
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 11, No. 2, July 2022, pp. 103~114

ISSN: 2089-4864, DOI: 10.11591/ijres.v11.i2.pp103-114  103

Journal homepage: http://ijres.iaescore.com

Automatic generation of user-defined test algorithm description

file for memory BIST implementation

Aiman Zakwan Jidin1,2, Razaidi Hussin1, Lee Weng Fook3, Mohd Syafiq Mispan2, Loh Wan Ying1
1Faculty of Electronics Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia

2Faculty of Electrical and Electronics Engineering Technology, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
3Emerald System Design Center, Penang, Malaysia

Article Info ABSTRACT

Article history:

Received Jan 13, 2022

Revised Feb 15, 2022

Accepted Mar 11, 2022

 Memory built-in self-test (BIST) is a widely used technique to allow the

self-test and self-checking of the embedded memories on chips after the

fabrication process. It can be used by implementing a standard testing

algorithm available in the EDA tool library or a user-defined algorithm

(UDA). This paper presents the development of software that automatically

generates a description file of a UDA to be deployed for memory BIST

circuit implementation using Tessent memory BIST software. It comprises

the test setup and also the microprogram coding for each instruction to be

executed when performing tests on embedded memories. The proposed

automation software was tested by using March SR as the input algorithm

and the results obtained from the simulations show that the output test

patterns generated by the implemented memory BIST match the expected

patterns and passed all the tests, which validated the correct functionality of

the UDA description file generation. The proposed automation software also

fast generation the UDA description file, which was completed in less than

500 ms.

Keywords:

Automation software

March algorithm

Memory BIST

Memory fault models

User-defined algorithm

This is an open access article under the CC BY-SA license.

Corresponding Author:

Razaidi Hussin

Faculty of Electronics Engineering Technology, Universiti Malaysia Perlis

06100 Arau, Perlis, Malaysia

Email: shidee@unimap.edu.my

1. INTRODUCTION

The process to test the embedded memories on a chip is becoming more challenging nowadays,

since they are becoming more compact and more defects which may randomly happen since the introduction

of the very deep submicron (VDSM) technologies [1]–[6]. Furthermore, it becomes more important than ever

since the chips are now memory-dominant, where some studies show that up to 90% of the chip area is

occupied by the memories [7]–[10]. Memory built-in self-test (BIST) is a technique that is very widely used

for embedded memory testing. It offers several advantages such as the ability to perform self-test and self-

check of the output responses without the use of an expensive external tester, and the ability to perform tests

on multiple memories in parallel, which allow the reduction in overall test cost and test duration, respectively

[8], [11]–[15]. Its efficiency in terms of the fault coverage and also the test duration depends on the test

algorithm being used for its implementation [16].

A memory BIST can be implemented by using an electronic design automation (EDA) tool like

Mentor Graphics Tessent software. It can be implemented by using either a standard test algorithm available

in the EDA library or by using a user-defined algorithm (UDA) [17]. A UDA is an algorithm which is

customized for a specific target, either to have a low test length or to have an optimized detection on a

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 2, July 2022: 103-114

104

specific set of faults. To use a UDA when implementing a memory BIST circuit, a description file is

necessary to define a custom algorithm and to describe its behavior such as the test setup and the

microprogram coding of each instruction to be executed during memory testing. In addition, a UDA can be

either hard-coded or soft-coded in the memory BIST implementation. While the former offers

design simplicity, the latter offers more flexibility where test algorithms can be changed during program

execution [18].

This paper presents the development of automation software which generates a description file of an

input UDA to be hard-coded for memory BIST implementation in Tessent memory BIST software, to reduce

human effort in obtaining a correct description file of a UDA in a very brief delay. This was achieved by

automatically extracting test operation sequences of the UDA and mapping the test sequences of each test

element of the UDA to the corresponding operation name and the values of the related parameters to be

written into the UDA description file.

