
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 10, No. 1, March 2021, pp. 1~10

ISSN: 2089-4864, DOI: 10.11591/ijres.v10.i1.pp1-10  1

Journal homepage: http://ijres.iaescore.com

A design methodology for approximate multipliers in

convolutional neural networks: A case of MNIST

Kenta Shirane, Takahiro Yamamoto, Hiroyuki Tomiyama
Graduate School of Science and Engineering, Ritsumeikan University, Japan

Article Info ABSTRACT

Article history:

Received Nov 10, 2020

Revised Jan 10, 2021

Accepted Jan 20, 2021

 In this paper, we present a case study on approximate multipliers for MNIST

Convolutional Neural Network (CNN). We apply approximate multipliers

with different bit-width to the convolution layer in MNIST CNN, evaluate

the accuracy of MNIST classification, and analyze the trade-off between

approximate multiplier’s area, critical path delay and the accuracy. Based on

the results of the evaluation and analysis, we propose a design methodology

for approximate multipliers. The approximate multipliers consist of some

partial products, which are carefully selected according to the CNN input.

With this methodology, we further reduce the area and the delay of the

multipliers with keeping high accuracy of the MNIST classification.

Keywords:

Approximate computing

Approximate multiplier

CNN

MNIST
This is an open access article under the CC BY-SA license.

Corresponding Author:

Kenta Shirane

Graduate School of Science and Engineering

Ritsumeikan University

1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

Email: kenta.shirane@tomiyama-lab.org

1. INTRODUCTION

Convolutional Neural Networks (CNNs) are well-known as one of the state-of-the-art approaches in

the fields of media processing such as computer vision, speech recognition, and so on. Recently, designs of

computing systems with CNNs have been extensively studied by researchers. In general, CNNs are

computationally expensive due to repetition of the matrix multiplication that is the most critical bottleneck in

CNNs [1]. In order to reduce the computational cost of matrix multiplication, approximate computing attracts

increasing attention. Approximate computing is considered as a promising approach to design of area-,

performance- or power-efficient circuits for applications which are resistant to a certain amount of

computational inaccuracy. Approximate calculation circuits have been actively surveyed [2-5]. According to

the work in [6] and [7], which investigated the recent studies in the area of approximate computing, the

design of approximate multipliers has extensively been studied. Many approximate multipliers proposed

calculate the upper bits exactly and lower bits approximately [8-10]. Yamamoto et al. proposed a

methodology to systematically design 8-bit approximate array multipliers by gradually removing adders, and

analyzed the trade-offs among circuit area, delay, power and accuracy of the approximate multipliers [11].

Boroumand et al. explored the design space of approximate multipliers using a family of approximate

compressors as building blocks for the partial product reduction tree [12]. They presented a tool that allows

the user to specify an allowable level of error tolerance, and returns the minimum area, delay, or power

approximate multiplier that provides the level of accuracy. Liu et al. proposed a new approximate multiplier

with highly efficient partial product accumulation and error reduction [13]. The new approximate multiplier

has high accuracy but is more efficient in power and performance. In these works, approximate calculation

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 10, No. 1, March 2021: 1 – 10

2

circuits are designed with small calculation error. In addition, there are many researches on approximate

multipliers that reduce the error in the final output of CNN.

As mentioned above, approximate computing is studied as an effective method specialized to CNN

[14-16]. An error resilience analysis was performed in order to determine key constraints for the design of

approximate multipliers that are employed in the resulting structure of CNN [17]. Moreover, the paper

showed the capability of the back-propagation learning algorithm for CNNs containing the approximate

multipliers in MNIST and Street-View House Number dataset. Hammad et al. simulated the VGGNet [18]

which employs an approximate multiplier in the layers [19]. The simulation results show that the

approximate multiplier keeps the high accuracy of VGGNet. Sim et al. proposed a new Stochastic Computing

(SC) multiplication algorithm and its vector extension which is called SC-MVM (Matrix-Vector Multiplier)

