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 Real time applications like model predictive control, monitoring and data 

reconciliation of power plants and industrial processes employ nonlinear 

mathematical models and require thermodynamic properties and their 

derivatives of working fluids. Applications like super heater temperature 

control based on energy balance and real time data reconciliation, require an 

efficient and a compact method for simultaneous estimation of 

thermodynamic properties, and their partial derivatives suitable for 

implementation in field-programmable gate array (FPGA). However, the 

complex mathematical formulations of these properties prohibit direct 

implementations in FPGAs. Single artificial neural network (ANN) 

architecture is used to replace the entire code in higher level languages, 

running into a few thousand lines. FPGA implementation of a compact 

neural network for the entire range of thermodynamic properties is presented. 

Large arguments in sigmoid function are factored into a product of integer 

and a fractional part which is represented using series approximation with 

five terms only and the integers are represented in look up table (LUT). 

This ensures optimum storage and computational burden for the above 

applications. The ANN is implemented in IEEE 754 floating point with 

synthesis in Xilinx ISE design suite using Verilog HDL. The results are 

presented for a typical pressure versus saturation temperature. 
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1. INTRODUCTION 

Recent trends in power plant and industrial applications indicate developments like data 

reconciliation (DR), Guo et al. [1] model predictive control (MPC), Wang et al. [2] and optimization, 

Niegodajew et al. [3] to improve performance of plants and processes. They are based on the first principle 

thermodynamic formulations as well complex mathematical models. They are limited to offline simulations 

or implemented in standalone desktop systems. Direct implementation of these algorithms in 

microcontrollers and field-programmable gate arrays (FPGAs), often encountered in power and process plant 

distributed control systems (DCS), is difficult and computationally inefficient. One of the constraints is 

efficient implementation of thermodynamic properties of the working fluids like water, steam and gasses, in 

the FPGAs. The applications require real time prediction of thermodynamic properties like enthalpy, along 

with their first and second order partial derivatives. The properties are represented by nonlinear Gibbs free 

energy formulations [4]. These functions are implemented in higher level languages running into 5000-7000 

lines of code. These are evaluated iteratively. They are repeatedly called in the applications and are not 
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amenable for implementation in microcontrollers or FPGAs. Additionally, their partial derivatives are 

computed numerically by repeated calls to these functions. This makes them unsuitable for real time 

computations in FPGAs. Recent research is focused on developing application specific properties of water 

and steam covering sub-critical and super-critical regions implemented in Modelon’s Modelica thermal 

power library and Spline-Based table look-up method, [5], [6]. However, many of these efforts are not 

directly suited for implementation in FPGAs used in the commercial DSC platform. Cardaliaguet and 

Euvrard [7] reported artificial neural networks (ANNs) with explicit weights to approximate a function and 

its derivatives and highlighted usage for control. Hashem and Schmeiser [8] showed that a linear combination 

of a set of feed forward ANNs trained to approximate a function and its derivatives improve accuracy as 

against a single ANN. While these lay the foundation for using ANNs for approximating a function and its 

derivatives, Krishnadutt and Krishnaiah [9] demonstrated the power of a few simple ANNs to simultaneously 

approximate steam properties and the corresponding derivatives of entire steam properties; thus replacing 

thousands of lines of code in higher language. These ANNs approximate the complex steam properties to the 

required degree of accuracy for real time applications.  

In spite of the availability of many high-level language tools, the progress in implementing ANNs in 

FPGA as seen in literature [10]-[15] is slow. Recent surveys [16]-[18] highlight that FPGA based neural 

network accelerators are preferred over the application specific integrated circuits (ASICs) due to their 

energy efficiency with a small footprint, but many problems and challenges need to be addressed. These 

bring out the challenges in training deep neural networks (DNNs) with FPGA and propose a performance 

metric and evaluation workflow to compare the FPGA-based systems for DNN training specific to computer 

vision tasks. However, for a pretrained network, only device utilization and energy efficiency may be 

considered. Reviews highlight major issues like data representation, implementation of inner product 

between weight matrix and previous layer outputs, activation functions, device utilization, energy efficiency, 

for different applications. 