Section 2 describes the test algorithm’s test operation sequences. Then, Section 3 describes the

contents of the UDA description file which is utilizable in the Tessent memory BIST software. Section 4

discusses the process flow of the proposed automation software. Finally, Section 5 observed and analyzed the

outputs of the simulation performed on the implemented memory BIST circuit using the generated UDA

description file. This paper is focusing only on the March-series test algorithm, with a test complexity lesser

than 22N, where N is the size of the memory. March SR algorithm, with 14N test complexity, is used for

elaboration and demonstration purposes since it consists of different test elements with different test

sequences, test lengths, and test address directions, which is useful for testing the proposed automation

software.

2. MARCH ALGORITHM AS UDA FOR MEMORY BIST IMPLEMENTATION

2.1. March algorithm description

Table 1 describes the symbol used in the test algorithm test operation sequence notation [3], [19]–

[23]. In general, a March algorithm consists of m test elements, each of them separated by a semicolon.

A test element consists of a set of test operations to be carried out on each cell, starting from the minimum

address until the maximum address (in the case of ascending address order) or vice-versa (in the case of

descending address direction), before proceeding to the next test element. The test operation can be either a

read (r) or a write (w) operation, using only two possible test values (logic 0 or logic 1) called the data

backgrounds [24], [25].

Table 1. The description of the symbols used in the memory testing algorithm notation
Symbol Description

↑ or ⇑ address sequence changes in ascending order

↓ or ⇓ address sequence changes in descending order

↕ or ⇕ address sequence can change either way

R0 or r0 read operation (reading a 0 from a cell)
R1 or r1 read operation (reading a 1 from a cell)

W0 or w0 write operation (writing a 0 to a cell)

W1 or w1 write operation (writing a 1 to a cell)
; test element separator

A March algorithm consists of multiple test elements, each of which is separated by a semicolon.

Each test element will be executed sequentially, starting from the first test element until the final test

element. In the example of March SR algorithm with the test operation sequences ⇑(w0); ⇑(r0, w1, r1, w0);

⇑(r0, r0); ⇑(w1); ⇓(r1, w0, r0, w1); ⇓(r1, r1) [26]. It consists of 6 test elements, notated as M(i) where i = {0,

1, 2, 3, 4, 5}. As can be seen, M(0) to M(3) have the ascending address order, where the test operations will

be executed starting from the memory cell with the minimum address. While M(4) and M(5) have the

descending address order, where the test operations will be executed starting from the memory cell with the

maximum address. Since it has in total of 14 test operations, the test complexity of the March SR algorithm is

14N.

In the March SR algorithm, all cells will be initialized to 0 first in ascending address order during

M(0). Then, in M(1), each cell will be read (expecting 0), written to 1, read (expecting 1), and rewritten to 0

starting from the cell with the minimum address. Next, each cell, starting from the cell with the minimum

address, will be read twice (both expecting 0) in M(2). In M(3), all cells will be written to 1 in the ascending

address order. After that, each cell, starting from the cell with the maximum address, will be read (expecting

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

 Automatic generation of user-defined test algorithm description file for … (Aiman Zakwan Jidin)

105

1), written to 0, read (expecting 0), and rewritten to 1 in M(4). Finally, in M(5), each cell, starting from the

cell with the minimum address, will be read twice (both expecting 1).

2.2. UDA Tessent Core Description (TCD) file

The TCD file is the configuration data syntax that is used to describe the modules in the Mentor

Graphics Tessent software such as the memories, boundary scan segments, and fusebox. For memory BIST

implementation purposes, a TCD file is necessary to specify the behavior of the memory e.g. the module

name, the number of words, and the memory type (ROM, SRAM, or DRAM). Furthermore, in the case of the

memory BIST implementation with UDA, an additional TCD file is needed to describe the memory test

algorithm which will be hard-coded into the BIST controller. The TCD files for memory BIST are

recognized with the .tcd_mem_lib extension [17].