[20]. The experimental results show that new SC-based CNN is more accurate and 40× to 490× more energy-

efficient in computation than the conventional SC-based ones. SC is one of the methods of approximate

computing and has been actively studied [21, 22]. Courbariaux et al. proposed a method which trains neural

network parameters as binary weight and activation [23]. This network, which is called BinaryNet, can make

a reduction of memory usage and use XNOR circuits as a multiplier, so many approaches of acceleration

or/and implementation have been proposed [24-27]. Li et al. and Balaji et al. designed 8-bit fixed-point

approximate multipliers for LeNet and implemented to FPGA [28, 29]. These are more efficient in delay and

resource than exact computation with high accuracy of MNIST classification. For these works, approximate

computing can reduce computational resources and CNN’s trained parameters.

In this paper, we present a design methodology of approximate multipliers for MNIST CNN. As a

preliminary preparation of deign of approximate multipliers, we design 64 multipliers with simple reduction

of the bit-width of an 8-bit multiplier, and evaluate trade-off between the accuracy of MNIST classification,

the area and the delay of the multipliers. Based on the analysis, we design approximate multipliers based on

two methods. One of the methods is based on comprehensive analysis of upper 2-bit partial products of 8-bit

multiplier, and the other is selection of the partial products according to result of first method and 8-bit

multiplier’s analysis. With these improvements, we further reduce the area and the delay of the multipliers

with keeping high accuracy in MNIST classification. The rest of this paper is organized as follows. Section 2.

shows outline of general CNN and MNIST CNN in this paper. Section 3 describes simple approach to bit-

width reduction and the experiments. Section 4. describes a design methodology of approximate multiplier

with two-step approach, and Section 5. concludes this paper with a summary.

2. CNN FOR MNIST CLASSIFICATION

In this section, we explain a general Convolutional Neural Network (CNN), its convolution layer

and MNIST CNN in this work. CNN is a neural network which has deep layer including convolution layer.

CNN is known as a high-accuracy image classification model. One of the most popular image classification

models is Alexnet [30]. In 2012, Alexnet won ILSVRC by a big margin over other models. This victory

triggered prevalence of CNN in the world and many of neural networks in image classification are based on

CNN today.

2.1. Convolution layer

In this subsection, we explain about a general convolution layer. A Convolution layer performs

convolution operation on an input image with a filter (weight), its outputs sum up bias, and the outputs are

propagated to the next layer or activation function. The filter and bias are trained and saved in convolution

layer. In convolution operation, the products of input and filter are summed up and stored to the

corresponding output. Convolution operation performs at an interval which is defined “stride”. Figure 1

represents an example of convolution operation. When a 5×5 input, a 3×3 filer and stride value “1” are given,

the size of the output is organized as 3×3. In this case, the convolution layer contains 81 multiplications per

filter. In general, CNN contains many filters. In this work, CNN contains 30 filters and the convolution layer

performs multiplication operations 432,000 times per image.

Figure 1. Convolution layer

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

A design methodology for approximate multipliers in convolutional neural networks: … (Kenta Shirane)

3

2.2. An example of CNN for MNIST

In this subsection, we explain about MNIST CNN in this paper. Figure 2 shows the model of

MNIST CNN and MNIST dataset. MNIST CNN consists of Convolution (convolution layer), Pooling (max

pooling layer), Affine (affine layer), ReLU and Softmax. Next part describes each of the layers or the

activation functions, except from the convolution layer.

Pooling selects the maximum number of input elements in filter range and stores the corresponding

output. This layer can reduce processing weight with constant approximation. This operation does not contain

parameters such as weight or bias, and keeps the spatial information of input image.

Affine multiplies each input element and weight value, sums up these products and stores the

corresponding output. This layer connects all spatial information to each class. This operation contains

parameters which are weight and bias, and does not keep the spatial information of input image.

