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 Here, we present a modified version of the Karatsuba algorithm to facilitate 

the FPGA-based implementation of three signed multipliers: 32-bit × 32-bit, 

128-bit x 128-bit, and 512-bit × 512-bit. We also implement the conventional 

32-bit × 32-bit multiplier for comparative purposes. The Karatsuba algorithm 

is preferable for multiplications with very large operands such as 64-bit × 64-

bit, 128-bit × 128-bit, 256-bit × 256-bit, 512-bit × 512-bit multipliers and up. 

Experimental results show that the Karatsuba multiplier uses less hardware in 

the FPGA compared to the conventional multiplier. The Xilinx 

xc7k325tfbg900 FPGA using the Genesis 2 development board is used to 

implement the proposed scheme. The results obtained are promising for 

applications that require rapid implementation and reconfiguration of 

cryptographic algorithms. 
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1. INTRODUCTION 

The need to protect data and information is crucial; it can make the difference between life and 

death. More particularly, in the military field, winning a war relies heavily on the protection of information 

[1]. The use of encryption keys is one of the means used to preserve the authenticity, confidentiality, non-

denial, and integrity of the data. Encrypted messages use cryptographic keys, which are a binary number 

ranging from 0 to n. Figure 1 below shows an example of a block diagram to encrypt a message. 

 

 

 
 

Figure 1. Message encryption process 
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The longer the cryptographic key, the more robust its decryption. The length of the key depends on 

the type of information protection desired to achieve. Therefore, the nature of the mission and the operation 

heavily influence the length of a key. And finally, it depends on the severity of the damage that could occur if 

the information is intercepted and decrypted. Most of the cryptographic algorithms are very difficult to 

decipher; the theoretical foundations are substantial [2]. As with any encryption algorithm, we perform a lot 

of arithmetical operations, and we need to find methods to accelerate these basic arithmetic operations. These 

methods are geared towards the multiplication of large numbers. Keys are ranging in length from 64 bits to 

4096 bits depending on the security level we want to achieve and the type of the key generator used to 

generate them. As we said before, the longer the cryptographic keys, the stronger the cryptographic algorithm 

will be. For instance, we have the algorithms AES-128, DH, DSA, RSA-3072, SHA-256, and ECDH, 

ECDSA-256 present a security level of 128 bis. The algorithms AES-192, SHA-384, ECDH, ECDSA-384 

provide a security level of 192 bits, and finally, the algorithms AES-256, SHA-512, ECDH, and ECDSA-521 

exhibit a security level of 256 bits [3]. 

Harika et al. have presented a critical review of four multiplication algorithms, which are shift-And-

Add Multiplier, Carry Save Adder, Booth Multiplier, and a modified version of the Booth multiplier. Based 

on this article, the Carry Save Adder was found to be more efficient in terms of execution time and less space 

in the FPGA than the other multiplication algorithms mentioned above. Different multiplication algorithms 

exist, such as Grid, Wallace-tree, Vedic, Lattice, Combinational, Sequential, Array and Montgomery, and 

Karatsuba [4, 5]. Several articles proposed implementation methods on FPGA of the Karatsuba algorithm. 

Yang has introduced a scheme for implementing a 256-bit x 256-bit multiplier, which exhibits 50% 

efficiency compared to traditional implementations [6]. 

In this article, a new scheme for implementing the Karatsuba multiplier. The Karatsuba multiplier is 

very efficient in multiplying very large numbers, which constitutes an excellent asset in achieving complex 

cryptographic processors [7-9]. The conventional multiplication method has a complexity O(N2), while 

Karatsuba has a complexity of O(Nlog3/log2). The following section will present the theoretical foundations for 

the Karatsuba algorithm and used the finding to implement a third-degree Karatsuba multiplier. Section 3 

will introduce the proposed scheme; section 4 will show the experimental results. 

 

 

2. THIRD-DEGREE KARATSUBA ANALYSIS 

Here, we present the theoretical foundation for developing a third-degree Karatsuba multiplier 

formula. We will be using it to implement 32-bit × 32-bit Karatsuba multiplier, 128-bit × 128-bit Karatsuba 

multiplier, and 512-bit × 512-bit Karatsuba multiplier into FPGA. Weimerskirch laid out a more in-depth 

examination of the Karatsuba algorithm [10]. Let A(x) and B(x) the two operands of the third-degree 

Karatsuba multipliers.  