For UDA description, the TCD file contains the test setup and the microprogram coding of each

instruction to be executed during memory testing. The test setup consists of information such as the name of

the UDA, the minimum and the maximum row and column addresses, and the selection of the test operation

set. While the microprogram coding describes the test operation sequences of each test element separately, in

terms of the address order (increment or decrement), the write data value, the expected read data value, and

the operation name which are predefined in the operation set library specified in the test setup. The

microprogram coding for each test element is written in the template:

Instruction (M<i>_<test operation sequences>){

 OperationSelect: <Operation name>;

 X1AddressCmd: <Address Order>;

 Y1AddressCmd: <Address Order>;

 ExpectDataCmd: <Expect data>;

 WriteDataCmd: <Write data>;

 NextConditions {

 //insert conditions

 }

}

For example, the coding for M(2) of March SR algorithm (⇑(r0, r0)) is written as:

Instruction (M2_r0r0){

 OperationSelect: ReadRead

 X1AddressCmd: Increment;

 Y1AddressCmd: Increment;

 ExpectDataCmd: DataReg;

 NextConditions {

 X1_EndCount : on;

 Y1_EndCount : on;

 }

}

In the case where a test element consists of more than 3 test operations, a special

BranchToInstruction command will be added to the coding, so that it can be coded in two linked

instructions. For example, M(1) of March SR algorithm (⇑(r0, w1, r1, w0)) is written as two linked

instructions M1_r0w1 and M1_r1w0, as:

Instruction (M1_r0w1){

 OperationSelect: ReadModifyWrite;

 ExpectDataCmd: DataReg;

WriteDataCmd: InverseDataReg;

 NextConditions {

 }

}

Instruction (M1_r1w0){

 OperationSelect: ReadModifyWrite;

 X1AddressCmd : Increment;

 Y1AddressCmd : Increment;

 ExpectDataCmd: InverseDataReg;

WriteDataCmd: DataReg;

BranchToInstruction : M1_r0w1;

 NextConditions {

 X1_EndCount : on;

 Y1_EndCount : on;

 }

}

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 2, July 2022: 103-114

106

In addition, a specific instruction InhibitLastAddressCount needs to be added and set its

value to on in the case where a transition between two test elements involves a change in the address

direction, like in the case of the transition between M(3) (increase address order) and M(4) (decrease address

order). This is necessary to prevent the address counter from wrapping around to the minimum address when

the maximum address is reached at the end of M(3). Therefore, at the start of M(4), it will start to count down

from the maximum address. Thus, the microprogram coding of M(3) is written as:

Instruction (M3_w1){

OperationSelect : WriteWriteFastRow;

 X1AddressCmd : Increment;

 Y1AddressCmd : Increment;

 WriteDataCmd : InverseDataReg;

 InhibitLastAddressCount : on;

 NextConditions {

 X1_EndCount : on;

 Y1_EndCount : on;

 }

}

The description file is unique for each UDA since different algorithms are composed of different

test operation sequences. It is then read by the memory BIST insertion tools, which will extract its test

operation sequences based on the operations, the address directions, the values to be written into the memory

cells, and the expected values to be read from the memory. During the memory BIST implementation

process, this microprogram coding is converted into a memory BIST controller hardware, which is coded in

Verilog HDL.

3. RESEARCH METHODOLOGY

Figure 1 shows the overall process flow of the proposed automation software, which is developed

using the C++ programming language. Upon executing the software, the UDA is read from an input file and

essential information is extracted from it, e.g. the test operation sequences and the number of test elements m.

The input file reading process is done by using the functions available in the file streaming fstream library in

C++. From here, m data structures are created, each of which is dedicated to store the information of each test

element: the address order ao, the test operations rw which stores r or w for read or write operation,

respectively, and the data background db associated to each test operation. In the case of the March SR

algorithm, 6 data structures are created to store the ao, the rw, and the db of each of its test elements, as

described in Table 2.

Table 2. The breakdowns of March SR algorithm test sequences into separated test elements
Test element Address order ao Test operations rw Data backgrounds db

M(0) ⇑ w 0

M(1) ⇑ r, w, r, w 0, 1, 1, 0

M(2) ⇑ r, r 0, 0

M(3) ⇑ w 1

M(4) ⇓ r, w, r, w 1, 0, 0, 1

M(5) ⇓ r, r 1, 1

Next, it opens or creates a new UDA TCD file as the output, which is saved with the .tcd_mem_lib

extension recognized by the Tessent memory BIST tools. Immediately after that, the name of the UDA and

the test setup such as the starting address and the maximum memory address will be defined in the output

file. Then, the automation software determines the operation name and the values of write data, and the

expected read data of the test element to be written in the TCD file, by using the mapping provided in Table

3. The write data and the expected read data only have two possible values: DataReg (logic 0) and

InverseDataReg (logic 1). While the test operations are mapped to the operation names that are available

under the TessentSyncRamOps operation set library [17].