ReLU and Softmax are activation functions which prepare input data. ReLU fixes “0” or less value

to “0” and stores the corresponding output. It is known as ramp function. Softmax fixes input value to

probability value. This function is used before finally output and highest probability value’s class is CNN

output.

The CNN trained MNIST data set. MNIST data set contains handwritten digits from “0” to “9”,

which is a collection of 28×28 quasi binary images, and the pixel value is varied from “0” to “1”. MNIST is

one of the most elementary datasets in image classification of CNN, so we firstly use this dataset to examine

the impact of approximate multiplier to image classification.

Figure 2. An example of CNN for MNIST

3. PRELIMINARY ANALYSIS ON BIT-WIDTH

This section describes how to reduce bit-width of multiplication and the experiments to Figure out

the scale of multiplier which CNN needs. The experiment is the preparation of Section 4. and the purpose is

an exploration of the multiplier which keeps high accuracy of image classification.

3.1. Bit-Width reduction approach

In this work, we design different bit-width multipliers by reducing partial products of 8-bit

multiplier. The 8-bit multiplier is general small scale, but MNIST is known as dataset which can be classified

by using small scale circuit. The structure of BinaryNet is different from CNN in this work, but BinaryNet

has a high accuracy of image classification and MNIST classification does not seem to need high precision

multiplication.

The 8-bit multiplier is based on an exact 8-bit array multiplier since the 8-bit array multiplier is so

small, and the 8-bit multiplier does not have to apply Wallace tree and/or booth’s multiplication because of

bad tradeoff between the overhead and the performance improvement of the multiplier. Figure 3 is an exact

8-bit array multiplier. The multiplication uses multiplicand and multiplier to obtain partial products. Sum of

the partial products is a product. Sum operation starts from upper-right to lower-left. The product of 8-bit

multiplier becomes 16-bit product.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 10, No. 1, March 2021: 1 – 10

4

In this reduction, we replace the multiplicand or the multiplier with “0” in order from lowest-order

bit. By this operation, the corresponding multiplier or multiplicand is useless, and this partial product’s value

becomes ‘0’. In addition, the multiplicand and multiplier have 8-bit information, and we can reduce different

bit-width between the multiplicand and the multiplier. Figure 4 is an example of 7×6-bit multiplier. We

replace least bit of multiplicand and lower 2-bit of the multiplier with “0”, so we can delete 22 partial

products and lower 3-bit of product. We can reduce different bit-width between the 8 multiplicands and 8

multipliers, so we can create 64 multipliers in different bit-width.

Figure 3. An exact 8-bit multiplier

Figure 4. An example of 7×6-bit multiplier

3.2. Preliminary results

We designed MNIST CNN in order to apply self-made multipliers. We applied different bit-width

multipliers to MNIST CNN and evaluated the trade-offs of the accuracy of MNIST classification, the area

and the delay of the multiplier. The experiments can Figure out the scale of multiplier which CNN needs, and

we improve the multiplier, which keeps high accuracy of image classification, by reference to experimental

results in the following section. We can reduce different bit-width between the multiplicand and multiplier,

so we can create 64 multipliers in different bit-width. We use CNN parameters learned 2000 training images.

We measure the image classification accuracy when CNN recognize 1000 test images. The accuracy with

exact computation, which is 32-bit floating point multiplication, is 98.4%. The description of multipliers is

written in Verilog. We synthesis the 64 multipliers by LeonardoSpectrum and measure the number of gate

and critical path delay. We use Nangate45 which is 45nm process library. When we synthesis the circuit

optimized minimizing area.

Figure 5 (a)-(c) are the experimental results of bit-width reduction. The filter data are multiplicand

and the image data are multiplier. Figure 5 (a) is the result of accuracy, Figure 5 (b) is the result of the area,

and Figure 5 (c) is the result of the delay. In Figure 5 (a), accuracy in 8×8-bit is 98.4% and accuracies in 3×2-

bit and 4×1-bit are almost the same as the exact one. The accuracy in 2×1-bit is 97.1% and the accuracy in

less than 2×1-bit decrease significantly. Whenever the filter bit-width is 1, the accuracy is extremely low.

