
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 11, No. 1, March 2022, pp. 93~102

ISSN: 2089-4864, DOI: 10.11591/ijres.v11.i1.pp93-102 93

Journal homepage: http://ijres.iaescore.com

An efficient multi-level cache system for geometrically

interconnected many-core chip multiprocessor

Tirumale Ramesh, Khalid Abed

Department of Electrical & Computer Engineering and Computer Science, Jackson State University, Mississippi, USA

Article Info ABSTRACT

Article history:

Received Jul 30, 2021

Revised Sep 11, 2021

Accepted Jan 10, 2022

 Many-core chip multiprocessor offers high parallel processing power for big

data analytics; however, they require efficient multi-level cache and

interconnection to achieve high system throughput. Using on-chip first level

L1 and second level L2 per core fast private caches is expensive for large

number of cores. In this paper, for moderate number of cores from 16 to 64,

we present a cost and performance efficient multi-level cache system with

per core L1 and last level shared bus cache on each bus line of a cost-

efficient geometrically bus-based interconnection. In our approach, we

extracted cache hit and miss concurrencies and applied concurrent average

memory access time to more accurately determine the cache system

performance. We conducted least recently used cache policy-based

simulation for cache system with L1, with L1/L2, and with L1/shared bus

cache. Our simulation results show that an average system throughput

improvement of 2.5x can be achieved by using system with L1/shared bus

cache system compared to using only first level L1 or L1/L2. Further, we

show that the throughput degradation for the proposed cache system is only

within 5% for a single bus fault, suggesting a good bus fault tolerance.

Keywords:

Big data

Bus cache

Geometrical

Heterogeneous

Many-core

Throughput

This is an open access article under the CC BY-SA license.

Corresponding Author:

Khalid Abed

Department of Electrical & Computer Engineering and Computer Science, Jackson State University

1400 John R Lynch Street (JSU Box 17098), Jackson, MS. 39217, USA

Email: khalid.h.abed@jsums.edu

1. INTRODUCTION

In recent years, many cores are trending as a on-chip computing platform [1]–[3] that can provide

massive computational power for a heterogenous computing environment for big data [4] and other compute

intensive embedded artificial intelligence applications [5]. Some recent work [6]–[9] on high performance

computing for big data have focused on processing framework, architecture synthesis and utilization of

multiple cores. With increased very large-scale integration (VLSI) density, it may be still manageable to

provide heterogeneous computing using cost effective on-chip interconnection and cache memory system.

From past research on bus-based interconnection for large parallel processing systems [10], it was

determined that regular bus connected multiple-bus interconnection that uses number of buses equal to one-

half of the cores or memory modules, gives comparable memory bandwidth. However, the reduced bus

interconnection is costly for chip multiprocessor (CMP) due to large number of bus-core/memory connections.

In our earlier research, we proposed a cost-effective interconnection using geometrical patterns for bus-

core/memory connections [11] with reduced number of buses. The approach in [11] was extended to system

level configuration defined with three geometrical system configurations termed as geometrical bus

interconnection (GBI) [12] for bus-memory connections using rhombic connection pattern as the base. We

achieved cost savings from 1.8𝑥 to 2.4𝑥 with GBI compared to regular reduced bus interconnection.

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 1, March 2022: 93-102

94

However, as the overall throughput of the many-core CMP is also determined by the cache system

performance, achieving high overall CMP througput with cost and performance efficient interconnection and

cache system is highly desirable today.

Providing an adequate and sustained many-core CMP throughput becomes more challenging as it

also requires efficient cache system solution. Towards this challenge, our focus is to present a cost-effective

multi-level cache system to improve the overall many-core CMP throughput using comparable memory

bandwidth results from cost-effective GBI [12]. A typical general multi-level cache system hierarchy for

multi-core systems as shown in Figure 1 has L1 and L2 private cache per core at levels 1 and 2, and a shared

cache L3 as a last level cache (LLC) at level 3. For example, some of the current mainstream commercial

multi-core processor such as Intel® Core™ i5 processor has three levels of cache with per core L1 with a

separate instruction and data cache, a per core L2 unified (instruction/data) cache and a shared L3 cache as

LLC (shared by all cores).