 

𝐴(𝑥) = 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥1 + 𝑎0𝑥0  (1) 

 

𝐵(𝑥) = 𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥1 + 𝑏0𝑥0  (2) 

 

𝐶(𝑥) = A(𝑥)𝐵(𝑥) (2)  (3) 

 

𝐶𝑘 = ∑ 𝑎𝑖𝑏𝑗𝑥𝑖+𝑗∞

𝑖+𝑗=𝑘
  (4) 

 

𝐶(𝑥) = (𝑎0𝑏0)𝑥0 + (𝑎0𝑏1 + 𝑎1𝑏0)𝑥1 + (𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎1𝑏1)𝑥2 + (𝑎0𝑏3 + 𝑎3𝑏0 + 𝑎1𝑏2 +
𝑎2𝑏1)𝑥3 + (𝑎1𝑏3 + 𝑎3𝑏1 + 𝑎2𝑏2)𝑥4 + (𝑎2𝑏3 + 𝑎3𝑏2)𝑥5 + (𝑎3𝑏3)𝑥6  (5) 

 

Let 

 

𝑀𝑖 = 𝐴𝑖𝐵𝑖  (6) 

 

𝑀𝑖,𝑗 = (𝐴𝑖 + 𝐴𝑗)(𝐵𝑖 + 𝐵𝑗)  (7) 

 

With i, j = 0, 1, 2, 3. 

 

By applying some basic algebra to (5), it follows 

 

𝐶(𝑥) = (𝑎0𝑏0)𝑥0 + (𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎0𝑏0 + 𝑎1𝑏1 − (𝑎0𝑏0 + 𝑎1𝑏1))𝑥1 + (𝑎0𝑏2 + 𝑎2𝑏0 +
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𝑎0𝑏0 + 𝑎2𝑏2 − (𝑎0𝑏0 + 𝑎2𝑏2) + 𝑎1𝑏1)𝑥2 + (𝑎0𝑏3 + 𝑎3𝑏0 +  𝑎0𝑏0 + 𝑎3𝑏3 − (𝑎0𝑏0 +

𝑎3𝑏3)+𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎1𝑏1 + 𝑎2𝑏2 − (𝑎1𝑏1 + 𝑎2𝑏2))𝑥3 + (𝑎1𝑏3 + 𝑎3𝑏1 + 𝑎1𝑏1 + 𝑎3𝑏3 −

(𝑎1𝑏1 + 𝑎3𝑏3) + 𝑎2𝑏2)𝑥4 + (𝑎2𝑏3 + 𝑎3𝑏2 + 𝑎2𝑏2 + 𝑎3𝑏3 − (𝑎2𝑏2 + 𝑎3𝑏3))𝑥5 + (𝑎3𝑏3)𝑥6  (8) 

 

After equaling (5) and (8), and by identification it follows: 

 

𝑎0𝑏1 + 𝑎1𝑏0 = 𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎0𝑏0 + 𝑎1𝑏1 − (𝑎0𝑏0 + 𝑎1𝑏1)  (9) 

 

After applying (6) and (7) to the RHS of (9), it follows: 

 

𝑎0𝑏1 + 𝑎1𝑏0 = 𝑀0,1 − (𝑀0 + 𝑀1)  (10) 

 

For the coefficient for x2, it follows: 

 

𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎1𝑏1 =  𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎0𝑏0 + 𝑎2𝑏2 − (𝑎0𝑏0 + 𝑎2𝑏2) + 𝑎1𝑏1  (11) 

 

Applying (6) and (7) to the RHS of (11) to have: 

 

𝑎0𝑏2 + 𝑎2𝑏0 + 𝑎1𝑏1 =  𝑀0,2 − (𝑀0 + 𝑀2) + 𝑀1  (12) 

 

For the coefficient for x3, it follows: 

 