Non-linear activation function is the main concern of many researchers while implementing an 

ANN in FPGA. Piazza et al. [19] reported adaptable look up table (LUT)-based activation functions for 

neurons, in learning by backward difference with different learning rates and two look up tables, one for 

weights and the for coefficients respectively, whereas Bieu et al. [20] computed the sigmoid function and its 

derivative in digital hardware by a sum of steps resulting in area-efficiency. Reconfiguration capabilities of 

the Atmel FPGA are exploited by Lysight et al. [21] for implementing larger ANN with individual layers of 

the network with time multiplexing on the logic array at the cost of system performance. Tisan et al. [22] 

investigated different approximating functions from the point of view of hardware resource utilization and 

induced errors and concluded that piecewise linear approximation of the activation function is the best. 

Problems encountered in implementing an ANN in VHDL are reported by P. Dondon et al. [23] wherein 

sigmoid activation is approximated by sampling of Logsig function with argument between 0 to 1. Ngah et 

al. [24] used combination of second order non-linear function (SONF) and differential LUT for 

implementing an ANN. The two-step approach is reported to have an improved accuracy that is 10 times 

better than that of using only SONF and twice better than just using LUT. Li et al. [25] implemented a 

neuron block with sigmoid function using the CORDIC algorithm.  

Some of the applications of ANN implementation on FPGA include classification of the region of 

pixels i.e., hand regions by Krips et al. [26] using three inputs representing RGB values with a single hidden 

layer and one output with data represented by integers and weights scaled up and rounded off to the nearest 

integer. Recognition of digits using a network with 300 inputs and 10 outputs with a single neuron is reported 

by Latino et al. [27]. A method of configurable MLP with a single neuron block with floating point add and 

multiply units along with activation function as LUT for a smart position sensor of solar panels has been 

studied by Dąbrowski et al. [28]. A neural classifier with fixed point representation and 12-bits for detecting 

damaged toothed gears using vibroacoustic signals is highlighted by Polat and Yildirim [29]. 

These studies consider sigmoid function with argument in the range (0-1). FPGA implementation of 

an ANN for simultaneous prediction of thermodynamic properties and their derivatives required in advanced 

applications like MPS, DR, and optimization is not reported. Custom ANNs suitable for simultaneous 

estimation of both enthalpy and its derivatives suitable for power plant applications are taken up for 

implementation in FPGA. In the following sections, FPGA implementation of a single neural network called 

SteamNet is described. The simultaneous use of LUT and Taylor series for large arguments of sigmoid 

function is presented. 

 

 

2. CUSTOM NETS FOR THERMODYNAMIC PROPERTIES OF WATER/STEAM 

Figure 1 represents water and steam properties used in industrial applications [4]. The different 

regions represent subcooled 1). Supercritical water/steam. 2). Super heat steam. 3). Saturation. 4). High 
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temperature steam. 5). Respectively. They are represented by highly nonlinear functions. The properties like 

enthalpy, entropy, specific volume, are dependent on process parameters like pressure and temperature.  

 

 

 
 

Figure 1. Regions of steam properties as per IAPWS-IF97 

 

 

The enthalpy functions for all the regions are represented by different neural networks as shown in 

Figure 2. The networks SupNet, SubCNet, SatVnet and SatFnet represent enthalpy in superheated, sub 

cooled, saturated vapor and saturated fluid regions of Figure 1. P2T network is used to decide the zone in 

which steam property is required. Function (P, T) in Figure 2 represents thermodynamic property, for 

example enthalpy, as a function of pressure P and temperature T. A single neural network, SteamNet, with 

compact architecture 2x10x5x3, shown in Figure 3, is used to represent all these different networks. The 

architecture is chosen such that the accuracy of and both the derivatives 
𝜕

𝜕𝑃
 and 

𝜕

𝜕𝑇
 are obtained with good 

accuracy. SteamNet stores different weight and bias matrices suitable for different regions of Figure 2. 