Figure 1. Traditional multi-level cache system with L1, L2 and L3 for multi-core CMP

Adding a large number of per core fast on-chip private L1 and L2 caches with a shared L3 may

increase cache system cost. As a result, we propose an alternative solution by combining L1 with a relatively

slower shared bus cache (SBC) as LLC added to every bus line of GBI [12] in which the data request of all

cores is shared via GBI. In addition, our proposed cache system solution may also provide the ability to

increase the cache levels and sizes within the cache hierarchy upon cache reconfiguration in order to optimize

the system for cost, performance and power consumption.

Some earlier research [13]–[16] have addressed various cache system architecture, issues and

solutions for improved performance. In [13], the authors addressed analyzing memory performance for tiled

many-core CMP. Lin et al. [14] suggested hybrid cache systems that included layers for cache architecture

from memory to data base to improve performance in specific relational data base query for big data

applications. Charles et al. [15] looked at cache reconfiguration for network-on-chip (NoC) based many-core

CMP. Safayenikoo et al. [16] suggested an energy-efficient cache architecture to address the problem of

increased leakage power resulting from large area of LLC (as much as 50% of the chip area) due to its

increased size. Most of the work reported in [13]–[16] may require complex cache design process. Our

proposed cache system solution is simple and do not add any extra or difficult cache design process. Our

main contribution in this paper are as: i) Propose a shared bus cache (SBC) within a multi-level cache

system; ii) Present a least recently used (LRU) multi-level cache system simulation to extract hit and miss

concurrencies; iii) Apply concurrent average memory access time (C-AMAT) [17] to accurately determine

the system throughput performance and present our results; and iv) Provide conclusion and present some

insight into future research.

2. L1-SBC CACHE SYSTEM

Figure 2 shows a system with L1 and share bus cache at every bus line of GBI [12]. We term the

memory system using L1 private cache as L1, with L1 and L2 as L12, with L1 and shared bus cache as L1-

SBC throughout this paper.

Figure 2. L1-SBC

L1

Cores

(1-n)

Off-chip

Global

Memory

L2
Shared

L3
Interconnect

b Shared Bus

Caches (SBC)
GBI

m Off-chip

Memory

Modules

n cores

and n L1

caches

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

An efficient multi-level cache system for geometrically interconnected many-core … (Tirumale Ramesh)

95

2.1. Concurrent average memory access time (C-AMAT)

Some cache techniques [18]–[20] were suggested earlier for improving traditional average memory

access time for multi-level cache systems. In [18], hardware prefetching was considered to exploit spatial and

temporal locality of references. In [19], multi-level caches were considered as primary and secondary

memories for proxy servers to access web content. In [20], an LRU replacement policy was proposed that

makes use of the awareness of the cache miss-penalty to ensure memory access latency is balanced for

memory system built with different memory technologies termed as “hybrid” system. The work addressed in

[18]–[20] were specific cache techniques attempted to reduce average memory access time without

considering any cost implications. Our approach is to optimize cache and interconnection cost across the

cache levels and apply C-AMAT for exploitation of parallel concurrency in cache hit and misses that

accurately determine the average memory access time across all levels for data access. An analytical method

for determining C-AMAT is briefly provided below. A traditional average memory access time (AMAT)

with a multi-level cache system is given in (1) and (2) for L1 and L12 cache systems respectively.

𝐴𝑀𝐴𝑇1 = 𝑡1ℎ1 + (1 − ℎ1)𝑡𝑚 (1)

𝐴𝑀𝐴𝑇2 = 𝑡1ℎ1 + (1 − ℎ1)(𝑡2ℎ2 + (1 − ℎ2)𝑡𝑚 (2)

Where t1 and t2 are the cache access time for level 1 and level 2 caches, h1 and h2 are cache hit ratios

for level 1 and level 2 caches and tm is the global memory access time. In our approach, we exploit parallel

concurrency for core and SBC hit and miss concurrency for SBC supported by GBI and apply C-AMAT for

performance evaluation. The hit concurrency will improve performance while a cache miss may impact the

memory system performance, depending on hit concurrency. Taking advantage of multiple buses with miss

concurrency, higher system performance can be achieved. However, the application of C-AMAT need to

ensure that the miss concurrency do not exceed the interconnection bandwidth with reduced number of buse.

Thus, we re-write (1) and (2) as (3) and (4).