Therefore, the MNIST CNN needs about 2×2- or more bit multiplier to keep high accuracy of image

classification. In Figure 5 (b) shows that the area of multiplier decreases in proportion to the scale of

multiplier. The area in 3×2-bit is 15 gates that contains HA (half adder) and many AND gates, the area in

4×1-bit is 4 gates which are 4 AND gates and the one in 2×1-bit is 2 gates which are two AND gates. In

Figure 5 (c) shows that the delay of multiplier decreases in proportion to the scale of multiplier. The delay in

3×2-bit is 0.10 ns. The delay in 4×1-bit is 0.02 ns as well as the 2×1-bit.

Partial Product

＋

Product

＋

Partial Product

Product

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

A design methodology for approximate multipliers in convolutional neural networks: … (Kenta Shirane)

5

Table 1 is the detail of upper order 3-bit image bit-width. Cases of 3×2-bit and 4×1-bit are same

accuracy and contain five partial products. However, the area of the 3×2-bit multiplier is larger than that of

4×1-bit, and the delay of the 3×2-bit multiplier is longer delay than a case of 4×1-bit. Therefore, a case of

3×2-bit is better power efficiency than a case of 4×1-bit. Besides, filter data (multiplicand) are more

important to MNIST CNN than image data (multiplier). In the experimental results, MNIST CNN needs 4

gates to achieve almost the same accuracy as accuracy of classification with exact computation. In addition,

when the number of gates is 3 in 3×1-bit, accuracy is 98.0% and the MNIST CNN needs about 3×2, 4×1 or

more-bit multiplier to keep high accuracy of image classification. Therefore, in the next section, the proposed

design methodology is used to achieve higher accuracy with 3 or fewer gates.

(a) (b)

(c)

Figure 5. Experimental results of bit-width reduction (a) Accuracy, (b) Area, (c) Delay

Table 1. Detail of upper order 3-bit image bit-width
Filter

bit-width
Image

bit-width
Accuracy

(%)
Area

(gates)
Delay
(ns)

1 1 20.4 1 0.02
2 1 97.1 2 0.02
3 1 98.0 3 0.02
4 1 98.5 4 0.02
5 1 98.5 5 0.02
6 1 98.4 6 0.02
7 1 98.4 7 0.02
8 1 98.4 9 0.02

1 2 22.1 2 0.02
2 2 97.6 7 0.09
3 2 98.5 15 0.10
4 2 98.7 22 0.20
5 2 98.6 28 0.26
6 2 98.6 35 0.33
7 2 98.6 42 0.39
8 2 98.6 48 0.46

1 3 23.2 3 0.02
2 3 97.9 17 0.15
3 3 98.5 30 0.28
4 3 98.6 42 0.35
5 3 98.6 55 0.42
6 3 98.3 67 0.48
7 3 98.3 80 0.55
8 3 98.3 92 0.61

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 10, No. 1, March 2021: 1 – 10

6

4. A DESIGN METHODOLOGY FOR APPROXIMATE MULTIPLIERS

This section describes a design methodology of approximate multipliers for MNIST CNN. In the

first subsection, we explain an overview of a design methodology of approximate multipliers for CNN. In the

next two subsections, we applied the design methodology to MNIST CNN. At every step, we evaluated the

trade-offs of the accuracy of MNIST classification, the area and the delay of the multiplier.

4.1. A design methodology

This subsection describes overview of the proposed design methodology of approximate multipliers

for CNN. Figure 6 is flowchart of the proposed design methodology. In the first harf of the methodology, we

analyze partial products of exact multiplier and select significant partial products for CNN as an approximate

multiplier. If the accuracy of CNN is not significantly higher or the area or delay don’t satisfy user

requirements, we analyze a broader scope again.

