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 The clinical indication of arrhythmia identifies specific aberrant 

circumstances in heart pumping that may be detected using electrical 

impulses during conduction or by allowing a little amount of current to 

travel through the electrodes, disrupting the cardiac muscle's resistance. The 

electrocardiogram (ECG) is one of the most important instruments for 

detecting cardiac arrhythmia since it is the most least intrusive and effective 

procedure. Physically or visually inspecting the heart is time-consuming and 

difficult, hence the development of computer aided diagnosis (CAD) is 

being developed to aid clinical decision-making. In this suggested research, 

a convolutional neural network (CNN)-based approach is used to automate 

the heartbeat classification process in order to identify cardiac arrhythmia. 

The improved enhancement of CNN structure has been implemented in this 

suggested research. The feature maps are then subjected to the max pooling 

process. Finally, feature maps are generated by concatenating kernels of 

different sizes and delivering them as an input to the fully linked layers. The 

MIT BIH arrhythmia database is used to implement this approach, and the 

total average accuracy is 99.21%. The proof of the suggested study's 

efficiency and efficacy in identifying cardiac arrhythmia has also been done 

via an experimental comparison. 
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1. INTRODUCTION 

When compared to other dangerous illnesses, cardiovascular diseases (CVDs) have the greatest 

mortality rates [1]. To a larger degree, maximum peak emphasis has been given to heart health. The 

stimulation of a proper electrical impulse in the heart muscle comes from the Sino atrial node. Arrhythmia is 

a cardiac clinical condition that implies any aberrant source of electrical pulses or any irregularity state 

during the conduction process. Even while not all arrhythmias are life threatening, a small number of them 

may cause instant death [2]. Because it can capture variations in cardiac electrical potential, the 

electrocardiogram (ECG) is one of the most growing and important instruments for detecting cardiac 

arrhythmias. Furthermore, due to the presence of subtle noisy waveforms, medical inter-relations, incorrect 
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diagnosis, and irrelevant unexplained processes, providing a precise diagnosis would be a difficult 

endeavour.  

The invention and widespread usage of computer assisted diagnosis (CAD) has been created to 

address the constraints that have occurred due to diagnosing visually. The automated categorization of heart 

beats has been produced by using the maximum quantum of machine and deep learning techniques. Many 

research papers have used methods such as linear discriminant analysis (LDA) [3], support vector machines 

(SVM) [4], and artificial neural networks (ANN) to diagnose cardiac arrhythmias. The extraction and 

selection of characteristics are regarded one of the most important processes prior to classification in such 

traditional systems. These strategies are impacted by the issue of overfitting since they perceive the design of 

feature extractors for extracting features from the original raw signal after denoising and baseline wander 

removal [5]. As deep learning progresses through the phases of growth, the difficulty of creating the network 

decreases, resulting in improved performance and other benefits [6]. Deep learning is a method that involves 

learning about intrinsic properties and constructing them from the buried layer of each consecutive neurons 

[7]. As a result, information that is inherent in its nature has been acquired without the need to build a unique 

feature extraction procedure. Several ECG arrhythmia researches have used entirely deep learning-based 

techniques [8]. For identifying aberrant heart beats, researchers used a deep learning neural network (DNN) 

with seven layers [9]. Another design has been created by using a patient-specific classifier based on the 

convolution neural network (CNN) for categorising the heart beat [10]. For identifying sleep apnea, 

researchers used a recurrent neural network (RNN) [11]. One of the most often used deep learning structures 

is the convolutional neural network. When taking into account the numerous architectures established for 

CNN by various researchers in categorising the heartbeat, a single convolution layer typically includes 

kernels of comparable size. It is possible to increase feature variety by using kernels of varying sizes.  