𝑎0𝑏3 + 𝑎3𝑏0 + 𝑎1𝑏2 + 𝑎2𝑏1  =  𝑎0𝑏3 + 𝑎3𝑏0 +  𝑎0𝑏0 + 𝑎3𝑏3  − (𝑎0𝑏0 + 𝑎3𝑏3) + 𝑎1𝑏2 + 𝑎2𝑏1 +
𝑎1𝑏1 + 𝑎2𝑏2 − (𝑎1𝑏1 + 𝑎2𝑏2) (13) 

 

Applying (6) and (7) to RHS of (13) to have: 

 

𝑎0𝑏3 + 𝑎3𝑏0 + 𝑎1𝑏2 + 𝑎2𝑏1 =  𝑀0,3 + 𝑀1,2 − (𝑀0 + 𝑀3) − (𝑀1 + 𝑀2)  (14) 

 

For the coefficient for x4, it follows: 

 

𝑎1𝑏3 + 𝑎3𝑏1 + 𝑎2𝑏2 =  𝑎1𝑏3 + 𝑎3𝑏1 + 𝑎1𝑏1 + 𝑎3𝑏3 − (𝑎1𝑏1 + 𝑎3𝑏3) + 𝑎2𝑏2  (15) 

 

Applying (6) and (7) to (13) RHS to have: 

 

𝑎1𝑏3 + 𝑎3𝑏1 + 𝑎2𝑏2 =  𝑀1,3 − (𝑀1 + 𝑀3) + 𝑀2  (16) 

 

And finally, for the coefficient for x5, it follows: 

 

𝑎2𝑏3 + 𝑎3𝑏2 = 𝑎2𝑏3 + 𝑎3𝑏2 + 𝑎2𝑏2 + 𝑎3𝑏3 − (𝑎2𝑏2 + 𝑎3𝑏3)  (17) 

 

After applying (6) and (7) to (17) RHS, it follows:  

 

𝑎2𝑏3 + 𝑎3𝑏2 = 𝑀2,3 − (𝑀2 + 𝑀3)  (18) 
 

Replacing (10), (12), (14), (16), and (18) by their values in (8) yields into  

 

𝐶(𝑥) = 𝑀0 + (𝑀0,1 − 𝑀0 − 𝑀1)𝑥1 + (𝑀0,2 − 𝑀0 − 𝑀2 + 𝑀1)𝑥2 + (𝑀0,3 + 𝑀1,2 − 𝑀0 − 𝑀3 −

𝑀1 − 𝑀2)𝑥3 + (𝑀1,3 − 𝑀1 − 𝑀3 + 𝑀2)𝑥4 + (𝑀2,3 − 𝑀2 − 𝑀3)𝑥5 + 𝑀3𝑥6  (19) 

 

We have presented a new scheme to implement (19). Figures 2 and 3 present the first two steps in 

calculating the Mi and Mi, j with i, j = 0, 1, 2, 3 to implement the Karatsuba algorithm. Once these two steps 

pass, what follows is the use of adders and shift registers to implement the rest of the equation. Figure 2 

presents the separation of the operand A(x), which is of length N into four subgroups to give the a0, a1, a2, 

and a3. The same step is repeated on the B(x) operand to achieve b0, b1, b2, and b3. Figure 3 shows the 

generation of the variables Mn and Mn, m.  
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Below, we present our modified version of the Karatsuba algorithm. 

 

/* Let A and B two binary numbers of size nwidth */ 

min_stdvec = 8 

 

procedure karatsuba(A, B) 

    if (A < limit) or (B < limit) 

        return A × B 

 

         a0 = A((nwidth/min_stdvec)-1 downto 0)   

         a1 = A((nwidth/min_stdvec)*2-1 downto (nwidth/min_stdvec))  

         a2 = A((nwidth/min_stdvec)*3-1 downto (nwidth/min_stdvec)*2) 

         a3 = A((nwidth/min_stdvec)*4-1 downto (nwidth/min_stdvec)*3) 

                       

         b0 = B((nwidth/min_stdvec)-1 downto 0)   

         b1 = B((nwidth/min_stdvec)*2-1 downto (nwidth/min_stdvec))  

         b2 = B((nwidth/min_stdvec)*3-1 downto (nwidth/min_stdvec)*2) 

         b3 = B((nwidth/min_stdvec)*4-1 downto (nwidth/min_stdvec)*3) 

 

