and 

a step function. Whereas yo, A, b, w and xc are real constants and 𝜀 is a response kernel that exhibits the 

typical time course of an excitatory postsynaptic potential in terms of response voltage approaching zero 

from above. By using this approach, the responses of the spikes with different synaptic weights were 

modelled mathematically. It is particularly important to have an empirical model that mimics the actual 

behaviour of the fabricated device.  

 

 

  
  

Figure 5. Synapse and neuron circuit [19], [20] Figure 6. Chip layout (3.7x3.7 mm) [20] 

 

 

  
(a) (b) 

  

Figure 7. This figure shows the comparison between actual data extracted from the chip  

and the empirical model for (a) a single and (b) multiple synapses 
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3. RESULTS AND DISCUSSION  

Previous research in neuromorphic engineering is mainly done through hardware implementations 

or software modelling. In particular, hardware implementations were constrained and were capable of 

characterizing the effects of a few variables. It was mainly due to the number of experiments needed to 

capture neural dynamics being specific and limited. Software-based approaches, nonetheless, capture high as 

well as low-level dynamics, without regard to any transistor or layout-level aspects, hence lacking accuracy 

at the device level. In order to observe neural dynamics at the device level and explore real-life engineering 

applications, it would be unrealistic not to consider the necessary process and layout-related information. For 

rapid development and prototyping of neuromorphic applications, novel approaches are needed to implement 

and analyze neuro-inspired paradigms. This paper demonstrated the viability of implementing neural 

dynamics on software and hardware platforms whereas the data extracted through fabricated neural structures 

were empirically modelled and provided as an open-source [24]. To investigate software based spiking 

neuron models in Python, readers are referred to [25]. The repository provided in [24] currently contains the 

code, empirically modelled postsynaptic potentials, neural membrane potentials, and mathematical equations 

that can be embedded into the software domain. The authors have provided this repository as an open-source 

platform for the neuromorphic research community to make use of the existing code, equations, and models 

and hope it would be further complemented with bespoke datasets and empirical models.  

 

 

4. CONCLUSION 

To summarize, this paper offers a proof-of-concept demonstration of the spiking neural circuits 

capturing some of the neural dynamics. It is shown by experimental results (software and hardware) that it is 

viable to look beyond traditional paradigms and explore neuro-inspired cells as computational entities. 

Empirical models were developed from the data extracted through the fabricated device and accuracy was 

confirmed. This work demonstrates the feasibility of an open-source neural hardware platform where neural 

fabric can be provided for rapid investigation and development. Authors have set up a GitHub repository 

where mathematical equations and MATLAB code for empirically modelled postsynaptic potentials and 

neural membranes are provided. Due to the analogue nature of neural cells and synapses, millions of such 

computational entities are possible to realize on-chip and with the provision of an open-source neuromorphic 

repository, further applications related to machine learning, deep neural networks and IoTs can be explored.  
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