𝐶 − 𝐴𝑀𝐴𝑇1 =
𝑡1ℎ1

𝑐ℎ1
+ (1 − ℎ1)𝑡𝑚/𝑐𝑚 (3)

𝐶 − 𝐴𝑀𝐴𝑇2 =
𝑡1ℎ1

𝑐ℎ1
+ (1 − ℎ1)(

𝑡2ℎ2

𝑐ℎ2
+ (1 − ℎ2) 𝑡𝑚/𝑐𝑚 (4)

Where 𝑐ℎ1 and 𝑐ℎ2 are the average hit cycle concurrency at levels 1 and 2 and 𝑐𝑚 is the average

miss cycle concurrency. In this paper, we evaluate L1, L12 and L1-SBC systems. We selected minimum

number of L1 and SBC cache blocks to meet the following criterion for hit and miss concurrency given as

(5).

 cℎ ≤ 𝑛, c𝑚 ≤ 𝑛/2 (5)

Since the GBI interconnection provides a memory bandwidth of 𝑛/2, we can also approximate (4)

by miss concurrency supported by the GBI memory bandwidth as (6).

𝐶 − 𝐴𝑀𝐴𝑇 =
𝑡1ℎ1

𝑐ℎ1
+ (1 − ℎ1)(

𝑡2ℎ2

𝑐ℎ2
+ (1 − ℎ2) 2𝑡𝑚/𝑛 (6)

When the 𝑐𝑚 is less than 𝑛/2, the interconnection bandwidth is not fully utilized. The C-AMAT

given in (6) is smaller compared to conservative miss concurrency given in (4). The percentage deviation

from (4) to (6) varies from 4 to 30 % across all cache systems. We see a higher deviation for L1-SBC system

which is attributed to the fact that the miss concurrency decreases as a result of higher hit concurrency using

bus cache during read cycle. In this paper, we only include conservative results from (3) and (4) for L1 and

L12 cache systems respectively and at the same time ensuring criterion (5).

2.2. Geometrical bus interconnection (GBI) [12] cost

Table 1 gives the average normalized interconnection cost of GBI compared to fully reduced

multiple bus system [10]. We notice a reduction of about 30 % in cost across the number of cores from 16 to

64.

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 1, March 2022: 93-102

96

Table 1. Normalized average GBI cost compared to fully reduced bus system [10]
No. of Cores Normalized Cost

16 0.69
32 0.66

64 0.64

2.3. SBC impact on C-AMAT

In the past, some shared cache techniques [21] have looked at cache sharing of ways based on hash

mapping instead of traditional cache set sharing for multi-core platforms. In general, it is known that by

increasing the number of processor cores can directly increase LLC (last level cache) hit and miss

concurrency giving reduced C-AMAT. As our system uses buses equal to one-half the number of cores, the

memory access missed in per core cache is searched in SBC. Since a shared reduced number of buses in our

approach naturally captures all core accesses via the bus interconnection, placing an SBC at each bus line of

GBI replicates closely to a traditional L3 shared cache normally used in current commercial processor

systems. As we used
𝑛

2
 number of SBC at level 2, any miss in L1 increases the hit concurrency in SBC. In our

approach, we accounted only a pure miss concurrency [17] (only if none of the bus cache has a hit in the hit

cycle, a miss is accounted).

2.4. Cache association impact on C-AMAT

Cache association can also impact our solution. Authors in [22], [23] attributed to the fact that

higher cache association normally increases the cache hit rate but at the expense of hardware complexity for

the cache controller and additional latency for cache search time with increased association. However, in our

approach, the association was selected to ensure that criteria (5) are satisfied. Thus, selecting a direct mapped

cache may benefit to achieve reduced C-AMAT. In general, miss concurrencies in LLC can normally be

supported by use of multi-ported memory, or multi-bank memory (memory modules) with a single bus.

However, for a single bus system, bus contention impacts the throughput performance. The miss concurrency

can be facilitated by using a multi-bank memory module with multiple bus interconnection between shared

cache and memory modules. The miss concurrency can be supported by multiple buses in GBI yielding lower

C-AMAT.

3. CACHE SYSTEM SIMULATION

3.1. System operation with L1-SBC

Figure 2 shows the operation flowchart for read and write cycles for L1 system. SBC is used only

during “read cycle” with a “write through” policy to update on cache miss. In “normal no-fault mode”,

during read cycle, the data is first searched in L1. If the L1 read is a “miss,” it is then searched in SBC. If it is

“hit,” the data is cached. On read “miss” in SBC, buses in GBI are arbitrated to utilize full memory

bandwidth and the data is read from the global memory module and is written to SBC and L1 cache as well.