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

 Automatic generation of user-defined test algorithm description file for … (Aiman Zakwan Jidin)

107

Figure 1. The process flowchart of the UDA description file generation

Table 3. The mapping of the extracted UDA to the parameters in the TCD file
Extracted data from input UDA Data to be written into TCD file

Test operations rw Data backgrounds db Operation name Write data Expected data

w
0

WriteWriteFastRow
DataReg -

1 InverseDataReg -

r
0

ReadReadFastRow
- DataReg

1 - InverseDataReg

rw

00

ReadModifyWrite

DataReg DataReg
01 InverseDataReg DataReg

10 DataReg InverseDataReg

11 InverseDataReg InverseDataReg

rr
00

ReadRead
- DataReg

11 - InverseDataReg

wr
00

WriteRead
DataReg DataReg

11 InverseDataReg InverseDataReg

rwr

000
ReadWriteRead

DataReg DataReg

111 InverseDataReg InverseDataReg
011

ReadWriteReadInvert
InverseDataReg DataReg

100 DataReg InverseDataReg

After determining these parameters, the microprogram coding of the test element is written to the

output TCD file, by following the template previously discussed in Section 3. These processes are repeated

for all test elements of the UDA. The process flow of determining the operation name, the value of the write

data, and the expected read data for each test element is detailed in Figure 2. The provided flowchart also

shows that if the address order of the current test element ao(i) is different from the one of the next test

element ao(i+1), the value of InhibitLastAddressCount is set to on.

Once all the test elements have been coded and written to the TCD file, the output file is closed and

the software execution ends. The generated TCD file is then copied into the Tessent memory BIST working

directory. It will be read by the tools to be used as the algorithm for memory BIST implementation.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 2, July 2022: 103-114

108

Figure 2. The process flowchart of determining the operation name and the values of write data and expected

data of each test element

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

 Automatic generation of user-defined test algorithm description file for … (Aiman Zakwan Jidin)

109

4. RESULTS AND DISCUSSION

To validate the functionality of the proposed automation software, firstly the test operation

sequences of the March SR algorithm were stored in an input text file named march_SR.txt, to be used as the

input UDA. The proposed automation software was executed by reading the input file, extracting the

information, and producing the microprogram coding of the UDA in the output description file

march_SR.tcd_mem_lib, as shown in Figure 3. It shows that both M(1) and M(4), which consist of 4 test

operations each, require the branching command BranchToInstruction to link up two instructions

together. In addition, the InhibitLastAddressCount command is also added and set to on inside the

instruction M3_w1. By using the gettimeofday()function in the C++ programming language, the

automation execution completion time to generate the UDA TCD file was measured in multiple attempts,

which took less than 500 ms on a PC with a 2.40 GHz microprocessor and 8GB of RAM. However, no

comparison of the completion time is to be made since no previous similar works were published.

Figure 3. The generated description file march_SR.tcd_mem_lib

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 2, July 2022: 103-114

110

The generated TCD file was then read by the Tessent memory BIST tools, and the March SR

algorithm was applied as the UDA for the memory BIST implementation. For this purpose, a simple

arithmetic logic unit (ALU) which contains a 70-word SRAM as the memory instance is used. Figure 4

shows the schematic view of the generated memory BIST circuit. 5 additional modules are added and

connected to the memory instances:

− tessent_mbist_controller, which generates the test addresses and the test inputs according to the UDA

test sequences which are hard-coded inside this module

− tessent_memory_interface, which acts as the interface between the memory BIST controller and the

memory instance

− tessent_mbist_bap, which is the BIST access port to configure the memory BIST controller and to

monitor test pass/fail status

− two tessent_sib instances, the segment insertion bit blocks which act as the switches to include or to

exclude the memory BIST from the IJTAG network on the chip

Figure 4. The generated memory BIST circuit

Once implemented, the memory BIST circuit is simulated in the QuestaSim simulator, by using the

test patterns which are generated during its implementation process. Figure 5 shows the overall waveform of

the simulation performed on the implemented memory BIST. It can be observed that the ERROR flag stays

low throughout the simulation, which indicates that there is no mismatch occurring between the observed

read outputs (dout) and the expected outputs. While the CMP_EN signal is toggling and is high whenever a

comparison between the output read value and the expected value is necessary.