The proposed improved CNN approach for automated heart beat categorization has been done in 

this research. To read the useful heart beats, the ECG data is first preprocessed, and then the noise-free ECG 

signal components are obtained. The heart beats are then supplied directly into the CNN without the need for 

feature extraction. The selection of kernels of different sizes and dimensions is done in a single convolution 

layer in this suggested CNN. Later, in the pooling layers, all of the feature map sets are subjected to the max 

pooling procedure. As a result, the required final mapped features are allowed to concatenate before being 

fed into the fully linked layers. The last entirely linked layers with the function designated as softmax 

literally collect the results. The use of improvised CNN in classification analysis is being done to validate 

compliance with the association for the Advancement of Medical Instrumentation's Standard (AAMI). A 

comparison experiment is being conducted with the conventional structure of convolutional neural networks 

in order to determine the efficacy of the suggested design. The suggested CNN model's flowchart is shown in 

Figure 1. 
 

 

 
 

Figure 1. Flowchart-proposed CNN model 
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The clustering strategy provided by the AAMI standard is shown in Table 1. The following is an 

outline of the paper's future contents. The second part presents the data used in this investigation and 

provides a full explanation of the suggested approach. The third component covers the execution of the tests 

as well as the analysis of the outcomes. Finally, the fourth part summarises the findings and debates, as well 

as the conclusion and next work scope. 
 

 

Table 1. AAMI clustering scheme 
Class of cardiac beat Specific sorts Count 

Normal (N) N, e, l, j, r 90040 

Supraventricular (S) A, S, a, J 2775 
Unknown (U) U 31 

Ventricular (V) V, E 7009 

Fusion(F) F 800 

 

 

2. PROPOSED METHOD 

Figure 1 shows an example of the suggested research. Following the signal preparation operation, 

the ECG data are used to train the convolution neural network classifier in the training phase. The ECG data 

obtained from the database is also used in the testing procedure. The gathering of ECG data is then enabled to 

be preprocessed and categorised by the model of training, which leads to the formation of clinical views. The 

emphasis of this research is on the training and testing of the suggested model. 

This research uses the MIT-BIH arrhythmia dataset from the physionet database [12]. The 

information was collected between 1975 and 1979 by the BIH arrhythmia lab. On the overall, it's being 

described as the heart beats of one lakh and nine thousand people are being counted and analysed. The 

datasets are being obtained from forty-seven different participants, totaling forty-eight recordings, each of 

which may be seen in half an hour. Each ECG recording is made up of binary leads with a sampling 

frequency of 360 Hz and an eleven-bit resolution across a range of 10 mV. The MIT-BIH cardiac arrhythmia 

database has fifteen different kinds of heart beats [13]. The AAMI recommends that the standard be changed 

to group all heart beats into five different groups based on their physiological origin. The clustering method 

of the whole heartbeats is given in Table 1 after removing paced heartbeats. The results from the modified 

limb lead II (MLII) are particularly useful in this research. The whole data is divided evenly into binary sets 

for the training and testing procedure to succeed. The heart pulse count in binary sets is shown to be same for 

each individual class. 

In the classic technique, the quality of the ECG waveform has the largest impact on the 

categorization outcome. Powerline interference, baseline drift, motion artefacts, quantization noise, electro 

surgery noise, and other types of noise may all affect the ECG signal. The use of raw and filtered data is 

combined to determine if the procedure of filtering is required prior to the approach of deep learning [14]–

[20]. The A-dataset represents the raw ECG data, while the B-dataset represents the filtered ECG data. 

Denoising utilising wavelet transformation method is used to the raw ECG waveform in this work, and the 

signal is decomposed into six levels using the Daubechies 6 (db6) wavelet. The baseline drift has a range of 

0.1 Hz to 2.82 Hz across the frequency of the 6th level sub-band (approximation). At the same time, 

frequency elements after the maximum frequency of the 3rd level sub-band (detail) 47 Hz are thought to 

provide less useable information. As a result, only the coefficients between the third and sixth sub-bands 

(detail) are kept. The identification of cardiac beat sites is required to obtain the heartbeats that are being 

segmented. This work does not describe the heart beat detection approach since numerous literatures have 

dealt with sufficiently accurate findings, such as the use of the Pan Tompkins algorithm. The annotations 

present at the peak of the R wave are regarded direct fiducial sites in the MIT-BIH cardiac arrhythmia 

database [21]–[25]. 