If the current bus that is granted fails, then cache system switches to “bus fault mode” and the

interconnection is re-arbitrated to use other b-1 connected buses. After bus re-arbitration, the data is re-

searched first in L1 and if “hit”, the data is cached in L1 cache, otherwise searched in SBC. During write

cycle, if the L1 cache block is “present”, then data is written into L1 cache. On L1 write “miss”, the L1 cache

block is replaced and the data is updated to L1 and consequently the data is written to global memory using

arbitrated buses in GBI.

The proposed cache system was simulated using publicly available “lrucache” libraries in python

and created multiple objects of a “lrucache” with indexing to implement L1, L2 and SBC. We iterated cache

operation for over 𝑛 𝑥 1000 for n number of cores. Table 2 shows the general parameters used for the

simulation. Using as much of insight into today’s memory technologies, we approximately used a relative bit

cost for L1, L2 and SBC as given in Table 2.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

An efficient multi-level cache system for geometrically interconnected many-core … (Tirumale Ramesh)

97

Figure 2. L1-SBC Operation

Table 2. Cache system simulation parameters
Clock

cycle

L1 access

cycles
(t1)

SBC access

cycles (t2)

L2 access time

(cycles)

Global memory

access cycles (tm)

Bus data

width

L1

relative
cost

L2

relative
cost

SBC

relative
cost

0.5 ns

(2 GHz)

5

25 10 100

2 bytes 10 6 3

3.2. Relative normalized system cost

Table 3 shows the normalized system cost as the total system cost that includes the normalized

interconnection cost from Table 1 and relative cache memory cost from Table 2. As we noticed from Table 3,

L2 cache adds 2 % additional system cost and SBC adds 0.5 % additional cost. We ran simulations using

minimum number of L1, L2, and SBC cache blocks selected to meet the criteria given in (5). To reduce the

cache “hit” time, we used an optimal cache association, but at the same time ensured concurrency criteria

given by (5).

Table 3. Normalized system cost
Cache System No. of L1

blocks

L1
association

No. of L2
sets

L2
association

No. of SBC
sets

SBC
association

Normalized system
cost

L1 128 1 1

L12 128 1 4 2 1.02
L1-SBC 128 1 4 2 1.005

3.3. Cache read and write misses criticality impact

It is well known that cache read misses are more critical and incurs more penalty in read than write

cycles. To alleviate this problem, some read-write partitioning policy was suggested in [24] that minimizes

the read misses using dynamic cache management. To provide more read miss support, in our approach, we

included SBC during read only. In general, as the read is increased from 50 to 80% of the processor data

requests, we found drastic improvement in SBC hit concurrency as a result of its exclusive support during

read cycle. However, as not all applications ensure a less data reads than data writes, we may treat the 50%

read data requests as a good comparison for now and look for application centric read/write trade-offs in

future using novel cache protocols. Some recent novel read/write cost tradeoffs for DNA based data storage

[25] has been suggested.

3.4. L1 and SBC hit concurrencies and miss concurrencies

Tables 4 and 5 show the L1 cache hit concurrency (𝑐ℎ1), SBC hit concurrency (𝑐ℎ2), and miss

concurrency in SBC (𝑐𝑚) for various system sizes for L1, L12 and L1-SBC systems for 50 % and 80 % read

requests respectively.

 Core 1 cache controller

Figure 2. L1-SBC Operation

Search

block in

LRU L1

L1 read

Arbitrate Interconnection and update

global memory and cache (write

through)

L1 write

Cache Controllers [2 … 𝑛]

SBC read

Update
L1 on

SBC

miss L1 read miss

LRU SBC read search

[1 … 𝑏]

hit

Update

L1 on

SBC

miss
L1 write

miss

L1 read miss

Cores 2 to n send their request to cache

controllers
Core 1 request

hits

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 1, March 2022: 93-102

98

Table 4. Cache hit and miss concurrency with 50% read requests
System size 16 32 64

 𝑐ℎ1 𝑐ℎ2 𝑐𝑚 𝑐ℎ1 𝑐ℎ2 𝑐𝑚 𝑐ℎ1 𝑐ℎ2 𝑐𝑚

L1 0.4 8.3 0.4 16.1 0.5 31.9
L12 4.5 4.2 8 8.5 8.2 15.7 16.8 16.1 31.2

L1-SBC 4.4 5.2 7.4 8.5 11.9 12.8 16.7 31.5 16.1

Table 5. Cache hit and miss concurrency with 80% read requests
System size 16 32 64