In the second harf of the methodology, we analyze in more detail partial products of exact multiplier

for combining to the approximate multiplier designed in the first half of the methodology. If the accuracy of

CNN is lower than exact one, we analyze a broader scope again. In the design methodology, we can design

approximate multipliers that maintain a high recognition rate of CNN without compromising the user's

requirements. In the next two subsections, we applied the design methodology to MNIST CNN.

Figure 6. Flowchart of the proposed design methodology

4.2. Comprehensive analysis of 2-bit partial products

This subsection describes the example of the comprehensive analysis of 2×2-bit multiplier.

According to the experimental results of Section 3, we analyzed only higher 2-bit partial products. Figure 7 is

an exact 2×2-bit multiplier. ‘a’ is filter bit, ‘b’ is image bit, ‘p’ is product, and HA is half-adder circuit. We

reduced partial products from lower bit in Section 3, but we selected one to four partial products in our

Start

Comprehensive analysis
of N×N-bit multiplier

The area and delay

satisfy user

requirements

Select (N+1)-th uppermost partial products of

the approximate multiplier with comprehensive

analysis of M-th uppermost partial product

Select significant partial products as

an approximate multiplier

Finish

The accuracy of

CNN is significantly

higher

The CNN accuracy is

lower than exact one

No

Yes

M = M+1

N = N+1

N = 1

M = 1

Yes

No

Yes

No

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

A design methodology for approximate multipliers in convolutional neural networks: … (Kenta Shirane)

7

design methodology. We analyzed the accuracy of MNIST classification, the area and the delay of the

approximate multiplier which has one to four partial products of 2×2-bit multiplier comprehensively. In this

experiment, we can explore the combination of partial products which keeps high accuracy of image

classification. The experimental conditions are based on Section 3.

Table 2 is the result of comprehensive analysis of the 2-bit partial products. When the number of

partial products is 1, the case of a7b6 is the highest accuracy, but it is not enough high accuracy. When the

number of partial products is 2, the case of a6b7 and a7b7 is highest accuracy, 97.1%. In this case, the number

of gates is 2 and delay is 0.02 ns. When the number of partial products is 3 or 4, no other case of partial

products is more efficiency than the case of a6b7 and a7b7. Figure 8 is the logic level circuit of a7b7 and a6b7.

HAs are removed. In the second harf of the methodology, we try to achieve higher accuracy by a6b7, a7b7 and

another partial product.

Figure 7. 2-bit exact multiplier

Table 2. Comprehensive analysis in upper order 2-bit partial products
Number of

Partial Product
Partial
Product

Accuracy
(%)

Area
(gates)

Delay
(ns)

1

a6b6 43.7 1 0.02
a6b7 17.8 1 0.02
a7b6 63.6 1 0.02
a7b7 20.4 1 0.02

2

a6b6, a6b7 69.5 2 0.02
a6b6, a7b6 86.6 2 0.02
a6b6, a7b7 94.9 2 0.02
a6b7, a7b6 91.0 4 0.06
a6b7, a7b7 97.1 2 0.02
a7b6, a7b7 22.1 2 0.02

3

a6b6, a6b7, a7b6 90.5 5 0.08
a6b6, a6b7, a7b7 90.0 3 0.02
a6b6, a7b6, a7b7 96.9 3 0.02
a6b7, a7b6, a7b7 97.5 6 0.08

4 a6b6, a6b7, a7b6, a7b7 97.6 7 0.09

Figure 8. Logic-level circuit of a7b7 and a6b7

4.3. Selection of the third uppermost product

This subsection describes the example of selection of the third uppermost products. Figure 9 is a

logic-level circuit of a6b7, a7b7 and aibj. aibj is one of the ten partial products which is possible to output upper

than p11 which is the fifth uppermost product. In the ten cases, we analyze the accuracy of MNIST

classification, the area and the delay of the multiplier. The experimental conditions are based on Section 3.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 10, No. 1, March 2021: 1 – 10

8

Table 3 is the result of selection of the third significant product. The number of gates and the delay

always keep 3 gates and 0.02 ns, respectively. The highest accuracy achieves 98.4% in a5b6, and this is the

same result as exact computation. Therefore, we achieve the same accuracy as MNIST classification with

exact computation by using approximate multiplier composed of a7b7, a6b7 and a5b6.

