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 When transmitting the data in digital communication, it is well desired that 

the transmitting data bits should be as minimal as possible, so many 

techniques are used to compress the data. In this paper, a Lempel-Ziv 

algorithm for data compression was implemented through VHDL coding. 

One of the most lossless data compression algorithms commonly used is 

Lempel-Ziv. The work in this paper is devoted to improve the compression 

rate, space-saving, and utilization of the Lempel-Ziv algorithm using a 

systolic array approach. The developed design is validated with VHDL 

simulations using Xilinx ISE 14.5 and synthesized on Virtex-6 FPGA chip. 

The results show that our design is efficient in providing high compression 

rates and space-saving percentage as well as improved utilization. The 

Throughput is increased by 50% and the design area is decreased by more 

than 23% with a high compression ratio compared to comparable previous 

designs. 
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1. INTRODUCTION 

Computers can deal with several different sorts of data like text, games, sound, photos, and film. A 

percentage of these information sources need a large amount of data which can also quickly fill up your hard 

disk or take a long time to transmit over a network. It is regularly an issue to be able to store a lot of digital 

information using a limited amount of space. For this reason, it is interesting to check if the data can be 

rewritten such that it takes up less space. This may appear like magic, but does, in fact, work well for some 

data types. Data compression is used multimedia formats for images, Video and audio [1, 2]. The lossless 

data compression indicates that data is the same at the source and destination [3, 4]. Huffman code [5, 6], 

run-length code [7], arithmetic code [8], and Lempel-Ziv (LZ) compression algorithms [9] are a widely used 

[10] lossless data compression technique. Among them, the LZ algorithm that is a dictionary-based algorithm 

that can achieve an average compression ratio for lossless data compression and is considered universal. 

Statistical lossless data compressors are better than dictionary-based in cost, area requirement and 

compression ratios [11]. In the hardware implementation of dictionary-based methods, three approaches are 

distinguished: CAM (Content Addressable Memory) approach [12], the microprocessor approach [13] and 

the systolic array approach [5]. The main advantage of the Systolic array approach is that it is easily 

implemented and a higher clock rate can be achieved [14]. Comparison between the three approaches is 

shown in Table 1. Due to the considerable amount of parallel comparison involved by LZ algorithm, so 

https://creativecommons.org/licenses/by-sa/4.0/
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achieving a very high throughput using software approaches may be difficult. Systolic Array approach will 

be used in this research to achieve high throughput with lower H/W requirements. 

The remaining of this paper is organized as: This paper consists of six sections; the related work is 

explained in section 2. LZSS compression algorithm is explained in Section 3. Section 4 describes the 

systolic array design for LZ. Section 5 contains the simulation and implementation results of our design. 

Finally, conclusions are given in section 6. 

 

 

Table 1. Comparison between hardware approaches of dictionary-based method 
Approach Features 

Microprocessor Large amount of available flexibility-loss of performance-
does not completely explore parallelism 

Content addressable memory (CAM) Very fast-high power consumption-expensive due to high 

hardware requirements-full paraller searching 
Systolic array Lower hardware requirements-better testability-pipeline 

searching–higher clock rate 

 

 

2. RELATED WORK 

Since lossy data compression allocates the bits necessary for data restoration within a specified 

fidelity level measured by a distortion feature. This theory is called rate-distortion [8]. In lossless data 

compression [7], the data should be precisely reconstructed [15]. Lempel–Ziv compression method is a 

dictionary method based on the substitution of text substrings with its previous occurrences. The Lempel-Ziv 

compression dictionary starts with a certain predetermined state, but during the encoding process, the content 

changes depending on the data that has already been encoded. LZ77 [9] and LZ78 [16] are the most famous 

algorithms. LZSS is the most popular versions of LZ77 [17-19]. There are many researches works on LZ 

design for data compression. We will introduce some of the recent and previous works such as in [20], in 

[14] and in [21]. 

In [22], Marsh and Knapp presented a detailed analysis of how the size of the buffers in the LZ77 

algorithm affects the throughput and compression ratio. By choosing a specific buffer size, the required area 

can be evaluated, the compression ratio, and the throughput that the compressor can achieve. Using a Xilinx 

XC2V1000 FPGA device, the implementation of the compressor was done using a 512-byte search buffer 

and a coding buffer of 15-byte. Based on post-layout simulations, architecture can achieve a 11 Mbps 

throughput. In [23], By using systematic design methodologies, an area/power- architecture for LZ data 

compression was developed. In order to indicate early completion, they used a control variable to improve 

the latency. Their architecture allows a high-level understanding of the tradeoffs involved. By using a 

common estimation framework, a broad range of options can be considered, since the architecture is scalable 

and parameterized. 