 𝑐ℎ1 𝑐ℎ2 𝑐𝑚 𝑐ℎ1 𝑐ℎ2 𝑐𝑚 𝑐ℎ1 𝑐ℎ2 𝑐𝑚

L1 0.4 8.3 0.4 16.1 0.5 31.9
L12 1.9 6.8 7.1 3.7 13.1 14.3 7.3 25.9 29.2

L1-SBC 2.0 8.2 6.4 3.7 19.3 10.6 6.9 50.9 16.1

Figures 5 and 6 show the hit and miss concurrency for L1-SBC for 50 % and 80 % read requests

respectively. For the same number of cores, the miss concurrency decreases for L1-SBC as compared to L1

due to higher hit concurrency in SBC. The miss concurrency utilization in L1-SBC is about 50 % for larger

number of cores. This is attributed to the fact that SBC offers higher hit concurrency yielding reduced

memory traffic over the interconnection. Even though the low miss currency utilization may suggest that the

number of buses for higher number of cores may be reduced further, it may invariably decrease the hit rate

for SBC due to lower bandwidth availablity thus nullifying any overall advantage. As the data read are more

than data writes, SBC hit concurrency increases by approximately 1.5𝑥 for the same system size.

Figure 5. Cache hit and miss concurrency for L1 with 50 % read requests

Figure 6. Cache hit and miss concurrency for L1 with 80 % read requests

1,97 3,7
6,98,2

19,3

50,9

6,4
10,6

16,1

0

10

20

30

40

50

60

16 32 64

H
it

 a
n

d
 m

is
s

co
n

cu
rr

e
n

cy

Number of Cores

ch1 ch2 cm

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

An efficient multi-level cache system for geometrically interconnected many-core … (Tirumale Ramesh)

99

3.5. Concurrent average memory access time (C-AMAT) cycles

We evaluated the concurrent average memory access time (C-AMAT) cycles from (3) and (4).

Tables 6 and 7 show the C-AMAT for 50 % and 80 % read requests respectively.

Table 6. C-AMAT with 50 % read requests
Cache system 16 32 64

L1 12.4 6.4 3.2
L12 4.1 2.2 1.1

L1-SBC 3.7 1.6 0.3

Table 7. C-AMAT with 80 % read requests
Cache system 16 32 64

L1 12.4 6.4 3.2

L12 6.5 3.3 1.6

L1-SBC 5.7 2.4 0.3

As a result of increased SBC hit concurrency, the C-AMAT decreases with the number of cores.

Figure 7 shows the C-AMAT for 50% and 80% read requests respectively. Further reduction in C-AMAT is

seen for 80% read requests due to increase in SBC hit concurrency.

Figure 7. C-AMAT with 50 % and 80 % read data requests

3.6. Cache system throught

The throughput in GB/sec (g) given as (6).

𝑔 =
2 .𝑏

𝐶−𝐴𝑀𝐴𝑇+𝑡𝑟
 (6)

Where b is the number of buses with 2 bytes bus data width. We assumed GBI bus arbitration and

bus allocation reconfiguration time (tr) of 1 cycle and a clock cycle time of 0.5 ns. Table 8 summarizes our

results for throughput in GB per sec. We used normalized unit cost from Table 3 and C-AMAT using (3) and

(4). As shown in Table 8, the throughput increases with the number of cores and read request percentage

suggesting a good advantage.

Table 8. Throughput in GB/sec for L1-SBC for 50 % and 80 % read requests
 No. of Cores

16 32 64

50 % 80 % 50 % 80 % 50 % 80 %

6.8 4.8 24.6 18.8 98.5 95.5

3,7

1,6 0,3

5,7

2,4

0,340

2

4

6

16 32 64

C
-A

M
A

T
cy

cl
es

Number of Cores

50 % read 80 % read

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 1, March 2022: 93-102

100

Figure 8 shows the throughput for 50% and 80% read requests respectively. Figure 9 shows the

average throughput improvement factor for L12 and L1-SBC cache systems over L1 cache system. We found

that the average throughput improvement factor of L12 cache system across all system sizes is 1.5𝑥 for 50 %

read requests and 1.8𝑥 for 80 % read requests compared to L1. We determined that the average throughput

improvement for L1-SBC memory system is 2.5𝑥 for 50 % read requests and 2.4𝑥 with 80 % read requests

compared to L1 system. As there is very negligible cost increase for L1-SBC (0.5%) over L1, we conclude

that L1-SBC cache is both cost and performance efficient compared to L1 or L12 cache system, L1-SBC

offers 30 to 60% increase in throughput improvement factor compared to L12 improvement factor over L1.