Figure 10 is the logic-level circuit of a6b7, a7b7 and a5b6. In the case of MNIST CNN, the proposed

design methodorogy is efficient for designing approximate multipliers with small scale, low delay and high

image recognition of CNN. Because a6b7 and a7b7 contain neither a5 nor b6, we consider that many varieties

of multiplicand and multiplier improve CNN accuracy of classification. In addition, a5b6 is usually output to

p11, but it is output to p12 in this case. Therfore, we considered that higher bit information is not always more

important to image classification with CNN than lower bit information.

Figure 9. Logic-level circuit of a7b7, a6b7 and aibj

Table 3. Selection of the third significant product
p12 Accuracy (%) Area (gates) Delay (ns)

a4b7 98.2 3 0.02
a5b6 98.4 3 0.02
a5b7 98.0 3 0.02
a6b5 96.6 3 0.02
a6b6 96.9 3 0.02
a6b7 96.2 3 0.02
a7b4 97.3 3 0.02
a7b5 97.4 3 0.02
a7b6 97.3 3 0.02
a7b7 97.3 3 0.02

Figure 10. Logic-level circuit of a7b7, a6b7 and a5b6

4.4. Comparison

Table 4 is a comparison table of multipliers with simple bit-width reduction and approximate

multipliers based on the proposed methodology. The labels 8×8, 3×2, 2×2 and 2×1 are based on analysis of

Section 3 the label AP (approximate) 2×1 is based on subsection 4.2, and the label AP 3×2 is based on

subsection 4.3. AP 3×2-bit multiplier has the same accuracy of MNIST recognition as the exact 8×8 and 3×2-

bit multipliers. In addition, the area of AP 3×2-bit multiplier improved by 80% over the area of exact 3×2-bit

multiplier, and the delay of AP 3×2-bit multiplier improved by 80% over the area of exact 3×2-bit multiplier.

Therefore, the design methodology of approximate multipliers is efficient for MNIST CNN.

Table 4. Comparison table of multipliers with simple bit-width reduction and approximate multipliers
Multiplier Accuracy (%) Area (gates) Delay (ns)

8×8 98.4 312 1.26
3×2 98.5 15 0.10
2×2 97.6 7 0.09
2×1 97.1 2 0.02

AP 2×1 (a7b7 and a6b7) 97.1 2 0.02
AP 3×2 (a6b7, a7b7 and a5b6.) 98.4 3 0.02

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864 

A design methodology for approximate multipliers in convolutional neural networks: … (Kenta Shirane)

9

5. CONCLUSIONS

In this paper, we proposed a design methodology of approximate multipliers for CNN. We achieved

high accuracy of MNIST classification with approximate multipliers based on the proposed methodology.

With the design methodology, by using the approximate multiplier, we achieved the same accuracy as

MNIST classification with exact computation and improved the area and delay performance. In future, we

plan to apply the proposed methodology of approximate multipliers to more complex and larger scale CNN.

Besides, we plan to implement approximated CNN on FPGA and plan to analyze the impact on FPGA.

ACKNOWLEDGEMENTS

This work is in part supported by KAKENHI 19H04081 and 20H00590.

REFERENCES
[1] K. Guo, S. Zeng, J. Yu, Y. Wang and H. Yang, “A survey of FPGA based neural network accelerator,” ACM

Transactions on Reconfigurable Technology and Systems, vol. 1, no. 1, 2018.