         /* 4 KA calls to compute M0, M1, M2, M3; M1, 2, M1, 3 and M2, 3 */ 

         karatsuba(a0 , b0, M0)   

         karatsuba(a1 , b1, M1)  

         karatsuba(a2 , b2, M2)   

         karatsuba(a3 , b3, M3)   

 

         a'0,1 = a0 + a1 

         a'0,2 = a0 + a2 

         a'0,3 = a0 + a3 

         a'1,2 = a1 + a2 

         a'1,3 = a1 + a3  

         a'2,3 = a2 + a3  

 

         b'0,1 = b0 + b1 

         b'0,2 = b0 + b2 

         b'0,3 = b0 + b3 

         b'1,2 = b1 + b2 

         b'1,3 = b1 + b3  

         b'2,3 = b2 + b3  

  

         /* 6 KA calls to compute */ 

         karatsuba(a'0,1, b'0,1, M0, 1) 

         karatsuba(a'0,2, b'0,2, M0, 2) 

         karatsuba(a'0,3, b'0,3, M0, 3)  

         karatsuba(a'1,2, b'1,2, M1, 2)  

         karatsuba(a'1,3, b'1,3, M1, 3)  

         karatsuba(a'2,3, b'2,3, M2, 3) 

 

         term7 = M3                               x6 

         term6 = M2, 3 − M2 − M3                x5 

         term5 = M1, 3 − M1 − M3 + M2              x4 

         term4 = M0, 3 − M0 − M3 + M1, 2 − M1 − M2  x3 

         term3 = M0, 2 − M0 − M2 + M1              x2  

         term2 = M0, 1 − M0 − M1                 x1  

         term1 = M0                               x0  

 

       result = term7_slr + term6_slr + term5_slr + term3_slr + term4_slr + term2_slr + term1_slr 

 

end 
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Figure 2. Generic n-bit × n-bit third-degree Karatsuba input preprocessing 

 

 

 

 
 

Figure 3. C(X) generation for a 32-bit × 32-bit Karatsuba 
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3. RESULTS AND ANALYSIS 

Section 3.1 and 3.2 show the simulation and implementation results for 32-bit x 32-bit, 128-bit x 

128-bit, and 512-bit x 512-bit multipliers.  

 

3.1. Simulation results 

For the sake of visibility, we present a shortened part of the simulations in Figure 4, Figure 5, and 

Figure 6. The results for the three implemented multipliers are consistent and give the expected values. 

 

 

 
 

Figure 4. Karatsuba multiplier 32-bit × 32-bit simulation results 

 

 

 
 

Figure 5. Karatsuba multiplier 128-bit × 128-bit simulation results 

 

 

 
 

Figure 6. Karatsuba multiplier 512-bit × 512-bit simulation results 

 

 

3.2. Implementation results 

As shown in Figure 7, the implementation on FPGA of the 32-bit × 32-bit does not display any 

error. Of the 500 limited IO capability, only 64 are bounded, and 1844/203800 slice LUTs are used. 

Regarding 128-bit x 128-bit. By quadrupling the multiplier size, we multiply by a factor of 10 the size of the 

slice LUTs used, as depicted in Figure 8. The implementation of the 128-bit x 128-bit multiplier exceeded the 

IO capabilities of the FPGA, as shown in Figure 8. And it got worse with the implementation of the 512-bit x 

512-bit multiplier, as shown in Figure 9. This result is not a surprise and does not depends on the scheme but 

rather the capacity of the FPGA used. 

 

 

 
 

Figure 7. Karatsuba multiplier 32-bit × 32-bit implementation results  
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Figure 8. Karatsuba multiplier 128-bit × 128-bit implementation results  

 

 

 
 

Figure 9. Karatsuba multiplier 512-bit × 512-bit implementation results  

 

 

4. CONCLUSION 

In this paper, we have proposed a modified version of the Karatsuba algorithm as well as a new 

scheme to facilitate FPGA implementation. Results obtained from 32-bit x 32-bit Karatsuba multiplier, 128-

bit x 128-bit Karatsuba multiplier, and 512-bit x 512-bit Karatsuba multiplier have met the expectation.  

They are promising for applications that require the rapid implementation and reconfiguration of 

cryptographic algorithms. The next step is to use these multipliers to implement a complete cryptographic 

algorithm on FPGA. 
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