Figure 8. L1-SBC throughput in GB/sec for 50 % and 80 % read data requests

Figure 9. Average improvement in throughput for L12 and L1-SBC compared to L1

3.7. Cache system throughput with single bus fault

We also ran simulation for L1-SBC with a single bus fault in the system. We used both critical and

non-critical bus for assigning faulty bus. A bus is a “critical bus” if a memory is only connected to that bus.

Typically, rhombic interconnection [11] has a single “critical bus”. However, with GBI [12], we provided

redundant bus paths yielding all buses “non-critical”. Figure 10 shows the percentage degradation of a single

bus faulted system compared to normal L1-SBC system with 50% read requests. We noticed that the

percentage degradation in throughput for a single bus fault is less than 5% across all system sizes and

decreases with higher number of cores. This suggests a good fault tolerance for L1-SBC for increased

number of cores.

Figure 10. Throughput degradation with a single bus fault for 50 % read requests

6,81
24,62

98,46

4,78
18,82

95,52

0

50

100

150

16 32 64

Th
ro

u
gh

p
u

t

Number of Cores

50 % read 80 % read

1,8
1,5

2,5 2,4

0

1

2

3

L12 at 50 % read L12 at 80 % read L1-SBC at 50 % read L1-SBC at 80 % read

Th
ro

u
gh

p
u

t
Im

p
ro

ve
m

en
t

4,1 3,7

1,5 1,45

0

1

2

3

4

5

1 6 3 2 6 4 A V G

TH
R

O
U

G
H

P
U

T
D

EG
R

A
D

A
TI

O
N

P

EC
EN

TA
G

E

NUMBER OF CORES

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

An efficient multi-level cache system for geometrically interconnected many-core … (Tirumale Ramesh)

101

4. CONCLUSION AND FUTURE RESEARCH

Many-core based heterogeneous system demands high system throughput for big data applications

and other compute intensive embedded applications. By adding a less expensive SBC in association with

expensive per core L1 private cache within a multi-level cache hierarchy, we can achieve higher system

throughput. For better accuracy, we extracted cache hit and miss concurrencies at each level and applied

concurrent average memory access time for L1, L12 and L1-SBC systems. We conducted simulation of L1,

L12 and L1-SBC cache systems. Our simulation results indicate that by using L1-SBC, we can achieve 2.5𝑥

throughput improvement compared to using only L1 private cache and we see that L1-SBC offers higher

increase in throughput improvement factor compared to L12 improvement factor at a very negligible increase

in SBC cost over L1. We also determined that the throughput degradation using L1-SBC with a single bus

fault is less than 5 % across all system sizes and this degradation reduces as the system size increases

suggesting a good advantage for higher number of cores. As we used the SBC only during read request, in

the future, we hope to develop some additional novel SBC cache protocols using exclusive and shared modes

and include SBC in both read and write cycles. We also hope to perform some heterogenous computing big

data application benchmarks with LRU L1-SBC system and assess the overall system performance.

ACKNOWLEDGEMENTS

This work was supported in part by Army Research Office HBCU/MSI contract number W911NF-

13-1-0133 entitled: “Exploring High Performance Heterogeneous Computing via Hardware/Software Co-

Design”.

REFERENCES
[1] S. Le Beux, P. V. Gratz, and I. O’Connor, “Guest editorial: emerging technologies and architectures for manycore computing part

1: hardware techniques,” IEEE Transactions on Multi-Scale Computing Systems, vol. 4, no. 2, pp. 97–98, Apr. 2018, doi:

10.1109/TMSCS.2018.2826758.
[2] S. Savas, Z. Ul-Abdin, and T. Nordström, “A framework to generate domain-specific manycore architectures from dataflow

programs,” Microprocessors and Microsystems, vol. 72, p. 102908, Feb. 2020, doi: 10.1016/j.micpro.2019.102908.

[3] J. Ax et al., “CoreVA-MPSoC: a many-core architecture with tightly coupled shared and local data memories,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 5, pp. 1030–1043, May 2018, doi: 10.1109/TPDS.2017.2785799.