Besides, the simulation also shows that the overall test took 19.6 us to be completed, where the

clock period used for this simulation is 20 ns. From here, the test complexity of the UDA can be derived

using (1).

𝑇𝑒𝑠𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑇𝑒𝑠𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑐𝑙𝑜𝑐𝑘∗𝑁
 (1)

In this case, N = 70 which is the size of the memory model used for the test. Hence, the test

complexity of the UDA used for this implementation is equal to 14, which is equal to the expected

complexity of the March SR algorithm (14N) [26].

Figure 5. The overall waveform of the simulation performed on the implemented memory BIST

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

 Automatic generation of user-defined test algorithm description file for … (Aiman Zakwan Jidin)

111

Figure 6 to Figure 11 shows the waveform of the simulation, representing the test patterns of each

test element. The waveform in Figure 6 corresponds to the test operation of M(0): ⇑(w0), where all memory

cells are written to 0, starting from address 0 to address 69 (or 45h in hexadecimal). No comparison is needed

at this stage since it is a write-only operation (indicated by CMP_EN = 0). In Figure 7, the waveform

demonstrates that each cell is read first (expecting 0 at the output), written to logic 1, reread (expecting 1 at

the output), and finally written back to logic 0. These processes are executed in ascending address order. This

translates the test operation sequences of M(1): (⇑(r0, w1, r1, w0). The patterns shown in Figure 8

correspond to the M(2): ⇑(r0, r0), where each cell is read twice in the ascending address order and both read

operations are expecting logic 0 at the output.

Figure 6. The simulation waveform represents the patterns of M(0)

Figure 7. The simulation waveform represents the patterns of M(1)

Figure 8. The simulation waveform represents the patterns of M(2)

While Figure 9 shows the patterns executed by M(3): ⇑(w1), where it has almost the same pattern as

test element 0, but logic 1 is written to the cells instead of logic 0. Next, the waveform in Figure 10

corresponds to the patterns of M(4): ⇓(r1, w0, r0, w1), where each cell is read (expecting 1 at the output),

written to logic 0, reread (expecting 0 at the output), and finally written back to logic 1, in the descending

address direction. Finally, the patterns of M(5): ⇓(r1, r1) are translated by the waveform in Figure 11, where

each cell is read twice (expecting logic 1 at the output) in the descending address order.

Figure 9. The simulation waveform represents the patterns of M(3)

Figure 10. The simulation waveform represents the patterns of M(4)

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 2, July 2022: 103-114

112

Figure 11. The simulation waveform represents the patterns of M(5)

Thus, the observed simulation waveforms met the expectations, where the observed test patterns

correspond to the test sequences of the March SR algorithm and no mismatch occurred between the output

values read from the memory and the expected output value, and they proved that the memory BIST circuit

has been successfully implemented by using the UDA description file generated by the proposed automation

software.

For future planning, the mapping provided in Table 3 will be improved by adding more possible

combinations of test operations such as wwr or rww which may exist in test algorithms with higher test

complexity than 22N, to ensure that it can work on as many algorithms as possible. Besides, the UDA

description generation algorithm will be improved to allow the optimization of the UDA microprogram

coding e.g. to reduce the line number or instructions by using the repetition technique. Furthermore, it will

also be tested using various March algorithms with different test sequences and complexities to guarantee its

accuracy and reliability.

5. CONCLUSION

This research paper has presented the development of automation software to automatically generate

a UDA description file to be used for the memory BIST implementation in Tessent memory BIST software.