In [24], A LZ compression parallel algorithm was described by Mohamed A. Abd El Ghany. To 

display early completion, a control variable was used to further improve the latency. The proposed 

implementation is efficient in terms of speed and area requirements. The design area is decreased by more 

than 30% and the compression rate is increased by more than 40%. His compression rate was about 13Mbps. 

In [25], Design and FPGA implementation for GZIP compressor based systolic array was presented. A single 

GZIP compression core was implemented in Virtex 6 FPGA ML605 development board, data transfers 

Xillybus utilization was done over PCI Express. The throughput of their implementation was over 1.3 Gbps 

and the software average throughput was 52 Mbps using the Calgary corpus. In [26], H.Luo, Ye Cai, and 

Q.Mao presented a multi-core GZIP compressor for HDFS. To increase throughput, the core was designed 

via expanding multiple systolic array compression cores. The Hardware implementation was evaluated using 

Alpha Data Adm-Pcie-KU3 FPGA development board, RIFFA data transfers utilization was done over PCI 

Express. The peak throughput of the compressor exceeds 1.1 GB/s. 

 

 

3. LZSS COMPRESSION ALGORITHM 

LZSS is one of the improvements of LZ77 that will be used in this paper. a window (n = 9) shown 

in Figure 1 and look-ahead buffer (Ls = 3) as an example. Assume that Xi, i = 0, 1... n-1 will be represented as 

the window content and that Yj, j = 0, 1… Ls-1 (i.e., Yj = Xi+n-Ls) as the look-ahead buffer content. The look-

ahead buffer content is compared with the content of the dictionary according to LZ concept to find the 

length of the longest match Lmax which start from Ip position. Then output will be represented by a 

codeword (Ip, Lmax). The code word length Lc is given by: 
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                                     (1) 

 

To represent a symbol in the window, w bits are needed, l = log2 (Ls) bits to represent Lmax, and p = 

log2 (n-Ls) bits to represent Ip. Then (l + p) / (Lmax * w) is the compression ratio. 

 

 

 
 

Figure 1. Example of LZ compressor window 

 

 

In the DG I Figure 2, match length and match signal are propagated from cell to cell. The window 

content (X) and the look-ahead buffer content (Y) are broadcast to all cells horizontally and diagonally 

respectively. By the DG projection into the surface normal to the projection vector selected, the processor 

assignment can be done.  

 

 

 
 

Figure 2. Dependence graph of the LZ compression algorithm 

 

 

4. SYSTOLIC ARRAY DESIGN FOR LZ DATA COMPRESSION 

The compression design of Lempel Ziv is shown in Figure 3. The systolic array design architecture 

consists of three major components: the SALZC compressor module, the RAM block, and the host controller. 

SALZC module doesn't include block RAM. The dictionary size can be increased by exchanging the block 

RAM with a larger one. Also, the host controller is not combined into the SALZC module, to be able to 

modify when the dictionary size is changed. The window size length n in our implementation 1K, and the 

length of look-ahead buffer Ls = 16. 

 

 

 
 

Figure 3. Lempel-Ziv compression chip 
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4.1.  SALZC module 
SALZC module contains 16 processor elements (PES), one L-encoder, 16 bytes shift register, and 4-

bit counter. The SALZC module is depicted in Figure 4. 

 

 

 
 

Figure 4. SALZC module block diagram 

 

 

From the DG shown in Figure 2, all the nodes in a specific row are integrated into a single processor 

element (PE). A linear array of length Ls is produced. The layout is simple due to the regularity of the array. 

A single cell (PE) only will hand – laid out, then the other 15 PEs are its copies. Routing is also simplified 

due to systolic array design. The resulting array of Design-P are given in Figure 5 and the space-time 

diagram is shown in Table 2. 

As shown in Figure 5 the architecture consists of 16 processing elements that is used for 

comparison, and L-encoder that is used for matching length output. Thus, the look-ahead buffer symbols Yj 

that remain in PEs during the encoding step and do not change. The Xi dictionary variable moves systolically 

from left to right, with 1 clock cycle delay. The processing element's match signal Ei moves onto the L-

encoder. The encoder's output Li is the matching longitude resulting from the i-1 comparisons. After one 

clock cycle, the first Li will be obtained and each clock cycle will be obtained for the following ones. The Yj 

is preloaded to be processed before the encoding process and this will take Ls extra cycles. The time of 

preloading new source symbols during the encoding process depends on the number of source symbols will 

be compressed in the preceding compression step, Lmax. 