 

 

3. CONVOLUTIONAL NEURAL NETWORK 

Convolutional neural networks are one of the most important and efficient deep learning neural 

network topologies. CNN's structure is enhanced by permitting the imitation of a human visual brain model 

using multi-layer perceptron (MLP). It's presented as a feed forward neural network with convolution 

measurement representation and deep learning structure. In terms of implicit feature learning, CNN performs 

well. Furthermore, the data are sent directly into the network, eliminating the need for further processing and 

feature extraction. Convolution, pooling, and fully-connected layers are among the three types of 

fundamentally specified layers that make up CNN's structure. 

Convolutional layer: the convolutional layer is the most important and multicore operational layer in 

CNN. The learning features of the samples collected as input are elevated by this layer. The convolution is 
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carried out by conducting operations between the samples that are collected as input and the kernels. The 

results of the convolution are being shifted, while non-linear transformations are being conducted at the same 

time. The convolution kernel mapping is shown in Figure 2. Figure 2(a) depicts a normal dual-dimensional 

convolution kernel procedure, whereas Figure 2(b) depicts a typical spatially partitioned two-dimensional 

convolution kernel. The kernel is slid towards the input samples, allowing it to convolve with the sample 

subspace. The values are then acquired at the relevant spaces. In this convolution layer, numerous kernels of 

comparable sizes are usually used. 

Subsampling layer: another term for a pooling layer is a subsampling layer. The layer further 

reduces data size by sampling input data across many dimensions. Furthermore, the pooling layer is supposed 

to be invariant across the local linear transformations of the collected input information sequence, which 

improves network generalisation. The division of the pooling layer towards the input is done in such a 

manner that one is for non-overlapping subordinate areas and the other is for measuring the representative 

value of each individual region, as shown in Figure 3. It is shown using an example. 

 

 

 
(a) 

 
(b) 

 

Figure 2. Convolution kernel mapping (a) a standard two-dimensional convolution kernel and (b) a typical 

spatially partitioned two-dimension convolution kernel 

 

 

 
 

Figure 3. Typical example of two-dimensional pooling 

 

 

Pooling layer: after numerous layers of convolution and pooling have completed their processing, 

the network performs implicit feature learning. The data dimension has been sufficiently reduced so that it 

can be processed using the feed forward network. The completely linked layer is represented similarly to a 

traditional multi-layer perceptron. 

Heartbeat categorization using an improvised convolutional neural network, because the ECG data 

is a single-dimensional signal, the network architecture for ECG heart beat is considerably different from the 

traditional convolutional neural network used in many image processing studies. In this suggested study, a 

single-dimensional convolutional neural network is introduced. As previously stated, in a single 

convolutional layer of a classical CNN, kernels of comparable size and dimension are used. This implies that 

the sampling of input data is followed by convolution using similar-sized windows. The improvement of 

feature variety will occur if the window size is detected to be variable. As a result, the CNN structure is 

improvised using kernels of various sizes. The suggested CNN modelled structure is shown in Figure 4. The 

network has a total of seven levels. There are two convolution layers, two pooling layers, and three 

completely linked layers. Each each convolutional layer employs kernels of four different sizes. Table 2 

summarises the construction of the improvised convolutional neural network. The convolutional layer is 

made up of the first and third layers. Kernels of four different sizes (8, 10, 12, and 14) are used for the 

originally placed convolution layer. The number of kernels in each size is 8. The next (second) convolution 

layer's kernel sizes are six, eight, ten, and twelve, respectively. This layer has a total of 64 kernels. The stride 

of both convolution layers has been set to one. After each each convolution layer, the collected feature maps 
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are immediately applied with a max pooling layer of size two. Pooling layers additionally increases the 

output size of the output. Three thousand five hundred and eighty-five neurons make up the output of the 

fourth layer, which is concatenated and sent onto the fifth layer. Because there are four classes, the last layer 

is made up of four neurons. As a result, the total number of neurons in the three entirely linked layers (5th, 

6th, and 7th layer) is 2506, 322, and 4, respectively, as learned from the experience. The leaky rectifier layer 

units (ReLU) are used as activation functions for the dual convolution layers and the first two totally linked 

layers. The activation function of the ninth layer is regarded to be softmax's function. 4 neurons are acquired 

as an output of the 9th layer, which correspond to the classes of normal, supraventricular, ventricular, and 

fusion, respectively. 