[4] H. Homayoun, “Heterogeneous chip multiprocessor architectures for big data applications,” in Proceedings of the ACM

International Conference on Computing Frontiers, May 2016, pp. 400–405, doi: 10.1145/2903150.2908078.
[5] A. Parashar, A. Abraham, D. Chaudhary, and V. N. Rajendiran, “Processor pipelining method for efficient deep neural network

inference on embedded devices,” in Proceedings - 2020 IEEE 27th International Conference on High Performance Computing,

Data, and Analytics, HiPC 2020, Dec. 2020, pp. 82–90, doi: 10.1109/HiPC50609.2020.00022.
[6] L. Cheng et al., “A tensor processing framework for CPU-manycore heterogeneous systems,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, pp. 1–1, 2021, doi: 10.1109/tcad.2021.3103825.

[7] M. Goudarzi, “Heterogeneous architectures for Big Data batch processing in MapReduce paradigm,” IEEE Transactions on Big
Data, vol. 5, no. 1, pp. 18–33, Mar. 2019, doi: 10.1109/TBDATA.2017.2736557.

[8] E. Alareqi, T. Ramesh, and K. Abed, “Functional heterogeneous processor affinity characterization to Big Data: towards machine

learning approach,” in 2017 International Conference on Computational Science and Computational Intelligence (CSCI), Dec.
2017, pp. 1432–1436, doi: 10.1109/CSCI.2017.250.

[9] C. Lai, X. Shi, and M. Huang, “Efficient utilization of multi-core processors and many-core co-processors on supercomputer

beacon for scalable geocomputation and geo-simulation over big earth data,” Big Earth Data, vol. 2, no. 1, pp. 65–85, Jan. 2018,
doi: 10.1080/20964471.2018.1434265.

[10] T. N. Mudge, J. P. Hayes, G. D. Buzzard, and D. C. Winsor, “Analysis of multiple-bus interconnection networks,” Journal of

Parallel and Distributed Computing, vol. 3, no. 3, pp. 328–343, 1986, doi: 10.1016/0743-7315(86)90019-5.

[11] T. Ramesh and K. Abed, “Reconfigurable many-core embedded computing platform with Geometrical bus interconnection,” in

Proceedings - 2020 International Conference on Computational Science and Computational Intelligence, CSCI 2020, Dec. 2020,

pp. 1256–1259, doi: 10.1109/CSCI51800.2020.00234.
[12] T. Ramesh and K. Abed, “Cost-efficient reconfigurable geometrical bus interconnection system for many-core platforms,”

International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 10, no. 2, pp. 77–89, Jul. 2021, doi:

10.11591/ijres.v10.i2.pp77-89.
[13] Y. Liu, S. Kato, and M. Edahiro, “Analysis of Memory System of Tiled Many-Core Processors,” IEEE Access, vol. 7, pp. 18964–

18974, 2019, doi: 10.1109/ACCESS.2019.2895701.

[14] Y. Te Lin, Y. H. Hsiao, F. P. Lin, and C. M. Wang, “A hybrid cache architecture of shared memory and meta-table used in big
multimedia query,” in 2016 IEEE/ACIS 15th International Conference on Computer and Information Science, ICIS 2016 -

Proceedings, Jun. 2016, pp. 1–6, doi: 10.1109/ICIS.2016.7550809.

[15] S. Charles, A. Ahmed, U. Y. Ogras, and P. Mishra, “Efficient cache reconfiguration using machine learning in NoC-based many-
core CMPs,” ACM Transactions on Design Automation of Electronic Systems, 2019, doi:

https://doi.org/10.1145/1122445.1122456.

[16] P. Safayenikoo, A. Asad, and F. Mohammadi, “An Energy-Efficient Cache Architecture for Chip-Multiprocessors Based on Non-
Uniformity Accesses,” in 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), May 2018, pp. 1–4,

doi: 10.1109/CCECE.2018.8447736.

[17] X. H. Sun and D. Wang, “Concurrent average memory access time,” Computer, vol. 47, no. 5, pp. 74–80, May 2014, doi:
10.1109/MC.2013.227.

[18] J. H. Lee, S. W. Jeong, S. D. Kim, and C. C. Weems, “An intelligent cache system with hardware prefetching for high

performance,” IEEE Transactions on Computers, vol. 52, no. 5, pp. 607–616, May 2003, doi: 10.1109/TC.2003.1197127.