 

 

 
 

Figure 5. Array of design-p 

 

 

Table 2. Space-time diagram 
space PE15 PE14 …. PE1 PE1 Li 

time       

1 X15– Y15 X14– Y14 …. X1– Y1 X1– Y1  

2 X16– Y15 X15– Y14 …. X2– Y1 X2– Y1 L0 
3 X17– Y15 X16– Y14 …. X3– Y1 X3– Y1 L1 

…. …. …. …. …. …. …. 

16 X30– Y15 X29– Y14 …. X16– Y1 X16– Y1 L14 
17      L15 



Int J Reconfigurable & Embedded Syst ISSN: 2089-4864  

 

FPGA implementation of Lempel-Ziv data compression (Gehad Mohey) 

103 

The PE block diagram is presented in Figure 6. The comparison of Yj and incoming Xi requires only 

one equality comparator. The Ei (match signal) result for the comparator propagates to the L-encoder. The L-

encoder block diagram is depicted in Figure 7. The match-length Li is computed according to match signals. 

 

 

  
  

Figure 6. Functional block of a processing 

element 

Figure 7. The l-encoder 

 

 

4.2.  Host controller 

The Host controller includes match results block (MRB), code word generator, and end of 

processing block (EOPB), as shown in Figure 8. From Figure 5, it is clear that the L-encoder doesn't generate 

the maximum matching length. So, in order to determine Lmax among the generated Lis', a match results block 

(MRB) is needed as shown in Figure 9.  

 

 

  
  

Figure 8. Host controller block diagram Figure 9. Match results block 

 

 

The end of processing block as shown in Figure 10 includes a 4-bit counter and Determination block 

(DB). This counter is needed to successfully handle the last part of the data stream. End of stream signal does 

not mean the end of the compression operation, but once the end of stream signal is generated using the 4-bit 

counter It's used to trigger the encoding process of the unprocessed data in the look-ahead buffer. After 

receiving the enable signal the counter will count the number of shift operations. DB determines the number 

of process elements that will operate during the encoding step according to the counter output and generates 

the end signal after the compression operation is complete. Determination block (DB) is shown in Figure 11. 

Without the DB the last part will be compressed incorrectly. The number of PEs in the forward buffer should 

be equal to the number of unprocessed data. Comparator and Subtractor are the principal components of DB. 

If the counter output (the number of data processed in the look-ahead buffer) is less than the number of PEs, 

they can be subtracted by the Subtractor. The number of PEs is created which will operate during the 

encoding stage. If the counter output is equal to the PES number, it means the entire look-ahead buffer data is 

processed. Hence the end signal (finish) will generate. 
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Figure 10. End of processing block (EOPB) Figure 11. Determination block (DB) 

 

 

4.3.  Block RAM 

We use the block RAM as the first-in-first-out (FIFO), so we need to use two counters, as illustrated 

in Figure 12. The first one is to generate a write address. At first, it is loaded by the look-ahead buffer's first 

address, then it counts to initialize the look-ahead, buffer. Afterward, it will point to where an input symbol 

should be inserted. The second one is to generate the address for reading. It will point to the FIFO's first 

location (equal to the address written + 1). Upon reaching the maximum value one of two counters. In the 

next step, it'll immediately go down to 0. 

 

 

 
 

Figure 12. First-in-first-out (FIFO) 

 

 

5. RESULTS  

5.1.  Software simulations  

The RTL architecture of SALZC module depicted in figure 4 is VHDL modeled with its simulation 

result as shown in Figure 13. The SALZC receives a sequence of 16 bytes of data from a text vector file. 

Thus, the first 16-bytes of data stored in Yj then it reads Xi and then it compared Yj with Xi and the result is in 

Li and Y0-out since Li = 1111 and this is due to the first 16-byte of Xi equal the first 16-bytes of Yj and Y0-out 

= 01110011 and this is due to the first byte of file = 01110011. 

 

 

 
 

Figure 13. Simulation results of SALZC module 
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The simulation result of the Host controller is shown in Figure 14. The code will output the code 

word due to the received signal from SALZC since if there is no match it will output codeword that contains 

M0 if there is a match it will output the code word that contains Length of the match and its pointer. The first 

bit in the codeword specifies that if there is a match or not.  