[2] F. M. del Campo, A. Morales-Reyes, R. Perez-Andrade, R. Cumplido, A. G. Orozco-Lugo and C. Feregrino, “A

multi-cycle fixed point square root module for FPGAs,” IEICE Electronics Express, vol. 9, no. 11, pp. 971-977,

2012.

[3] D. Shin and S.K. Gupta, “Approximate logic synthesis for error tolerant applications,” 2010 Design, Automation &

Test in Europe Conference & Exhibition (DATE 2010), 2010.

[4] N. Zhu, W.L. Goh and K.S. Yeo, “An enhanced low-power high-speed adder for error-tolerant application,”

Proceedings of the 12th International Symposium on Integrated Circuits (ISIC'09), 2009, pp. 69-72.

[5] V. Gupta, D. Mohapatra, A. Raghunathan and K. Roy, “Low-power digital signal processing using approximate

adders,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 1, pp. 124-

137, 2013.

[6] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for energy-efficient design,” in 2013

18th IEEE European Test Symposium (ETS), 2013, pp. 1-6.

[7] Q. Xu, N. Kim and T. Mytkowicz, “Approximate computing: A survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8-

22, 2015.

[8] B. Shao, and P. Li, “Array-based approximate arithmetic computing: A general model and applications to multiplier

and squarer design,” International Symposium on Low Power Electronics and Design (ISLPED), vol. 64, no. 4, pp.

1081-1090, 2014.

[9] T. A. Drane, T. M. Rose, and G. A. Constantinides, “On the systematic creation of faithfully rounded truncated

multipliers and arrays,” IEEE Transactions on Computers, vol. 63, no. 10, pp. 2513-2525, Oct. 2014.

[10] F. Farshchi, M. S. Abrishami, S.M. Fakhraie, “New approximate multiplier for low power digital signal

processing,” in The 17th CSI International Symposium on Computer Architecture & Digital Systems (CADS 2013),

2013, pp. 25-30.

[11] T. Yamamoto, I. Taniguchi, H. Tomiyama, S. Yamashita and Y. Hara-Azumi, "A systematic methodology for

design and worst-case error analysis of approximate array multipliers," IEICE Trans. on Fundamentals, vol. 100,

no. 7, pp. 1496-1499, 2017.

[12] S. Boroumand, H. P. Afshar, P. Brisk and S. Mohammadi, “Exploration of approximate multipliers design space

using carry propagation free compressors,” in 2018 23rd Asia and South Pacific Design Automation Conference

(ASP-DAC), 2018, pp. 611-616.

[13] C. Liu, J. Han and Fabrizio Lombardi, “A Low-Power, High-performance approximate multiplier with configurable

partial error recovery,” in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, pp. 1-4.

[14] J. Chang and J. Sha, “An efficient implementation of 2D convolution in CNN,” IEICE Electronics Express, vol. 14,

no. 1, pp. 1-8, 2017.

[15] B. Liu, H. Qin, Y. Gong, W. Ge, M. Xia and L. Shi,” EERA-ASR: An energy-efficient reconfigurable architecture

for automatic speech recognition with hybrid DNN and approximate computing,” IEEE Access, vol. 6, pp. 52227-

52237, 2018.

[16] D-A. Nguyen, H-H. Ho, D-H. Bui and X-T Tran, “An efficient hardware implementation of artificial neural

network based on stochastic computing,” in NAFOSTED Conference on Information and Computer Science

(NICS), 2018, pp. 237-242.

[17] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek and K. Roy, “Design of power-efficient approximate multipliers

for approximate artificial neural networks,” in IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), 2016, pp. 1-7.

[18] K. Simonyan and A. Zisserman,” Very deep convolutional networks for large-scale image recognition,” in

International Conference on Learning Representations, 2014.

[19] I. Hammad and K. El-Sankary, “Impact of approximate multipliers on VGG deep learning network,” IEEE Access,

vol. 6, pp. 60438-60444, 2018.

  ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 10, No. 1, March 2021: 1 – 10

10

[20] H. Sim and J. Lee, “A new stochastic computing multiplier with application to deep convolutional neural

networks,” in IEEE Design Automation Conference (DAC), 2017, pp. 1-6.

[21] E. Schkufza, R. Sharma, A. Aiken, "Stochastic optimization of floating-point programs with tunable precision",

ACM SIGPLAN, vol. 49, no. 6, pp. 53-64, 2014.

[22] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Trans. Embedded Computing Systems, vol. 12,

no. 2s, pp. 1-19, 2012.

[23] M. Courbariaux and Y. Bengio “BinaryNet: Training deep neural networks with weights and activations

constrained to +1 or −1,” arXiv, 2016.

[24] N. J. Fraser, Y. Umuroglu, G. Gambardella, M. Blott, P. Leong, M. Jahre and K. Vissers, “Scaling binarized neural

networks on reconfigurable logic,” in ACM International Conference Proceeding Series (ACM-ICPS), 2017, pp.

25-30.

[25] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh and D. Marr, “accelerating binarized neural networks:

Comparison of FPGA, CPU, GPU, and ASIC,” in International Conference on Field-Programmable Technology

(FPT), 2016, pp. 77-84.

[26] Y. Zhang, Z. Zhou, P. Huang, M. Fan, R. Han, W. Shen, L. Liu, X. Liu and J. Kang, “An improved hardware

accelaration architecture of binary neural network with 1T1R array based forward/backward propagation module,”

in Silicon Nanoelectronics Workshop (SNW), 2019, pp. 1-2.

[27] P. K. Chundi, P. Liu, S. Park. S. Lee and M. Seok “FPGA-based acceleration of binary neural network training with

minimized off-chip memory access,” in IEEE/ACM International Symposium on Low Power Electronics and

Design (ISLPED), 2019, pp. 1-6.

[28] Z. Li, L. Wang, S. Guo, Y. Deng, Q. Dou, H. Zhou and W. Lu, “Laius: An 8-bit fixed-point CNN hardware

inference engine,” in IEEE International Symposium on Parallel and Distributed Processing with Applications and

2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), 2017,

pp. 143-150.

[29] A. Balaji, S. Ullah, A. Das, and A. Kumar,” Design methodology for embedded approximate artificial neural

networks,” in Great Lakes Symposium on VLSI (GLSVLSI), 2019, pp. 489-494.

[30] A. Krizhevsky, I. Sutskever and E. Hinton, “ImageNet classification with deep convolutional neural networks,” in

International Conference on Neural Information Processing Systems, vol. 60, no. 6, pp. 84-90, 2017.

BIOGRAPHIES OF AUTHORS

Kenta Shirane received his BE degree in electronic and computer engineering from Ritsumeikan

University in 2019. He is in the Master’s degree program at Ritsumeikan University. His

research interests include design methodologies for embedded systems.

Takahiro Yamamoto received his BE and ME degrees in electronic and computer engineering

from Ritsumeikan University in 2016 and 2018, respectively. At present, he works for

Mitsubishi Electric Corporation. His research interests include design methodologies for

embedded systems.

Hiroyuki Tomiyama received his BE, ME, and DE degrees in computer science from Kyushu

University in 1994, 1996, and 1999, respectively. He worked as a visiting researcher at UC

Irvine, as a researcher at ISIT/Kyushu, and as an associate professor at Nagoya University. Since

2010, he has been a full professor with the College of Science and Engineering, Ritsumeikan

University. He has served on program and organizing committees for a number of premier

conferences including DAC, ICCAD, DATE, ASP-DAC, CODES+ISSS, CASES, ISLPED,

RTCSA, FPL, and MPSoC. He has also served as an editor-in-chief for IPSJ TSLDM; an

associate editor for ACM TODAES, IEEE ESL, and Springer DAEM; and a chair for the IEEE

CS Kansai Chapter and IEEE CEDA Japan Chapter. His research interests include, but are not

limited to, design methodologies for embedded and cyber-physical systems.