SteamNet is designed with sigmoid activation function represented by (1) and (2). Sigmoid function takes the 

weighted sum of outputs from the previous layer. FPGA implementation is achieved by using single 

perceptron with sigmoid activation function.  

 

Z = ∑(𝑊𝑖𝑗 𝑋𝑖 + 𝑏𝑗) (1) 

 

𝑌 =
1

(1+𝑒−𝑍)
 (2) 

 

Where 𝑊𝑖𝑗 and 𝑏𝑗  are weight matrix between layers 𝑖 and 𝑗 and bias vector at layer 𝑗 respectively. 𝑋𝑖 

is the input vector in the 𝑖th layer. In the SteamNet, typical values of 𝑊𝑖𝑗 and 𝑏𝑗 are in the range (-16.1735 to 

+23.174). For normalized values of 𝑋𝑖, this results in larger values of |Z|, greater than 1. Accurate 

exponentiation of |Z|, results in higher order terms of Taylor series which results in an overflow in FPGA due 

to factorial terms in denominators in series representation. However, acceptable accuracy with few terms in 

series is obtained when |Z| < 1. 

Hence, the exponential function appearing in (2) is recast as in (3) and (4) to facilitate its 

implementation in FPGA.  

 

𝑒𝑍 = 𝑒𝑎𝑒𝑏 (3) 
 

𝑍 = 𝑎 + 𝑏 (4) 
 

Argument Z is split into a and b, such that -1<= 𝑎 <=1 and b is an integer; 𝑒𝑏 is a set of predefined constants 

(Bj) stored in look up table (LUT). Term 𝑒𝑎 is obtained by Taylor series using (5). 

 

𝑒𝑎 = 1 + 𝑎(1 + 𝑎(𝐶1 + 𝑎 (𝐶2 + 𝑎(𝐶3 + 𝑎(𝐶4 + 𝑎𝐶5)))) (5) 
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where 𝐶1 to 𝐶5 are constants representing (1/2!) to (1/6!). The above implementation involves multiply, add 

and comparator blocks. ReLu, (6), which is another option, widely used in neural nets, involves only a 

comparator. It is simple and requires only a comparator as opposed to many adders, multipliers and 

comparators in sigmoid.  

 

𝑌 = max(0, 𝑍) (6) 

 

Saving in device utilization is seen in ReLU as compared to sigmoid vide Table.1. However, ReLu is less 

accurate as shown in Figure 4. Hence, SteamNet regression is implemented using sigmoid. Marginal gain in 

device utilization in SteamNet can be achieved by reducing the number of terms in (5), vide Figure 5. 

 

 

  
  

Figure 2. SteamNet for different water-steam zones Figue 3. SteamNet architecture 

 

 

Table1. Device ultilization summary (estimated values) 
Logic utilization Used Available Utilization 

Act. Function Sigmoid ReLu Sigmoid ReLu Sigmoid ReLu 

No. Slice LUTs 8567 31 150720 150720 5% 0% 
No. LUT-FF pairs 0 0 8567 31 0% 0% 

No Bonded IOBs 64 64 600 600 10% 10% 

 

 

  
  

Figure 4. Regression error - Sigmoid vs ReLu Figure 5. Tsat error with truncated Sigmoid 

 

 

Figure 6 shows implementation of (5) using generic floating-point unit (FPU), based on the 

IEEE754 32-bit floating format. FPU provides operations like ADD, MULTIPLY, DIVIDE and 
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SUBTRACT. The SteamNet requires four or five coefficients, depending on accuracy for 𝑒𝑎 and nine 

constants for 𝑒𝑏. Figure 7 shows the percent error in sigmoid implemented in Verilog as per (5) as compared 

to standard numerical library functions.  