The proposed automation software was developed by using the C++ programming language and consists of

the reading and extracting information from the input UDA, segregation of test operation sequences into

separated test elements, determination of operation names, write data values, and expected read values to be

written into the output TCD file. The generated file is then read by Tessent memory BIST tools during the

implementation process, and the simulation was performed on the implemented memory BIST circuit, which

produced correct test patterns as per expectation and correspond to the intended test operation sequences. The

proposed automation software allows the generation of the required UDA description file automatically with

a completion time lesser than 500 ms, thus, reducing human effort and time in obtaining a working

description file.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Faculty of Electronic Engineering Technology,

Universiti Malaysia Perlis (UniMAP), Universiti Teknikal Malaysia Melaka (UTeM), and the Ministry of

Higher Education Malaysia, for their contribution, support to this research, and financial assistance under the

SLAB scheme.

REFERENCES
[1] A. Bosio, S. Di Carlo, G. Di Natale, and P. Prinetto, “March AB, a state-of-the-art march test for realistic static linked faults and

dynamic faults in SRAMs,” IET Computers and Digital Techniques, vol. 1, no. 3, pp. 237–245, 2007, doi: 10.1049/iet-

cdt:20060137.
[2] G. Harutyunyan, S. Shoukourian, and Y. Zorian, “Fault awareness for memory BIST architecture shaped by multidimensional

prediction mechanism,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 3, pp.

562–575, 2019, doi: 10.1109/TCAD.2018.2818688.
[3] A. Kumar, “Assertion based functional verification of March algorithm based MBIST controller,” Indian Institute of Information

Technology Allahabad, 2021.

[4] J. Kinseher, M. Richter, and I. Polian, “On the automated verification of user-defined MBIST algorithms,” in uE 2015; 8.
GMM/ITG/GI-Symposium Reliability by Design, 2015, pp. 50–55.

[5] P. E. Joseph and P. R. Antony, “VLSI design and comparative analysis of memory BIST controllers,” in 2014 First International

Conference on Computational Systems and Communications (ICCSC), 2003, pp. 272–276, doi: 10.1109/COMPSC.2014.7032661.
[6] M. Parvathi, N. Vasantha, and Ks. Parasad, “Modified March C - algorithm for embedded memory testing,” International Journal

of Electrical and Computer Engineering (IJECE), vol. 2, no. 5, p. 571, Oct. 2012, doi: 10.11591/ijece.v2i5.1587.

[7] P. Ramakrishna, T. Vamshika, and M. Swathi, “FPGA implementation of memory BISTS using single interface,” International
Journal of Recent Technology and Engineering (IJRTE), vol. 9, no. 3, pp. 55–58, Sep. 2020, doi: 10.35940/ijrte.B3975.099320.

[8] T. S. N. Kong et al., “An Efficient March (5n) FSM-Based Memory Built-In Self Test (MBIST) Architecture,” in 2021 IEEE

Regional Symposium on Micro and Nanoelectronics (RSM), Aug. 2021, pp. 76–79, doi: 10.1109/RSM52397.2021.9511602.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

 Automatic generation of user-defined test algorithm description file for … (Aiman Zakwan Jidin)

113

[9] P. S. N. Bhaskar, B. Sarada, and S. Kandregula, “Built-in self-repair techniques of embedded memories with BIST for improving
reliability,” IOSR Journal of Computer Engineering, vol. 21, no. 1, pp. 8–15, 2019, doi: 10.9790/0661-2101010815.

[10] V. S. Chakravarthi, A practical approach to VLSI system on chip (SoC) design. Cham: Springer International Publishing, 2020.

[11] A. A. Wojciechowski, K. Marcinek, and W. A. Pleskacz, “Configurable MBIST processor for embedded memories testing,” in
2019 MIXDES - 26th International Conference “Mixed Design of Integrated Circuits and Systems,” Jun. 2019, pp. 341–344, doi:

10.23919/MIXDES.2019.8787161.

[12] S. N. Bagewadi, S. Shadab, and J. Roopa, “Fast BIST mechanism for faster validation of memory array,” in 2019 4th
International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), May 2019, pp.

61–65, doi: 10.1109/RTEICT46194.2019.9016882.

[13] R. Manasa, R. Verma, and D. Koppad, “Implementation of BIST technology using March-LR algorithm,” in 2019 4th
International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), May 2019, pp.

1208–1212, doi: 10.1109/RTEICT46194.2019.9016784.