 

 

Table 2. Proposed CNN-summary of parameters 
S no Layer Size of Kernel Stride Output count 

0 Input layer  Nil Nil 251*1 
1 Convolution Layer 8, 10, 12, 14 1 244*8, 242*8, 240*8, 238*8 

2 Pooling Layer 2 2 219*8, 220*8, 221*8, 222*8 

3 Convolution Layer 6, 8, 10, 12 1 117*16, 111*16, 114*16, 108*16 
4 Pooling Layer 2 2 57*16, 58*16, 54*16, 55*16 

5 Fully-connected Layer Nil Nil 256 

6 Fully-connected Layer Nil Nil 32 
7 Fully-connected Layer Nil Nil 4 

 

 

The cross-entropy function is used to evaluate the loss while training the improvised CNN model. 

Furthermore, weights are being included into the loss function to reduce the classification imbalance impact. 

The CNN training is done with a batch size of 64. The learning rate has been set to a value of 0.01. The 

training procedure will be extended for another 50 iterations. 

 

 

 
 

Figure 4. Proposed CNN structure model 

 

 

4. RESULTS AND DISCUSSIONS 

The MIT-BIH arrhythmia physionet database is being used to test the proposed convolutional neural 

network model. A further experiment is being undertaken with the deployment of classic CNN to enumerate 

the comparison. Each layer of convolution in this convolution neural network only has kernels with a single 

autonomous size. The total number of kernels is found to be comparable to that of the makeshift CNN model. 

The remaining parameters in both networks are likewise discovered to be identical. Table 3 has examples of 

these characteristics. As previously stated, both the raw and filtered information are combined. Both the CNN 

and the LSTM are applied to the first and second sets of data. As a result, there are four different 

configurations in total, as illustrated in the Table 4. The convolutional neural networks are trained using the 

training set, which contains 50% of the data. After then, the complete sample set in the test set is evaluated.  

 

 

Table 3. Contrastive CNN-summary of parameters 
S no Layer Size of Kernel Stride Output count 

0 Input layer  Nil Nil 250*1 

1 Convolution Layer 12 1 240*32 

2 Pooling Layer 2 2 120*32 
3 Convolution Layer 11 1 112*64 

4 Pooling Layer 2 2 56*64 
5 Fully-connected Layer Nil Nil 256 

6 Fully-connected Layer Nil Nil 32 

7 Fully-connected Layer Nil Nil 4 
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In this study, the evaluation of performance over the classification under each sub class is being 

made by accuracy, sensitivity and positive predictivity. The equations of these performance metrics are as 

(1), (2), and (3). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100%  (1) 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100%  (2) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗ 100%  (3) 

 

Where TP stands for true positive, TN for true negative, FP for false positive, and FN for false negative. 

The use of a confusion matrix is used to keep track of the categorization results. The Table 5 shows 

the ECG cardiac beats confusion matrix for the second setup. The diagonal cells contain the total number of 

properly categorised heart beats. The majority of heart beats are categorised properly. However, two tasks 

have been discovered as having gone wrong when conducting the categorization job. 288 S class cardiac 

beats are incorrectly categorised as normal. In addition, 120 ventricular heart beats are incorrectly classed as 

normal. Table 6 shows the total value of accuracy, sensitivity, and positive predictivity for the four 

configurations. It is clear that the accuracy values for the configurations 1, 2, 3, and 4 are 97.90 percent, 