 

 

 
 

Figure 14. The host controller simulation result 

 

 

The code also will do shift if en-shift = 1 or if load =1 since en-shift is a control signal to do 16 

shifts initially then if load =1 it will load a new byte. The Host controller output also depends on L-ready, 

which shows that the match is ready or not. Li shows the length of the match and according to this length, the 

code will do shift (Li number of bytes). If we assume that Li = 0110 then Q-Ready = 1 then shift-left = 1 for 6 

clock cycle then shift left return to zero waiting for a new condition of Li or load if there is no match. as 

shown in Figure 15 Window act as a dictionary in our code since RAM is FIFO its depth = 1024 and width = 

8. The code reads the data input from the text file then the output is. 

 

 

 
 

Figure 15. Window simulation result 

 

 

After verifying the VHDL code of all the component Window, SALZC and Host controller, the 

match-length of comparison and the first byte stored in the first PE is fed to Host controller then it decides if 

it was a match-length then it compares it with the maximum length stored previously then it outputs the 

codeword that consists of (16-bits) contain match-length of compression and the pointer of this length, then it 

does several shifts equal to the match-length and load a new number of byte to the shift register and compare 

again. If it wasn't a successful comparison it output the first byte that was stored in the first PE and it does 

one shift (load one new byte) and do the comparison again as shown in Figure 16. If it has a match-length 

after the comparison, SALZC module has a signal that shows that the code has a match-length as shown in 

Figure 16 (Q_ready) signal = 1 at the time the output has a length and pointer and the first bit of the 

codeword equal one this is another verify for the output, but if the output has zero length it will out a signal 

(load) = 1 that verify there is no correct comparison.  
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Figure 16. The LZ compression chip simulation result 

 

 

5.2.  Implementation 

In this section, we present the achieved design lossless compression efficiency. The implementation 

of our design is carried out using Xilinx Virtex-6 FPGA, for n = 1k, Ls = 16, w = 8. FPGA utilization 

summary is shown in Table 3. The compression rate Rc can be estimated as: 

 

                           (2) 

 

In our implementation, we use window size (n) is 1K, Ls= 16, w= 8, and CLK= 175.408, Our module 

does space-saving about 55% and on average compression rate up to 25.75 Mbps. Saving percentage in our 

FPGA implementation is 55% and the compression ratio is 67.8%. The total on-chip power is 3.422 W. 

 

 

Table 3. Implementation result of the proposed design 
Device utilization summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slice Registers 373 301440 0% 
Number of Slice LUTs 262 150720 0% 

Number of Fully Used LUT-FF Pairs 117 518 22% 

Number of bounded IOBs 65 600 10% 
Number of Block RAM/FIFO 1 416 0% 

Number of BUFG/BUFG/CTRL/BUFHCEs 3 176 1% 

 

 

Table 4 depicts the comparison between Compression rate of the proposed design and the literature. 

In [26], presents parallel multi-core GZIP compressor via HDFS and implemented the design using Adm-

Pcie-KU3 FPGA device. They achieved compression rate about 22%. In [25], presented a design and 

implementation of a complete GZIP core architecture. They do the implementation using Virtex 6 ML605 

and achieved compression ratio about 21.7%. In [24], Presents design and implementation of LZSS using 

Sparten-II FPGA device and achieved 13 Mbps. Compared to the results in [16] the throughput is increased 

by 50% and the design area is decreased by more than 23% that provides an excellent platform for Real-time 

compression applications.  

 

 

Table 4. Compression rate and compression ratio comparison 
Design Dictionary size Compression Ratio Compression Rate FPGA Device 

Design, 2019 ------- …… 22% Adm-Pcie-KU3 FPGA 

Design, 2017  1024 ….. 21.7% Xilinx Virtex 6 

Design, 2007  1024 13 Mbps ….. Sparten-II 
The proposed design  1024 26 Mbps 67.8% Xilinx Virtex 6 
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6. CONCLUSIONS  

In this paper, the design and implementation of lossless data compression was described using the 

LZ algorithm. Xilinx ISE 14.5 tool is used. The programming is done in VHDL language and the whole 

algorithm is described in that language. Our systolic array LZ compression (SALZC) module provides space-

saving about 55% and on average compression rate up to 25.75 Mbps. Comparing to literature work we 

proved that LZSS based systolic array design can achieve high compression ratio compared to GZIP and also 

can achieve high compression rate compared to other LZ design. As future work, one may modify the host 

controller since it can be used for other algorithms string-matching based LZ, such as LZW and LZ78.  
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