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 11, No. 1, March 2022: 93-102

102

[19] Y. Niranjan, S. Tiwari, and R. Gupta, “Average memory access time reduction in multilevel cache of proxy server,” in

Proceedings of the 2013 3rd IEEE International Advance Computing Conference, IACC 2013, Feb. 2013, vol. 2013-Febru, pp.
44–47, doi: 10.1109/IAdCC.2013.6506813.

[20] D. Chen, H. Jin, X. Liao, H. Liu, R. Guo, and D. Liu, “MALRU: Miss-penalty aware LRU-based cache replacement for hybrid

memory systems,” in Proceedings of the 2017 Design, Automation and Test in Europe, DATE 2017, Mar. 2017, pp. 1086–1091,
doi: 10.23919/DATE.2017.7927151.

[21] A. K. Singh, K. Geetha, S. Vollala, and N. Ramasubramanian, “Efficient Utilization of Shared Caches in Multicore

Architectures,” Arabian Journal for Science and Engineering, vol. 41, no. 12, pp. 5169–5179, Dec. 2016, doi: 10.1007/s13369-
016-2197-0.

[22] M. D. Hill and A. J. Smith, “Evaluating Associativity in CPU Caches,” IEEE Transactions on Computers, vol. 38, no. 12, pp.

1612–1630, 1989, doi: 10.1109/12.40842.
[23] D. Ramtake, N. Singh, S. Kumar, and V. K. Patle, “Cache Associativity Analysis of Multicore Systems,” in 2020 International

Conference on Computer Science, Engineering and Applications, ICCSEA 2020, Mar. 2020, pp. 1–4, doi:

10.1109/ICCSEA49143.2020.9132884.
[24] S. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutluy, and D. A. Jimenezz, “Improving cache performance using read-write

partitioning,” in 2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA), Feb. 2014, pp.

452–463, doi: 10.1109/HPCA.2014.6835954.
[25] S. Chandak et al., “Improved read/write cost tradeoff in DNA-based data storage using LDPC codes,” in 2019 57th Annual

Allerton Conference on Communication, Control, and Computing, Allerton 2019, Sep. 2019, pp. 147–156, doi:

10.1109/ALLERTON.2019.8919890.

BIOGRAPHIES OF AUTHORS

Tirumale Ramesh is currently supporting Jackson State University as an

advanced computing research consultant where he previously served as a Senior Research

Associate. His current research interests include heterogeneous computing, network-on-chip,

cache systems, artificial intelligence (AI)/machine learning. He received his BE degree in

electrical engineering from Bangalore University, India in 1975, an MSEE in VLSI area from

Mississippi State University in 1983 and the Ph.D degree in computer engineering from

Oakland University, Michigan in 1993. Ramesh has a long-standing career. Previously he

served as a tenured professor of computer engineering at Saginaw Valley State University in

Michigan. He was a corporate fellow for advanced computing at Boeing and provided

technical leadership for several research projects funded by Boeing Corporate Research. He

was a senior engineer at IBM. He also served as a professorial lecturer in the department of

electrical and computer engineering at George Washington University in DC. Ramesh has

numerous US and foreign patents and published widely. He is a senior member of IEEE and

has served in leadership roles for IEEE conferences and IEEE computer society and received

several professional awards. He can be contacted at email: rjfeb35@gmail.com.

Khalid Abed is a Tenured Professor in the Department of Electrical & Computer

Engineering and Computer Science at Jackson State University (JSU). His research interests

include high performance heterogeneous/reconfigurable computing (HPRC/HPHC), edge

computing, artificial intelligence (AI), machine learning (ML), and deep learning (DL). He

received his B.S., M.S., and Ph.D. in Electrical Engineering from Wright State University in

1995, 1996, 2000, respectively. He has published extensively in IEEE journals and conferences

and is a technical reviewer for several IEEE journals and conferences. Dr. Abed is a Senior

Member of IEEE, IEEE Computer Society. He co-authored several patent submissions in the

HPHC/HPRC, areas. He has received funding from sources including the NSF, the DoD, and

the Army Research Office. He has received about $3M in grants for HPHC/HPRC education

and research. He can be contacted at email: khalid.abed@jsums.edu.

https://scholar.google.co.id/citations?hl=id&user=v2n-WaEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57221771740
https://www.scopus.com/authid/detail.uri?authorId=55885791900