[14] A. K. S. Pundir, “Novel modified memory built in self‐repair (MMBISR) for SRAM using hybrid redundancy‐analysis
technique,” IET Circuits, Devices & Systems, vol. 13, no. 6, pp. 836–842, Sep. 2019, doi: 10.1049/iet-cds.2018.5218.

[15] N. I. Singh and P. V Joshi, “Performance analysis of BIST algorithms,” Indian Journal of Science and Technology, vol. 12, no.

36, pp. 1–3, Sep. 2019, doi: 10.17485/ijst/2019/v12i36/147752.
[16] A. Z. Jidin, R. Hussin, L. W. Fook, and M. S. Mispan, “A review paper on memory fault models and test algorithms,” Bulletin of

Electrical Engineering and Informatics, vol. 10, no. 6, pp. 3083–3093, Dec. 2021, doi: 10.11591/eei.v10i6.3048.

[17] Siemens, “Tessent MemoryBIST User’s manual for use with Tessent Shell.” Siemens, 2020, [Online]. Available:
https://eda.sw.siemens.com/en-US/ic/tessent/test/memorybist/.

[18] Y. Lu, “BIST implementation access through a reconfigurable network,” Lund University, 2019.

[19] A. Singh, G. M. Kumar, and A. Aasti, “Controller architecture for memory BIST algorithms,” in 2020 IEEE International
Students’ Conference on Electrical,Electronics and Computer Science (SCEECS), 2020, pp. 1–5, doi:

10.1109/SCEECS48394.2020.43.

[20] S. B. Ghale and N. P, “Design and implementation of memory BIST for hybrid cache architecture,” in 2021 6th International
Conference on Communication and Electronics Systems (ICCES), Jul. 2021, pp. 26–31, doi: 10.1109/ICCES51350.2021.9489225.

[21] S. R. Patil and D. B. Musle, “Implementation of BIST technology for fault detection and repair of the multiported memory using

FPGA,” in 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), 2017, pp. 43–47,
doi: 10.1109/ICECA.2017.8212849.

[22] N. A. Zakaria, W. Z. W. Hasan, I. A. Halin, R. M. Sidek, and X. Wen, “Fault detection with optimum March test algorithm,” in

2012 Third International Conference on Intelligent Systems Modelling and Simulation, 2012, pp. 700–704, doi:
10.1109/ISMS.2012.88.

[23] S. Hamdioui, R. Wadsworth, J. D. Reyes, and A. J. van de Goor, “Memory fault modeling trends: A case study,” Journal of

Electronic Testing, vol. 20, no. 3, pp. 245–255, Jun. 2004, doi: 10.1023/B:JETT.0000029458.57095.bb.
[24] N. A. Zakaria, “Multiple and solid data background scheme for testing static single cell faults on SRAM memories,” Universiti

Putra Malaysia, 2013.

[25] A. J. van de Goor, S. Hamdioui, and H. Kukner, “Generic, orthogonal and low-cost March element based memory BIST,” in 2011
IEEE International Test Conference, Sep. 2011, pp. 1–10, doi: 10.1109/TEST.2011.6139148.

[26] S. Hamdioui and A. J. Van De Goor, “An experimental analysis of spot defects in SRAMs: realistic fault models and tests,” in

Proceedings of the Ninth Asian Test Symposium, 2000, pp. 131–138, doi: 10.1109/ATS.2000.893615.

BIOGRAPHIES OF AUTHORS

Aiman Zakwan Jidin is currently a Ph.D. candidate at Universiti Malaysia Perlis,

Malaysia. His research topic is focusing on optimizing memory testing algorithm efficiency for

improving fault coverage. Previously, he obtained his MEng in Electronic and Microelectronic

System from ESIEE Engineering Paris, France in 2011, before working as FPGA IP Core

Design Engineer at Altera Corporation Malaysia (now part of Intel). He is a full-time lecturer

and researcher at Universiti Teknikal Malaysia Melaka (UTeM), in Electronic and Computer

Engineering. His research interests include DFT, VLSI, and FPGA system design. He can be

contacted at email: aimanzakwan@utem.edu.my.