98.67 percent, 97.43 percent, and 98.2 percent, respectively. In the second setup, the implication is formed 

with the aid of raw data and different kernel sizes, resulting in the highest level of accuracy. Classification 

yielded sensitivity of 99.76 percent, 80.24 percent, 96.21 percent, and 77.82 percent, respectively. The 

percentages of positive predictivity achieved as a consequence of categorization are 98.99 percent, 97.46 

percent, 95.88 percent, and 94.02 percent, respectively. Except for the value of positive predictivity (PPV) 

that was determined for the categorization of fusion beats, all indices were found to have the greatest value. 

The minimum graded outcome for the third configuration, which utilised filtered information and a single 

valued kernel size, has been displayed. 

 

 

Table 4. Four configurations-summary 
Configuration Size of Kernel Information 

1st Configuration Single Raw dataset 
2nd Configuration Multiple Raw dataset 

3rd Configuration Single Filtered dataset 

4th Configuration Multiple Filtered dataset 

 

 

Table 5. Configuration II-confusion matrix 

Real 
Prediction class 

N S V F 

N 45016 24 49 5 

S 289 1086 12 0 

V 121 1 3298 13 
F 70 0 47 284 

 

 

Table 6. Performance metrics as a result of classification by CNN 

Configuration Accuracy 
N S V F 

SEN PPV SEN PPV SEN PPV SEN PPV 

1st Configuration 97.90% 99.62% 98.30% 66.04% 92.18% 93.18% 95.29% 56.82% 91.78% 

2nd Configuration 98.67% 99.76% 98.99% 80.24% 97.46% 96.21% 95.88% 77.82% 94.02% 

3rd Configuration 97.43% 99.51% 98.16% 64.32% 86.29% 90.62% 95.36% 51.41% 90.63% 
4th Configuration 98.2% 99.81% 98.38% 70.17% 95.18% 92.42% 96.54% 64.39% 95.50% 

 

 

Comparing the 1st, 2nd, 3rd, and 4th configurations with varied kernel sizes yielded substantial best 

results. As a consequence of using numerous kernel sizes in a single layer, the process of extracting features 

with varied sizes with clear perception and visuality has been completed. As a result, the boosted parameter 

is feature diversity. As a result, in this suggested research, the use of varied kernel sizes has been shown. On 

the back end, performance evaluations were done between four different configurations, suggesting that 

filtering may be investigated with some information loss and quality reduction. As a result, deep learning 
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networks do not need the filtering procedure. The sensitivity value for the supraventricular (S) and fusion (F) 

classes does not seem to be high. It occurred as a result of the limited amount of samples available for binary 

classes. The convolutional neural network has the greatest amount of parameters needed for training. As a 

result, the maximum number of heart beats must be achieved in the category with the smallest number of 

samples. 

 

 

5. CONCLUSION 

The use of a convolutional neural network to automatically classify ECG heart beats has been 

suggested in this research. Without the need for additional feature extractors, CNN could extract implicit 

data. The ECG heart beats may be directly delivered as an input to the network after the segmentation 

procedure. In this work, a CNN with a seven-layer configuration was used. Multiple kernel sizes are used in 

each each layer of convolution in this suggested convolutional neural network layout. The max pooling layer 

comes after that. The outputs of the rear max pooling layer are concatenated and sent into the entirely linked 

layers as an input. Finally, the suggested approach obtained a maximum peak accuracy of 98.67% when 

applied to the issue of classification using the AAMI standard. The acquired findings have been verified 

towards the usefulness of utilising variable size kernels by enumerating the comparison with the experiment 

on the basis of CNN. There is also a dispute over the filtering's impact. The presentation is set up in such a 

manner that it eliminates the need for CNN filtering and even allows for the deterioration of important data. 

It is proposed to force the properties of CNN to be built with different efficient architectures in future 

research. Furthermore, the implementation might be created using the largest amount of ECG data possible, 

yielding exact categorization and diagnostic findings. 
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