 

 

  
  

Figure 6. Exp. function with large arguments Figure 7. Sigmoid error in verilog HDL 

 

 

3. STEAMNET IMPLEMENTATION ON FPGA  

All layers of SteamNet shown in Figure 8 are implemented by a single neuron model. Inputs to each 

of the ANNs are normalized to be in the range (0.1–0.9), by (7) to avoid asymptotic saturation in sigmoid 

function. Equation (8) de-normalizes the outputs to get actual values in engineering units.  

 

𝑋𝑛 =
0.8(𝑋−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
+ 0.1 (7) 

 

𝑌 =  
(𝑌𝑛−0.1)(𝑌𝑚𝑎𝑥−𝑌𝑚𝑎𝑥)

0.8
 + 𝑌𝑚𝑖𝑛 (8) 

 

Function P2T in the SteamNet, P2T with pressure (Pr - kg/cm2) as input and saturation temperature 

(Tsat -oC) as output using a custom three-layer network is realized using Xilinx ISE Design suite and Verilog 

HDL with Virtex family FPGA. Figure 9 and Figure 10 show the structural model of steam Net using Xilinx 

ISE synthesis tool and the device utilization summary of steam net implemented in Virtex XC6VCX240T 

FPGA board, respectively. 

 

 

 
 

Figure 8. Normalizing and De-normalizing (input-output) 
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Figure 9. SteamNet structural model in verilog 

 

 

 
 

Figure 10. Device utilization of SteamNet  

 

 

4. RESULTS AND DISCUSSION 

The above section details the implementation of SteamNet using a single neuron model wherein 

different weight matrices and bias vectors, at the three layers of the network in Figure 3, are stored in 

memory. Computation of the output is achieved by repeated usage of single neuron model implemented as 

per Figure 6 and Figure 8. The Figure 11, Figure 12 and Figure 13 show the layer-1, layer-2 and layer-3 

input-output simulation results respectively, obtained from Xilinx ISE simulator for a typical normalized 

input of 0.1 kg/cm2. The simulation shows, at time t=0, for layer-1, an input value of x=oxh3dcccccd 

produces outputs at five neurons as fx1=ox3ee39af7, fx2=oxf4ea1cf, fx3=3eddf270, fx4=3ed6dece and 

fx5=3f0d5195. Similarly, the outputs are shown for the second and third layers. This results in a normalized 

output of Tsat of 0.14791287 corresponding to 63.699696 deg C. This has a maximum error of 0.61% as 

shown in Figure 14. 

 

 

 
 

Figure 11. Layer-1 simulation results 
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Figure 12. Layer-2 simulation results 
 

 

 
 

Figure 13. Layer 3 simulation results 

 

 

 
 

Figure 14. Tsat Error - SteamNet vs ASME steam table 

 

 

5. CONCLUSION 

A pre-trained compact single neural net for simultaneous estimation of steam properties and their 

partial derivatives is taken up for implementation in FPGA which is useful for real time control and 

monitoring of power plants. This technique enables entire steam properties and their derivatives to be 

implemented in FPGA without the need for porting nearly 5000 lines of C/C++ code. FPGA implementation 

of one network showing the relationship between pressure and saturation temperature is demonstrated. 

Verilog HDL simulation results obtained for XC6VCX240T device of Virtex family with IEEE 754 floating-

point 32-bit data representation with an efficient sigmoid activation having large arguments are presented. 

Error in the sigmoid function for the argument range (-30-30) is within 0.02% which gives a mean accuracy 

of final outputs of the SteamNet to be around 0.5%. Results of FPGA simulation on a target system show the 

cycle time is of the order of 700ns. Device utilization for the network are presented using the approach. This 

technique enables to implementation of manytranscendental functions in FPGA without the need for porting 

the iterative complex codes; hence it is expected many real time applications like enthalpy-based steam 

temperature control in boilers, often used in power and process, can be easily developed.  
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