Razaidi Hussin received a Ph.D. degree in Electronic and Electrical Engineering

from the University of Glasgow, the UK in 2017 with a focus on oxide-reliability issues in

complementary metal-oxide-semiconductor nanoscale devices. He joined Universiti Malaysia

Perlis (previously known as KUKUM) in 2002. He is currently a full-time Senior Lecturer at

the Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis. He can be

contacted at email: shidee@unimap.edu.my.

https://orcid.org/0000-0003-2003-5756
https://scholar.google.com/citations?hl=id&user=QT5Q3B8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56470973700
https://publons.com/researcher/5241532/aiman-zakwan-jidin/
https://orcid.org/0000-0002-2725-0515
https://scholar.google.com/citations?hl=id&user=JPvrn3oAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=22634137400
https://publons.com/researcher/3798012/razaidi-hussin/

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 2, July 2022: 103-114

114

Lee Weng Fook is a Technical Director at Emerald Systems Design Center with

26 years of IC Design experience. Lee has vast experience in designing with Verilog and

VHDL, RTL coding, and logic synthesis for ASIC/FPGA/SOC. Lee’s specialization is in

synthesizing and tweaking synthesis for performance and low power, leading to enhanced

methodology to address advanced DFT techniques for VDSM technology, development, and

deployment of low power standard cell libraries. Lee has led the development of new

architectures and micro-architectures for efficient PMSM motion control ASIC and has

developed architectures for AI classification algorithms implementation in ASIC. Lee has

published 4 IC Design books, “Learning from VLSI Design Experience” ISBN: 978-

3030032371 with Springer Press, “VHDL Coding and Logic Synthesis with Synopsys” ISBN:

0-12-440651-3 with Academic Press Publication, “Verilog Coding for Logic Synthesis” ISBN:

0-471-42976-7 with John Wiley Publication and “VLIW Microprocessor Hardware Design for

ASICs and FPGA” ISBN: 978-0071497022 with McGraw Hill Publication. Lee is also the

inventor and co-inventor of 14 design patents granted by the US Patent and Trademark Office

(US Patent # 7,057,949 7,010,736 6,891,752 6,771,093 6,665,214 6,654,349 6,622,274

6,587,982 6,549,477 6,546,410 6,532,175. He can be contacted at email:

seanlee@emersysdesign.com.

Mohd Syafiq Mispan received B.Eng Electrical (Electronics) and M.Eng

Electrical (Computer and Microelectronic System) from Universiti Teknologi Malaysia,

Malaysia in 2007 and 2010 respectively. He had experience working in the semiconductor

industry from 2007 until 2014 before pursuing his Ph.D. degree. He obtained his Ph.D. degree

in Electronics and Electrical Engineering from the University of Southampton, the United

Kingdom in 2018. He is currently a senior lecturer in the Faculty of Electrical and Electronics

Engineering Technology, Universiti Teknikal Malaysia Melaka. His current research interests

include hardware security, CMOS reliability, VLSI design, and Electronic Systems Design. He

can be contacted at email: syafiq.mispan@utem.edu.my.

Loh Wan Ying received her B.Eng Electronic with Honours from University

Tunku Abdul Rahman. Loh is currently a Ph.D. candidate at Universiti Malaysia Perlis,

Malaysia. Her research interest is focusing on improving the efficiency of fault detection by

optimizing memory testing algorithms. Loh has a few years of experience in designing with

Verilog and VHDL, RTL ASIC/IP coding, and FPGA synthesis. Loh also has experience

working with RISC V, AXI bus, and FPGA SoC. Loh has experience in Artificial Intelligence

(AI) frontend design and full-chip verification. She can be contacted at email:

wyloh@studentmail.unimap.edu.my.

https://orcid.org/0000-0003-3403-2636
https://www.scopus.com/authid/detail.uri?authorId=57200328748
https://publons.com/researcher/5282139/wf-lee/
https://orcid.org/0000-0002-8654-9330
https://scholar.google.com/citations?hl=id&user=M9zjlREAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56943347700
https://publons.com/researcher/2903863/mohd-syafiq-mispan/
https://orcid.org/0000-0002-8062-7860
https://scholar.google.com/citations?user=zc5OC0oAAAAJ&hl=en
https://publons.com/researcher/5282134/wan-ying-loh/

